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Abstract

We consider the calculation of blocking probabilities in multicast trees with dynamic
membership. We extend the work by Karvo et al., where an approximate algorithm
based on the Reduced Load Approximation was given to calculate end-to-end block-
ing for infinite sized user populations in multicast networks. The new end-to-end
call blocking algorithm for an arbitrary sized user population is based on the known
blocking probability algorithm in hierarchical multiservice access networks, where
link occupancy distributions are alternately convolved and truncated. We show that
the algorithm can be applied to multicast trees embedded in a network with an arbi-
trary topology carrying also non-multicast traffic. The resource sharing of multicast
connections, however, requires the modification of the algorithm by using a new
type of convolution, the OR-convolution. In addition, we discuss several different
user population models for which the algorithm is applicable.

Key words: Multicast, blocking, network, OR-convolution, one-to-many, dynamic
membership

1 Introduction

A multicast transmission originates at a source and, opposed to a unicast
transmission, is replicated at various network nodes to form a tree-and-branch
structure. The transmission reaches many different end-users without a sepa-
rate transmission required for each user. A multicast connection has therefore
a bandwidth saving nature. Blocking occurs in a network when, due to lim-
ited capacity, at least one link on the route is not able to admit a new call.
Traditional mathematical models to calculate blocking probabilities in tree-
structured networks exist for unicast traffic. Due to different resource usage,
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these models cannot directly be used for multicast networks. Only recently,
have mathematical models to calculate blocking probabilities in multicast net-
works been studied.

The past research has mainly been focused on blocking probabilities in mul-
ticast capable switches. Kim [6] studied blocking probabilities in a multirate
multicast switch. Three stage switches were studied by Yang and Wang [13]
and Listanti and Veltri [7]. Stasiak and Zwierzykowski [12] studied blocking
in an ATM node with multicast switching nodes carrying different multi-rate
traffic (unicast and multicast), using Kaufman-Roberts recursion and Reduced
Load Approximation. Admission control algorithms were studied in [10].

Chan and Geraniotis [2] have studied blocking due to finite capacity in network
links. They formulated a closed form expression for time blocking probabilities
in a network transmitting layered video signals. The model is a multipoint-to-
multipoint model. The network consists of several video sources, where each
source node can also act as a receiver. The video signals are coded into different
layers defining the quality of the video signal received by the user. The traffic
class is defined by the triplet: physical path (p), source node (s), and class of
video quality (¢). The behavior of each user is modeled as a two state Markov
chain, with unique transition rates defined for each traffic class triplet.

Karvo et al. [3] and [4] studied blocking in a point-to-multipoint network with
only one source node. The source is called the service center and it can offer
a variety of channels, e.g. TV-channels. The users subscribing to the network
may, at any time, join or leave any of the several multicast trees, each carry-
ing a separate multicast transmission or channel offered by the source. The
behavior of the user population defines the state probabilities at the links of
the tree-structured network. The user population is assumed infinite and the
requests to join the network arrive as from a Poisson process. The model stud-
ied in [3] considered a simplified case where all but one link in a network have
infinite capacity. An exact algorithm was derived to calculate the call blocking
probability in this simplified case. Extending the model to the whole network
was done only approximately in [4], where end-to-end blocking probabilities
were estimated using the Reduced Load Approximation (RLA) approach. The
single link case was further broadened by Bousseta and Beylot [1] by including
both multirate multicast and unicast traffic in their formulation.

In [8] the single link case discussed in [3] and [4] was extended to a mathemati-
cal model for a multicast network with any number of finite capacity links and
an infinite user population. Furthermore, the case of having background traffic
on the links of the network was also discussed, independently of [1]. The aim
of the present paper is to show that the exact algorithm can be formulated
for an arbitrary sized user population and an arbitrary structured network.



This paper continues with section 2 where the notation used throughout the
paper is presented. We also define the leaf link state and state space, and
show how the network state can be obtained from the leaf link states. After
presenting some fundamental assumptions, we show, in section 3, how the link
distributions within the network can be obtained from the leaf link distribu-
tions via a new convolution operation, the OR~convolution. In section 4, four
different user population models are introduced and the resulting leaf link
distributions are given.

We start the derivation of the algorithm, by separating the tree-structured
multicast transmissions from the surrounding distribution network. The first
main result is presented in section 5. It gives an expression for the time block-
ing probability in a network with any number of finite capacity links, and an
exact algorithm for calculating this blocking probability is introduced. The
section also presents some issues related to computational effort. In section
6 it is shown how the algorithm can be applied for calculating call blocking
probabilities using different user models. With the algorithm derived in the
simplified setting, the algorithm is easily extended to include non-multicast
traffic originating from outside the tree-structured transmission network. The
final result, an algorithm to calculate blocking probabilities in multicast trees
embedded in a network with an arbitrary topology carrying also non-multicast
traffic is presented in section 7. Section 8 presents some numerical results for
call blocking probabilities. The paper is concluded in section 9.

2 Network model

In sections 2 through 6, we consider the tree-structured subnetwork formed
by the routed multicast connections originating from the source. In section 7,
we consider embedding the dynamic multicast tree network in an arbitrary
structured network. Until then, we use the term network to refer to the tree-
structured multicast network.

2.1 Notation

The notation used throughout this paper is as follows. The set of all links is
denoted by J. Let U C J denote the set of leaf links. The leaf link and user
population connected through the leaf link is indexed by v € U = {1, ..., U}.
The set of links on the route from leaf link u to the source is denoted by R,.
M; and N; stand for the set of all links downstream link j € J including
link j and the set of downstream links terminating at link 5 € 7, respectively.
The set of user populations downstream link j is denoted by U;. Note that U;



is also the set of leaf links downstream link 7, including link 5 if link 7 € U,
in other words U; = M; NU. The set of channels offered by the source is
denoted by Z, with channel i € {1,..,1} = Z. Let d = {d;;7 € Z}, where d;
is the capacity requirement of channel 7. Here we assume that the capacity
requirements depend only on the channel, but link dependencies could also
be included into the model. The capacity of the link j is denoted by C;. The
different sets are depicted in figure 1.

M;
] 2
[] O
m
N—— N——
N; U,

Fig. 1. Example routed multicast connections to show the notation used.

Note that we have yet specified neither the size nor the traffic process of the
user population. We will postpone this discussion until section 4 and start by
defining the network state, state space and steady state probabilities in terms
of an arbitrary leaf link process.

2.2  Link and network state

Let the pair (u,i) € U x T denote a traffic class, also called a connection. The
connection state, which may be off (0) or on (1), is denoted by Y, ; € {0,1}.
The state vector Y, = (Y,i;¢ € Z) € S defines the joint state of different
channels on leaf link u € U, where S = {0,1}! denotes the link state space.
Similarly, for any link j € J the link state is denoted by the vector Y; =
(V;isieI)eS.

Consider now a network with all links having infinite capacity. The leaf link
states Y, jointly define the network state X,

X=Yyueld)=Y,suel,ie€l)e, (1)

where Q = {0, 1}Y*! denotes the network state space.

OR-operation. In a tree-structured multicast network, where traffic has
resource sharing characteristics, the link states are obtained from the leaf link



states using the OR-operation. Consider only two downstream links s,t € N,
terminating at link v, where s,t,v € J. Let y., yt, ¥, € S denote the states
of these three links, respectively. Channel 7 is idle in link v if it is idle in both
links s and ¢ and active in all other cases, which is equivalent to the binary
OR-operation. In other words, for y,,y: € S

Yo =Ys®Yy:t €S, (2)
where the vector operator @& denotes the OR-operation taken componentwise.

In a multicast link, the link state depends on the user states downstream the
link. If a channel is idle in all links downstream link j it is off in link j and
in all other cases the channel is active. The OR-operation gives the link state
Y;=(Y;isi€l)eS,jeJ as afunction of the network state, X,

Y; ,ifjeld
Y; = gj(X) = ISZ%]- Yi = ej?[ Y. , otherwise .
keN;

Here, the last form is given to motivate the derivation of the recursive algo-
rithm presented in section 5.1. Note that, when X = x the occupied capacity
on the link j is d - g;(x).

When the capacities of one or more links in the network are finite, the network
state space (2 is truncated according to the capacity restrictions on each link
j € J. The truncated state space, denoted by €2, is defined as follows

Q={xeQ|d gix)<C;,Vjc T}

Correspondingly, we denote by X € Q) the state vector in the truncated space.

3 Steady state distribution in a network with infinite link capaci-
ties

The network state is jointly defined by the leaf link states. Under the as-
sumption that each user population v € U is independent, and that the link
capacities are infinite for all links in the network, the stationary distribution
of the network can be obtained from the leaf link distributions, defined by the
user population connected through the leaf link. Let us assume that the leaf
link distributions, m,(y,) = P(Y, = yu),u € U, are known. For the whole
network, the state probability has a product form,

m(x) = P(X =x) = [ mu(yu). (3)

ueU



as the user populations are independent.

3.1  OR-convolution

In section 2.2, it was shown that the link state is obtained by an OR-operation
over all downstream leaf link states. Under the assumption of independent user
populations and infinite link capacities, the link distributions can be obtained
using a convolution operation, the OR-convolution.

The OR-convolution, denoted by ®, is the operation,

[fs ® ff] (yv> = Z fS(yS)ft(Yt)

Ys@Yt=Yv

defined for any real valued functions f, and f;.
The link state distribution is obtained by OR~convolving the appropriate leaf

link distributions. Thus, the link state probability, denoted by 7;(y), fory € S,
is equal to

mi(y) Ctjeu
i(y) (Y;=y) [kgj ) [® 7] (y) , otherwise .
keN;

4 User population models

In the previous section, the steady state distribution of the network was de-
fined in terms of the leaf link distributions. Recall that, according to our
notation, the leaf link and the user population connected through the leaf link
are equivalent. Consequently, the user population model defines the leaf link
distribution 7, (y). For the derivation of the blocking algorithm to follow, we
further need to assume that the behavior of the user population is described by
a reversible Markov process, i.e. a Markov process satisfying the detailed bal-
ance equations [5]. We are able to loosen the assumption by allowing general
holding time distributions leading to more general processes, see appendix
for the proof of this insensitivity property. In this section, we present four
different user population models. We first consider a model for a single user
choosing from the set of channels Z. The second model, presented in section
4.2 is constructed as a special case of the single user model, the single user
being only connection specific, i.e. having only the possibility of choosing a



given channel 7. We construct the leaf link distribution by combining the [
single users, one for each channel. The most general user population model,
the finite user population model, is presented in section 4.3. It is a model for
a population consisting of N users each having the whole selection of channels
to choose from. We show how the steady state probability for the population
and thus for the leaf link can be obtained with the aid of the single user model
presented in section 4.1. In section 4.4, we show how the user population for
a finite number of users results in the infinite user population, presented in
[3], as the number of users N tends to infinity. The given four user population
models and the corresponding four leaf link distributions cover a large variety
of realistic user models. Furthermore, each model can be defined in terms of
the single user model presented next.

4.1 The single user

First, we consider a model where each user population consists of a single
user. Let uw € U. User u, connected through leaf link u, can either be in the
idle state 0 or connected to some channel ¢ € Z. The model proposed here
is a Markov process with I + 1 states. All transitions by user u are made
via the idle state. The transition rate from state 0 to state ¢ € Z is denoted
by Aui = a;\,, where q; is the probability of choosing channel i among the
channel set Z. The transition rate from state 7 to state 0 is denoted by ;. The
state transition diagram of the Markov process is shown in figure 2.

Fig. 2. The Markov process used to model user behavior.

The steady state probabilities of this single user system are

Tu,i = Pu,iTu,0

I -1
Tu,0 = {1 + Z /)71,,7Z:| )

i=1

where p,; = a;\,/p;. Because the state diagram of the model was chosen to
be a tree, the detailed balance equations are satisfied, which can also be seen



directly,
7"—71,,0)\71,775 = 7"—71,,75”757@. S

Thus the process is reversible. Furthermore, it can be shown (cf. appendix)
that the insensitivity property applies and the channel holding times as well
as the user idle times can be generally distributed with means 1/4; and 1/,
respectively, leading to a semi-Markov process.

The probability P, that user u connects to some channel in the multicast
network is by definition

Z Pu.k
kel (4)

v I+ Z pu,k,
kel

from which it follows that

1
1-— Pu = T ~=_ = Tu,o:
1+ puk
kel

In addition, the parameter &; is defined as the conditional probability of being
in state ¢ given that the user connects to the multicast network,

Qs = Pui . 067;//1,7;
P = =
Zkel’ Pu,k Zkel’ Ozk//tk ’

ieT. (5)

It follows that m,; in terms of P, and &; is
Tui = Pudiai € Ia

The steady state probabilities m,(y) for leaf link « then have the following
form,

Pudi 5 ify:eiaieja
m(y)=91-P,, ify =0, (6)

0 , otherwise.

Note that in the limit, when the mean idle time 1/, — 0, our model allows
the user to switch directly from one channel to another.



4.2 The connection specific single user

In the paper by Chan and Geraniotis [2], each user of a traffic class (p, s, t) was
modeled as a two-state Markov chain with unique transition rates. The user
model can be obtained as a special case from the single user model presented in
the previous section. Instead of being leaf link specific, i.e. having a selection
of channels to choose from, each user is now connection specific. The user
is denoted by the pair (u,i), formerly denoting a connection. Behind each
leaf link u there are I users, one for each channel 7. The Markov process for
the connection specific user (u,i) are obtained by setting the transition rates
Auj = pt; =0, for j # 4,4 € Z. The Markov process is depicted in figure 3.

: :)\ui i:
122

Fig. 3. The Markov process for the connection specific user.

As the channels are independent, the unrestricted steady state distribution
for leaf link w is then

77—71,(}’) = szl7(1 - p71,,i>1_yi7 (7)
€T

>\u 7
Ayt

where p,; =

As the connection specific user is a special case of the single user, the insensi-
tivity property applies (cf. appendix) and the channel holding times as well as
the user idle times can be generally distributed with means 1/y; and 1/, ;,
respectively.

4.3 The finite user population

Consider a leaf link v with a user population of size N connected through
the link. Users are assumed independent and homogeneous, each user being
modeled according to the single user model of section 4.1. We can obtain the
unrestricted leaf link distribution 7, (y) in terms of the single user distribution
given in (6). To do this, we construct the finite user population of size N
from single users, by envisaging that downstream leaf link u there are N
links with infinite capacity each having a single user connected through. In
other words, we create a new hypothetical set U, of users downstream link w.
If each user has the same probability P, to subscribe to the network and a
steady state distribution given by equation (6), then the OR~convolution gives
the distribution for the actual leaf link u servicing the population of N users.



Thus, the state probability, denoted by m,(y), for y € S, is equal to

m(y) = P(Yu =y) = [Q) m(y)- (8)

kEUy

As the finite user population can be obtained from the single user model, the
insensitivity property applies (cf. appendix) and the channel holding times as
well as the user idle times can be generally distributed with means 1/4; and
1/Au.i, respectively.

The leaf link distribution given in equation (8) can also be obtained by calcu-
lating the state probabilities of |U4,| = N users, using a multinomial distribu-
tion with parameters p; = P,&;, fort € 7 and py = 1 — P,,
NI ol ifé&+...+& =N
— — — . i=0 - 5 — 5
PE=¢|Z+...+Z=N) = = 9)
0 , otherwise,

where = = (Z;,7 = 0, ..., I) is the state vector, Z; € N. The state probabili-
ties given in equation (8) are obtained by summing the state probabilities of
equation (9) to take into account the multicast conditions.

4.4 The infinite user population

As the number of users N belonging to user population v tends to infinity,
the population model converges to the infinite population model presented by
Karvo et al. [3]. This is easily seen, as the multinomial distribution with pa-
rameters p;, = P,&; and expected values N P,&; converges to the joint distgibu—
tion of independent Poisson distributed variables with parameter a,; = %ai.
Writing the expected value with the help of equations (4) and (5) gives,

XD o/ /
NP,&; =N keT Qi /[
L+ Y /iy an/

kel kel

The limit of the expected value N P,q; is then,

7 N)\u TN .
lim (NP,d;)= lim (2 ) — Ay = aus, Vi €T,
N—oo N—oo 15 1+ Ny Yger /i i

where A}im N\, — j\u

10



The finite user population model therefore converges to the infinite user pop-
ulation model presented in [3]. The reversible Markov process for the infinite
user population is the joint queue length of I independent M/M /oo queues.
The unrestricted stationary distribution for leaf link « with an infinite sized
user population connected through is thus

mafy) = [ (L= e ey, (10)

€T

Note further the similarity between equations (7) and (10). In both models the
stationary leaf link distribution is the joint distribution of connection specific
user populations. The equations differ only in the probability of connecting to
the channel, Au::rlul and 1 — e~ % respectively. For the infinite user population
model, the insensitivity property applies (cf. appendix) and the channel hold-
ing times can be generally distributed with mean 1/y;, leading to independent

M/G /oo queues.

5 Time blocking in a multicast tree network

When the capacities of one or more links in the network are finite, the network
state space is replaced by the truncated network state space Q. In the previ-
ous section we specified four different user models. Assuming independent user
populations, i.e. independent leaf link distributions, the state probabilities of
the truncated system differ from those of an infinite system only by the nor-
malization constant G(Q) = Y2, g 7(x). This result, known as the truncation
principle, applies if the idle and holding time distributions are exponential, as
the resulting state vector X is a reversible Markov process (cf. e.g. [5]). For
general idle and holding time distributions, the applicability of the truncation
principle is shown in appendix. The state probabilities of the truncated system
are therefore

7(x)

G(Q)

7(x)=P(X=x)=PX=x|XeQ) = , for x € Q. (11)

When the capacities of the links are finite, blocking occurs. A call belonging to
traffic class (u, ) is blocked if there is not enough capacity in the network to
set up the connection. Note that, once channel 7 is active on any link belonging
to the route R, of user population u, no extra capacity is required on that
link for a new connection (u,7). Let us define another truncated set QW cQ

11



with a tighter capacity restriction for the links on route R,
Qui={xeQ|d- (gj(x) ® (eiljem)> <C;VjeJt,

where e; is the I-dimensional vector consisting of only zeros except for a one
in the ith component, and 1;c%, is the indicator function equal to one for
j € R, and zero otherwise. This set defines the states where blocking does
not occur when user u requests a connection to channel 7. The time blocking
probability b} for traffic class (u, ) is thus,

" | G(Q)

This approach requires calculating two state probability sums: one over the
set of non-blocking states appearing in the numerator and another one over
the set of allowed states appearing in the denominator of equation (5).

The multicast one-to-many connections form a tree-type structure, and much
of the theory in calculating blocking probabilities in hierarchical multiservice
access networks [9] can be used to formulate the end-to-end blocking proba-
bility algorithm in a multicast network as well.

5.1 The algorithm

Using the analogy to tree-structured access networks, the time blocking prob-
ability is calculated by recursively convolving the state distributions of indi-
vidual links proceeding from the leaf links to the origin link, and at each step,
truncating the link distributions according to the capacity restriction of the
link.

In order to calculate the denominator of equation (5), let us define a new
subset S; of the set of link states, S,

Si={veS|d-y<C} forjeJ.

The corresponding truncation operator acting on any real valued function f
is defined as

Tif(y) = f(¥)lyes,- (12)
Fory € § let

Q;(y)=P(Y; =vy; Yy € S, Vk € M;). (13)

12



It follows that the Q);(y) can be calculated recursively,

Tim;(y) Jifjel

QJ(Y) = Tg[ ® Qk] (y) , otherwise.
keN;

Note that, if the capacity constraint of link j € M; is relaxed, then the
branches terminating at link j are independent, and the probabilities of the
jointly requested channel state can be obtained by the OR-convolution. The
effect of the finite capacity C; of link j is then just the truncation of the
distribution to the states for which the requested capacity is no more than Cj.

The state sum G(£2) needed to calculate the blocking probability in equation
(5) is equal to

G(Q) = Z QJ(Y),

yES

where ();(y) is the probability (13) related to the common link j = J.

Similarly for the numerator of equation (5), let S;” C Sj be defined as the
set of states on link j that do not prevent user u from connecting to multicast
channel 7, i.e.

5‘;” ={yeS|d- (y & (eiljeRu)> <y}, forje J.

The truncation operator is then

T;”f(y) = f(y) 1ye‘§;“" (14)
Fory € S let
Q' (y) = P(Y; =y; Y, € §",Vk € M;). (15)

Similarly, as above, it follows that

T}y () Jifjeu

G =9 .. '
J T]qm[ ® qu (y) , otherwise.
keN;

The state sum in the numerator of equation (5) is then

G(i) = > Q7' (y),

yES

13



where Q%' (y) is the probability (15) related to the common link j = .J.

Finally, the blocking probability in equation (5) is

bt 1 ZyGS Q37(Y> )
Yyes Quly)

5.2 Computational complexity

The complexity of the algorithm increases exponentially with the number
of channels, as the number of states in each of the distributions to be con-
volved is 2!. This can be seen by investigating the computational effort of
the OR-convolution algorithm. The computational effort of convolving two
state vectors of length 27 is O((2! — 1)2). However, the total computational
effort of the OR-convolution algorithm in a network with U user populations,
O((U=1)(2! —1)*) = O(U22), grows on linearly with respect to U, irrespec-
tive of the number of links J. This can be compared to a brute force approach
of going through all the 2Y! network states and summing the probabilities
of those which satisfy the conditions of an allowed state. Clearly, the com-
putational effort of the OR-convolution algorithm grows exponentially as the
number [ of channels grows, but it does not depend critically on the size of
the network, defined by the number of user populations, as is the case with
the brute force method.

6 Call blocking in a multicast tree network

Until now, we have shown how the exact algorithm can be used to calculate
time blocking probabilities in point-to-multipoint multicast networks, with
arbitrary sized user populations. However, call blocking probability is often
of more interest. In [3] call blocking b was defined for the multicast network;
call blocking occurs when a user is not able to subscribe to channel i.

6.1 Call blocking with infinite user populations

Due to Poisson arrivals, the time blocking probability for the infinite user
population is equal to the call blocking probability. Therefore, no modifications
of the algorithm are needed. Note that the single link model by Karvo et al.
[3] is a special case of the network model derived in this paper, and hence
the same results can be obtained using the network algorithm. For numerical
results, refer to [§].

14



6.2 Call blocking with single users

The Markov process model that describes the behavior of a single user was
presented in section 4.1. The model assumes that each user is subscribed to one
channel at a time and a request for a new channel can occur only through the
idle state. A user experiences call blocking, when there is not enough capacity
to turn the channel on. Call blocking for user u is equal to time blocking in a
network where user u is removed. This follows easily from the product form
state distribution. Removing user u from the network is equivalent to setting
user u in state 0,

1,ify=0,
mu(y) = (16)
0, otherwise.

For all other j € U the state probabilities are given by equation (6).

As described in section 3 the leaf link distributions define the network dis-
tribution and by using the state probabilities defined above, the algorithms
presented in section 5.1 can be used to calculate the time blocking in the
reduced system. The resulting end-to-end call blocking probability is,

Be _q_ LyesQr'(y)
v Yyes @Qs(y)’
where
ly—o ,ifj=u,7 €U,
Q;i(y) = Timi(y) Cifj#FuEU,
T;[ Q) Qul(y) ,otherwise,
keEN;
and
ly—o ,ifj=u,7 €U,
Qv (y) = T7'mj(y) it jAuj e,

T Q) Qr'1(y) . otherwise.
keEN;

15



6.3 Call blocking with connection specific users

The connection specific user model presented in section 4.2 is a special case
of the single user model, and the call blocking probability is calculated in
a similar fashion. The end-to-end call blocking probability for user (u,i) is
obtained using the time blocking algorithm to a network where user (u,) is
removed. In other words, by replacing 7, (y) with the state probability

)= I PU(1—puy)* .
ST\

For all the other users, equation (7) is used.

6.4 Call blocking with finite user populations

For a finite user population with N > 1, the call blocking probability can
be calculated by envisaging the underlying single user processes downstream
the leaf link, as was done in section 4.3, i.e. by imagining that each user is
connected to the leaf link by a separate infinite capacity link. The call blocking
probability is then equal to the call blocking probability of a single user in this
extended system.

7 Blocking in a multicast tree embedded in a larger network

Until now, only the tree-structured part of the network, resulting from the
multicast traffic offered by the source was considered. As mentioned earlier,
the algorithm can be extended to generally structured networks, with mixed
traffic. In this case, the tree-structured distribution portion of the network
carries, in addition to multicast traffic, background unicast traffic originating
from the surrounding network. We assume that the background traffic is in-
dependent on each link. The distribution does not depend on the multicast
traffic in the link and the traffic in the other links. The non-multicast traffic
in link j is assumed to be Poisson with traffic intensity A;. The capacity re-
quirement is equal to one unit of capacity. The link occupancy distribution of
the non-multicast traffic in a link with infinite capacity is thus,
z

q;i(z) = %GAJ, z € N. (17)
Here we deal only with single rate unicast traffic, the generalization to mul-
tirate Poisson traffic is straightforward and is considered for example in [1].

16



Note also, that for the truncation principle to apply, the background traffic
can be modeled by any reversible Markov process or, even, the corresponding
non-Markovian process with general holding times. In this work we consider
the Poisson case.

The inclusion of background traffic affects only the truncation step of the
algorithm presented in section 5.1. The state probabilities are defined as in
section 4. The state probabilities of the link states that require more capacity
than available on the link are set to zero as before. However, also the state
probabilities of the states that satisfy the capacity restriction of the link are
altered, as the available capacity on the link depends on the amount of non-
multicast traffic on the link.

Therefore, the truncation functions presented in equations (12) and (14) must
be replaced by the operators

1,¥)=P(Z < C—d-)fl¥) = > 4()(y) (19
Ci—d-(y®(eiljer,))
T3 f(y)=P(Z; < Cj—d- (y @ (eiljer,))) f(y) = 2 q;(2)f(y).

To justify this, consider two new sets for the collection of random variables
(Y, Z), for j€ J andi €T,

S;={(y,2) €eSxN|d-y+2<C},

~

S]y’i:{(y, 2)eSxN|d- <y69 (eileRu)> + 2z < Gy},

where N denotes the set of natural numbers. Then, the probabilities Qj and

~

U,
(), are expressed as

Qi(y)=P(Y; =y; (Yy, Z) € S, Vk € M;)
—=P(Y; =y, Z; < C; —d-y; (Yx, Z) € S, Vk € M;\ {j})
=P(Z; < Cyj—d-y) x P(Y; =y; (Yx, Z) € S, Yk € M;\ {j}),

and
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~

Q' (y)=P(Y; =y: (Ys, Z4) € 8",k € M;)

J

=P(Z; <C;—d- (y @ (eiljer,)))
xP(Y; =y (Y, Z;) € S,V € M\ {j}).

Thus, the algorithm differs only by the truncation function used,

Timi(y) ,ifjeld
Q) =1 . )
! Ti[ Q) Qil(y) , otherwise.
keN;
Similarly,
| T'(y) Jifjeld
Q" (y) =

T;”[ R Qi"1(y) , otherwise.
keEN;

Another way of describing the relationship between the two different types
of traffic, is to consider them as two traffic classes in a two-dimensional link
occupancy state space as shown in figure 4. If the capacity is infinite, the
traffic classes are independent of each other. The finite capacity of the link
imposes a linear constraint for this state space. We notice that the marginal

Fig. 4. Shaping of the marginal distribution of the capacity occupancy.

distribution of the capacity occupancy of the multicast traffic is weighted by
the sums over the columns of the occupancy probabilities of the background
traffic. If the multicast traffic occupies ¢ = d-y; units of capacity, and the link
capacity is C;, then possible non-multicast traffic states on the link are those
with z; < C; — ¢, where z; is the number of non-multicast calls, in accordance
with equation (18).

18



The blocking probability in equation (5) is again obtained by two series of
convolutions and truncations from the leaf links to the common link .J. The
time blocking probability of the network is

l;t 1 ZyGS QA;II?(}O
v ZyES QJ(Y)

Recall that only the truncation operators used in the algorithm were altered.
Therefore, the same modifications that were presented in section 6 apply for
the above algorithm.

8 Numerical results

In this section, we present numerical results for call blocking using the single
user population model of section 4.1. Both the network with only multicast
traffic and the network including background traffic are considered. The net-
work, used as an example, has four levels. It is depicted in figure 5. The
common link (level 1) has 256 users connected to it. The network fans out
into 4 links, with each having 64 users. These links fan out to four links with
16 users and finally each link with 16 users fans out to four links with 4 users.
The leaf links (level 5), with capacity set to one and one user behind them,
are not shown in the figure of the example network, as no blocking occurs in
these links.

The call blocking probabilities are calculated for different network capacities
with identical number of channels (I = 8), channel capacity requirements
(d; = 1,7 € T), and probability of subscribing to any channel (P = 0.1). A
truncated geometric distribution was used for the channel preference,

_pd-p

(3 1 o (1 . p)[?
with parameter p = 0.2. The mean holding time is the same for all channels,
1/;n = 1, resulting in &; = «y, for all . The link capacities are allocated

according to the network level of the link. Thus C'j corresponds to the capacity
allocated to the common link and C} is the capacity allocated to the level four

links.

The multicast traffic is offered by a finite user group, while the background
traffic is offered independently to each link and by an infinite user group
originating partly from outside the tree-structured subnetwork. In the first
case, the network has the same background traffic intensity for all links, which
is the case if the subnetwork lies inside a large network. In the second case,
the network has a background traffic intensity depending on the number of
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Fig. 5. A distribution network and its tree-structured subnetwork

multicast users subscribed to the link, which is a reasonable assumption in a
small network. Neither network has any non-multicast traffic in the leaf links,
which have only one user. The results depicted in table 1 show that the effect
of having the same amount of non-multicast traffic in all the links does not
differ much from the case of having non-multicast traffic proportional to the
number of users in the link. Only when the blocking probabilities are small, the
effect of including background traffic is large. For small blocking probabilities,
the difference in the two mixed traffic models is also notable.

Table 1
End-to-end channel blocking probabilities for the network in figure 5 .
Link capacities Multicast | Background A; = 0.1 | Background A; = 0.1/N
Ci|Cy | Cg | Cy Bf ¢ Bf ¢ Rel. change Bf ¢ Rel. change
715 3| 2 |0.3583 0.3686 | 1.03 0.3830 | 1.07
8 |16 | 3 | 2 |0.1176 0.1340 | 1.14 0.1660 | 1.41
8 | 71 4| 2 |0.0352 0.0520 | 1.48 0.0800 | 2.27
81 8 | 5 | 3 ||0.0017 0.0179 | 10.55 0.0228 | 13.44
8 1 8| 6 | 3 || 0.0005 0.0167 | 33.42 0.0205 | 40.92
8 |1 6 | 4 | 4 |0.0623 0.0796 | 1.28 0.0923 | 1.48
8 | 8| 4| 4 | 00144 0.0307 | 2.13 0.0382 | 2.65
8 | 8 | 5 | 4 |0.0013 0.0175 | 13.47 0.0198 | 15.24
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9 Conclusions

We have presented an exact algorithm for calculating end-to-end time block-
ing probabilities in multicast networks. The algorithm is based on the known
algorithm for calculating blocking probabilities in hierarchical multiservice ac-
cess networks. The multicast traffic characteristics were taken into account in
the convolution step of the algorithm, using the new OR-convolution. The
algorithm was further extended to include background traffic in addition to
multicast traffic. We have given four different user models satisfying the re-
quirements for the use of the algorithm. The single user model presented in
section 4.1 can be considered as the main model, as from it the other three
user population models can be derived. The main model can be modified in
order to obtain the connection specific user model presented by Chan and
Geraniotis [2], and user models for arbitrary sized user populations.

We also showed how the original algorithm for calculating time blocking prob-
abilities can be applied to calculating call blocking probabilities for all the
user models presented. The use of the end-to-end time blocking algorithm for
calculating call blocking probability is demonstrated by means of numerical
examples. The results were further found insensitive to the channel holding
time distributions. For the finite user population models, the results were in-
sensitive to user idle time distributions as well.

Calculating the exact solution for the end-to-end call blocking probability,
however, becomes infeasible as the number of channels increases. In contrast
to ordinary access networks, the aggregate one dimensional link occupancy
description is not sufficient, since in the multicast network it is essential to
do all calculations in the link state space, with 2/ states. This is due to the
resource sharing property of multicast traffic, namely the capacity in use on
a link increases only when such a channel is requested which currently is not
carried in the link. Thus, in practice, approximation methods such as RLA are
needed. However, the size of the network contributes to the complexity only
linearly and is thus not an issue as long as the number of channels is small.

We leave for further research extending the presented user population models
to cover an even larger variety of realistic multicast user models and new ap-
proximation methods for calculating blocking probabilities. The acceleration
of the exact algorithm presented should also be investigated. The complexity
of the algorithm would decrease considerably if the calculations would not re-
quire the 27 states of link state space. One possibility for further studies would
be to assume that the channels be identical in terms of the probabilities of
choosing the channels, the capacity requirement of the connection and the
mean holding time of the receiver. These assumptions are clearly restrictive,
but would allow the use of the algorithm for networks with many channels.
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A On the insensitivity of multicast loss systems

In this appendix, we give a more rigorous treatment of the insensitivity prop-
erty discussed earlier in this paper. This is done by using the theory of gener-
alized semi-Markov processes, and, in particular, the results presented in [11].
The final aim is to justify the claim that the steady state distribution 7(x) in
a network with arbitrary link capacities is insensitive to the underlying con-
nection holding time distributions, i.e. 7(x) depends only on the mean, but
not on the form, of the connection holding time distributions. For the finite
user population models, 7(x) proves out to be insensitive even to the user idle
time distributions. Below, we will show that these properties are valid at least
among the distribution classes defined in [11]. For shortness, these distribu-
tions are called general. As an aside, we find that the truncation principle, as
presented in (11), is insensitive to these different distributions.

A.1  Finite user population models

The reversible Markov processes used to model finite user populations in Sec-
tions 4.1-4.3 implicitly require that all the user idle time and connection hold-
ing time distributions be exponential. If these exponential distributions are
replaced by general distributions, without modifying their means, the result-
ing model is a semi-Markov process. It is well known that this semi-Markov
process has the same stationary distribution as the original Markov process.
In other words, the unrestricted steady state probabilities m,(y) of the leaf
links u are insensitive both to the user idle time and connection holding time
distributions. Thus, equations (6), (7), and (8) remain valid even if the user
idle time and connection holding time distributions are general.

As an immediate consequence, equation (3) remains valid if the user idle time
and connection holding time distributions are general. Thus, for all the models
mentioned above, the steady state distribution m(x) in a network with infinite
link capacities is also insensitive to both the user idle time and connection
holding time distributions.

Finally, it is possible to show, for all the models mentioned above, that the
steady state distribution 7(x) in a network with arbitrary link capacities is
also insensitive to both the user idle time and connection holding time distri-
butions. Note that this does not follow immediately from (11) and the preced-
ing result, since until now equation (11) has been shown to be valid only for
the exponential distribution. Instead, the insensitivity of 7(x) implies that the
truncation principle, as presented in (11), also applies to general distributions.

Counsider first the user model defined in Section 4.1. If the user idle time

23



and connection holding time distributions are exponential, the network state
process X(f) = (}Zﬂv(t); u € U,1 € T) is a reversible Markov process satisfying
the following detailed balance equations: for all w € U, 1 € Z, and x € Q. such
that X + e,; € €,

T(X)Ayi = T(X + €y;) i (A1)

Assume then that the user idle time and connection holding time distribu-
tions are general. It is further assumed that whenever a connection request is
blocked, the related user starts a fresh idle period. In this case, the network
state process f((t), in general, is neither a Markov process nor a semi-Markov
process. Instead, it is a generalized semi-Markov process (GSMP) as defined
e.g. in [11]. The idea is to consider, in addition to the network state variable
X(t), the remaining times 7T, (t) that each user u stays in its current state.
If fﬂﬂv = 1, then T,(t) tells how long user w still continues to subscribe to
channel ¢ at time ¢ (and we say that clock s,; is active at that time). But if
ffm; = 0 for all 4, then T,(¢) tells how long user w still remains idle at time
t (and we say that clock s,q is active at that time). Thus, U(I + 1) differ-
ent clocks are needed, exactly U of which are active in each network state.
Let then T(¢) = (T, (t);w € U). The point is that the supplemented process
(X(t), T(t)) is a Markov process.

By Th. 1.1 of [11], the GSMP X(#) is insensitive to the user idle time and
connection holding time distributions if the following local balance equations
are satisfied:

(i) for all u € U and x € Q such that clock s,q is active,

ﬁ(X))\“ = Z ﬁ(X + e“i)/l’ilx—&-emefl + Z ﬁ—(x>)\“7;1x+em;€§2'
i€l i€l

(i) forallu eU, i € 7, and x € Q such that clock s,; is active,
T(X)p; = T(X — eyi) Aui

It is easy to see that all these local balance equations follow from the detailed
balance equations (A.1).

The user model defined in Section 4.2 can be handled similarly. In this case,
the detailed balance equations are exactly the same ones (A.1) as above. The
number of clocks needed is 2U I: clock s, is active whenever }Zﬂv =z¢€{0,1}.
The local balance equations corresponding to the insensitivity property read
now as follows:

(i) for all w € U, i € T, and x €  such that clock s, is active,

(X)) A\ = T(x + eui)/’/ilireuieQ + ﬁ(x)/\mlx+em€@.
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(i) forallu eU, i € 7, and x € Q such that clock s, is active

T(X) i = T(X — €yi) Aui-

It is again easy to see that all these local balance equations follow from the
detailed balance equations.

Consider finally the user population model defined in Section 4.3. The claim
follows now from the first case above, equation (8) and the observation that
the pure convolution operator preserves the insensitivity property.

A.2  Infinite user population model

The infinite user population was modeled in Section 4.4 as a collection of inde-
pendent M /M /oo queues, requiring that all the interarrival time and connec-
tion holding time distributions be exponential. It is well known that the steady
state distribution in an M/G /oo queue is the same as in the corresponding
M/M /oo queue (see e.g. [5]). Thus, the unrestricted steady state probabili-
ties m,(y) of the leaf links u are insensitive to the connection holding time
distributions, but not to the interarrival time distributions. In other words,
equation (10) remains valid even if the connection holding time distributions
are general.

As an immediate consequence, equation (3) remains valid if the connection
holding time distribution is general. Thus, for the infinite user population
model, the steady state distribution 7(x) in a network with infinite link ca-
pacities is insensitive to the connection holding time distributions.

Finally, we will show that the steady state distribution 7(x) in a network with
arbitrary link capacities is also insensitive to the connection holding time dis-
tributions. This follows immediately from a similar result for the steady state
distribution 7(n) of the extended network state process N(t), which will be
proved next, again by utilizing the theory of generalized semi-Markov pro-
cesses. By the extended network state process, we refer to N(t) = (N (t):u €
U,i € T), where N,;(t) denotes the number of ongoing multicast connections

belonging to traffic class (u, 7). Note that

where h(n) = (1,,50;u € U,i € T), so that Y,;(t) = 1y )~o- Let then
£ =10,1,...}V*I The state space of N(t) is denoted by &,

£=1{ne&|h)eq.
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If the connection holding time distributions are exponential, the extended
network state process N(f) is a reversible Markov process satisfying the fol-
lowing detailed balance equations: for all u € U, 2 € Z, and n € &, such that
n—+e, € SN s

T\ = T(n + eys) (ny; + 1) ;. (A.2)

Assume then that the connection holding time distributions are general. In
this case, basically due to an infinite user population, the extended network
state process N(?‘) is not an ordinary GSMP but a GSMP resulting from a
generalized semi-Markov scheme with relabeling, as defined in [11]. (A similar
relabeling scheme is also needed when modeling an M/G /oo queue in this
framework.) In addition to single clocks, different clock types are defined. In
our case, there are 2U1 different clock types: one clock of type S,y corre-
sponding to the interarrival times is always active, and n clocks of type Sy
corresponding to the holding times are active whenever N,; = n. The relabel-
ing of clocks has to be done similarly as in the case of an M/G /oo queue (see

[11]).

By Th. 3.1 of [11], the GSMP N(t) resulting from the relabeling scheme de-
scribed above is insensitive to the connection holding time distributions if the
following local balance equations are satisfied: for allu € U, i € Z, and n € g,
such that at least one of the clocks of type S, is active,

1
77'(1’1)/17 = 77'(1’1 - emj))\mﬁ_
Nasi

It is easy to see that all these local balance equations follow from the detailed
balance equations (A.2).
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