
Helsinki University of Technology March 30, 1999
Laboratory of Telecommunications Technology

Qlib - Traffic Theory Library

2

Preface

The Qlib program library has resulted from the work conducted
over several years jointly by

 Laboratory of Telecommunications Technology of
 Helsinki University of Technology (HUT) and

 VTT Information Technology, Telecommunications

The following individuals have contributed to the library:

Samuli Aalto, Jani Lakkakorpi, Ilkka Norros, Anssi Pirhonen
 and Jorma Virtamo.

The programs can be used and modified freely.

No claims are made about the correctness of the programs
and no liability is taken for any damage caused by the use
of the programs in the library.

Reports of bugs in the program can be sent to qlib@tct.hut.fi

**

3

Contents

1. Installation of the library……………………………4

1.1. Installation in UNIX……………………………………4

1.2. Installation in PC..….…………………………………..4

2. Using the library…………..………………………….6

2.1 Use in UNIX…………..………………………………….6

2.2 Use in PC……………..…………………………………..6

2.3 Mathematica packages…………………………………..6

2.3.1 UNIX………………………………………………..6

2.3.2 PC…….……..………………………………………6

2.4 MathLink…..…………………………………………….7

2.4.1 UNIX………………………………………………..7

2.4.2 PC…….……..………………………………………7

2.4.3 TCP/IP connections………………………………..9

2.5 Qlib function list………..………….……………………11

3. Maintenance of the library…………………………14

3.1 Maintenance in UNIX…….…………………………….14

3.2 Maintenance in PC……….……………………………..14

4

1. Installation of the library

1.1. Installation in UNIX

Traffic theory library is in a file called traffic.tar. Extracting (in UNIX) is executed with the
following command:

tar xvf traffic.tar

Now a subdirectory called traffic is created in the working directory. This subdirectory
contains the C-functions of the library. After this, we change the working directory to traffic
and execute command make. This command will compile the library. The compiled library
will be named qlib.a.

Manual pages for the functions are located in a subdirectory named traffic/man/man3. These
pages are TROFF/NROFF -code. Manual pages can be used by man -program after we add
subdirectory traffic/man to the environment variable MANPATH. If the shell is (t)csh, the
right command is:

setenv MANPATH $MANPATH\:$HOME/traffic/man .

(It is assumed, that subdirectory traffic is located in the home directory.) Now we can read
the manual page of a function by entering command:

man function.

Manual pages contain a lot of special characters. In order to fully exploit these manual pages,
it is recommended to transform these pages into postscript -form before reading them. PS -
versions of the manual pages are located in subdirectory traffic/doc. They can be easily
extracted from manual pages with command:

groff -e -man function.3 > function.ps.

Now, with ghostview, manual pages can be read in their full content.

1.2. Installation in PC (with Borland C++ and Microsoft Windows)

First we extract the files from dos.zip to a new folder called dos. The source files are also
included in this directory to make it possible to update the library. The library, qlib.lib, is
rebuilt/updated (if necessary) in the following manner:

5

There is a project file (qlib.ide) in the dos -directory, that creates qlib.lib. From Project -
menu we choose Open project and qlib.ide. Then we check, that files called c0wl.obj,
mathwl.lib (both should be located in bc4\lib) and all our own source files are among the
project files. (To add a node: click the uppermost node in the project window with the right
mouse button and choose Add node.) From Options/Project/Directories/Include Directories
we check the location of our header files (should be dos). Before building the library we
choose the uppermost node in the project window, click the right mouse button and choose
TargetExpert. The recommended options are: Target Type: Static Library, Platform:
Windows 3.x(16) and Target Model: Large. Finally we build the library from Project/Build
all.

6

2. Using the library

2.1. Use in UNIX

When we want to use the functions of this traffic theory library in some (test) program of our
own (testing.c, for example), compiler has to know where to find include -files and the
library. Usually -I dir adds the directory to the search path of include -files and -L dir to the
search path of libraries. In the end of this linking command we type 'qlib.a -lm', where the
first part is traffic theory library and the second part is math library. For example:

 gcc -I../traffic -L../traffic -o testing testing.c qlib.a -lm.

2.2. Use in PC (with Borland C++ 4.0 and Microsoft Windows)

From Project -menu we open the desired project (for example: testing.ide), click the
uppermost node in the project window with the right mouse button and choose Add node.
Then we navigate to qlib.lib and add it to project files. To
Options/Project/Directories/Include Directories we add the location of our header files
(dos). Of course, we need a test program to use our library. We add this testing.c -file to this
project and then we build the executable file from Project/Build all. Before building the
executable program, we again choose the uppermost node (testing.exe) in the project
window, click the right mouse button and choose TargetExpert. The recommended options
are: Target Type: EasyWin, Platform: Windows 3.x(16) and Target Model: Large.

2.3 Mathematica packages

2.3.1 UNIX

Mathematica -versions of functions of the traffic theory library are located in a file called
Qlib.m. (If the Mathematica -version of that particular function exist.) In UNIX, we start
Mathematica with commands:

 use math or use mathematica
math or mathematica.

Then we take our package into use with command:

 Get["Qlib`”] .

2.3.2 PC

7

In PC environment we can use the same Mathematica -functions as in UNIX. After
Mathematica is started, we change the working directory to (for example) packages:

SetDirectory["c:\full_path\packages"]

Then we take the package into use with command:

 Get["Qlib`”] .

NOTE: These Mathematica -versions are usually much slower than the C-functions.

2.4. MathLink

2.4.1 UNIX

tar -files mlunix.tar and mlunixhelp.tar.can be extracted in UNIX just like the file traffic.tar
in section 1.1.

After extracting mlunix.tar, we have a directory called link. There we have a program called
qlib, which includes all the functions of the traffic theory library except the ams -functions.
These functions have the same names as the Mathematica -functions added with a Lnk -
prefix to make these concepts separate. Makefile, source code and the template files are in
this directory, too.

qlib -program can be recompiled with command make (see Makefile first!) if a mcc -compiler
for MathLink is in use. (If this is not the case, extract mlunixhelp.tar and see Todd Gayley’s
MathLink Tutorial.) qlib needs a compiled qlib.a -library in the same directory. (It can be
copied for example from traffic -directory.)

For using MathLink there are at least two good sources of information: Todd Gayley’s A
MathLink Tutorial and the chapter 2.12 from the Mathematica -manual. Here is a short
example of how to use a C-function of the traffic theory library from Mathematica:

• Start Mathematica: use math
math

• Install the library: In[1] := Install["qlib"]
 Out[1] = LinkObject['./qlib', 1, 1]

• Use function Qmd1: In[2] := LnkQmd1[3, 0.4]
 Out[2]= 0.00458191

• Quit using library : In[3] := Uninstall["qlib"]
 Out[3]= qlib

2.4.2 PC (with Borland C++ and Microsoft Windows)

8

For Borland 4.0 there is a project file lnk.ide in mldos -directory (first extract mldos.zip into a
new folder called mldos), that creates qlib.exe. The parts of the project are qlib.lib,
Mathematica’s mlink16.lib, template.def, qlib.c, and qlibtm.c..

It seems that the DOS -version of MathLink disconnects, if the return value of a real function
is zero.

Here is a short (and hopefully clear) version of what you have to do to get your qlib.exe
running. (You can first try to just run qlib.exe. If it doesn’t work, you may have to rebuild
it.):

• Get all the necessary tools (mprep etc.): MathLink for Windows Developer’s Kit can be
downloaded from MathSource (www.mathsource.com). winmldk.zip is included in mldos -
directory, too.

• Preprocess qlib.tm into qlibtm.c
Type the following command at the DOS prompt:

mprep qlib.tm -o qlibtm.c

• Create a new project file (or modify lnk.ide) for a Windows application
Launch Borland C++ 4.0.
Choose New from the Project menu.
In the New Project dialog box:

Target Type: "EasyWin"
Platform: “Windows 3.x (16)”
Target Model: “Large”

Click the OK button to close the New Project dialog box.

• Add the source files qlib.c, qlibtm.c, template.def, qlib.lib and mlink16.lib
In the Project -window that appears next:

Add the files (first click the right mouse button on the uppermost Project item
(*.exe)): qlib.c, qlibtm.c, template.def, qlib.lib and mlink16.lib.

• Set project options
Choose Project from the Options menu.
In the Project Options dialog box:

Add D:\wnmath22\mathlink\include (mathlink.h) and C:\full_path\dos (your
own header files) to the compiler include path. They are separated with a
semicolon (;).
Click the OK button.

• Build the project
Choose Build All from the Project menu.

• Run the executable file
Click the qlib.exe -file.
In the text box labeled MathLink, type qlib and click the OK button.

• Install["qlib", LinkMode->Connect] in Mathematica
Launch Mathematica

9

Evaluate the following expressions:
Install["qlib", LinkMode->Connect]
LnkQmd1[3,0.4]
Uninstall["qlib"]

• Another way to run qlib.exe in Mathematica is to evaluate the following expression:
Install["C:\full_path\qlib "]

2.4.3. TCP/IP -connections

Mathlink’s DLL -libraries demand WINSOCK.DLL for TCP/IP -connections. It can be
obtained with the following combination:

• Microsoft Windows for Workgroups 3.11

• Microsoft TCP/IP-32

• Microsoft Win32s 1.15 or newer

TCP/IP -connections are used with the following options:

Command line:
-mathlink
-linkname 12345 (IP port number)
-linkmode listen
-linkprotocol tcp

Mathematica:

"12345"
LinkMode->Connect
LinkProtocol->"TCP"
LinkHost->"hostname"

• An example of how to use qlib in a UNIX -computer from your own PC:

In alpha.hut.fi:

qlib -mathlink -linkname 12345 -linkmode listen -linkprotocol tcp

In Mathematica (PC):

Install["12345", LinkMode->Connect, LinkProtocol->"TCP",
 LinkHost->"alpha.hut.fi"]

• An example of how to run a remote kernel in a UNIX -computer from your own PC:

In alpha.hut.fi:

10

math -mathlink -linkname 12345 -linkmode listen -linkprotocol tcp

In Mathematica (PC):

Choose Options/Kernels and create new Specific Kernel:

Description: alpha
Link Protocol: TCP
Link Mode: Connect
Link Name: 12345
Link Host: alpha.hut.fi

Then choose Connect to Kernel.

Using remote kernel in alpha will increase notably the speed of computing.

NOTE: When you enter the command

 math -mathlink -linkname 12345 -linkmode listen -linkprotocol tcp

in a UNIX -computer, Mathematica starts listening and we all can contact it with our
Front Ends (before you contact it) if we only know the name of the link (here “12345”).
So, the link name should be considered as a password and it should not be told to
anyone.

11

2.5 Traffic theory library function list

Function name and call pattern
(MathLink -functions) (1)

Function name in
Mathematica-package
(➾ same call pattern)

Description

- CtMarkovChain >Matrix @ Gives the stationary probabilities of a continuous
time Markov chain with the transition rate matrix Q.

- DtMarkovChain >Matrix @ Gives the stationary probabilities of a discrete
time Markov chain with the transition probability
matrix P.

- MVA >Matrix, Vector, Integer@ Algorithm for the Mean Value Analysis of a closed
Jackson network. It returns the average queue lengths
and the average sojourn times in the queues. The
branching ratios are given by the matrix R; the vector
mu specifies the service rates of the queues; and K is
the number of customers in the network.

LnkBerli[Integer, Real] (2) Berli Erlang loss probability.
LnkBerld[Real, Real] (2) Berld Erlang loss probability.
LnkXerl[Real, Real] Xerl Inverse Erlang function.
LnkAerl[Real, Real] Aerl Inverse Erlang function.
LnkBkaufman[Integer, Integer, Integer,
IntegerList, RealList]

- Erlang blocking probability for multiple traffic
classes.

LnkBmitra[Integer, Integer, Real, IntegerList,
RealList]

- Erlang blocking probability for multiple traffic
classes.

GAMS (3) - Anick-Mitra-Sondhi handling function.
EvAMS (3) - Anick-Mitra-Sondhi handling function.
initAMS (3) - Anick-Mitra-Sondhi handling function.
freeAMS (3) - Anick-Mitra-Sondhi handling function.
LnkQmd1[Real, Real] Qmd1 Virtual waiting time distribution for the M/D/1

queue.

12

LnkQndd1[Real, Integer, Real] Qndd1 Virtual waiting time distribution for the N*D/D/1
queue..

LnkQsdd1[Real, RealList] Qsdd1 Virtual waiting time distribution for the D Di∑ / / 1

queue.
LnkMg1[Integer, Real, Integer] Mg1 (4) Queue length probability function for the M/G/1

queue.
LnkQmxd[Real, Real, RealList] Qmxd1 Unfinished work tail distribution function for the

M Dx / / 1
queue.

LnkFmd1[Real, Real] Fmd1 Virtual waiting time distribution for the M/D/1
queue.

LnkIntFmd1[Integer, Real] IntFmd1 Virtual waiting time distribution for integral values
of the amount of unfinished work in the system..

LnkSumMd1[Real, Real] SumMd1 Calculates state probabilities of the M/D/1 queue.
LnkRecMd1[Integer, Real] RecMd1 Calculates state probabilities of the queue with a

recursive
algorithm.

LnkFmdn[Real, Real, Integer] Fmdn Virtual waiting time distribution of the M/D/n queue.
LnkIntFmdn[Integer, Real, Integer] IntFmdn Virtual waiting time distribution for integral values

of the amount of unfinished work in the system..
LnkMdn[Real, Real, Integer] Mdn Calculates state probabilities of the M/D/n queue.
LnkFekdn[Real, Real, Integer, Integer] Fekdn Virtual waiting time distribution for the E D nk / /

queue.
LnkFend1[Real, Integer, Real] Fend1 Virtual waiting time distribution for the E Dn / / 1

queue.

(1) These are the MathLink function names. The C-functions lack the Lnk- prefix and their call pattern is different. See the manual
 pages for more information.
(2) The C-functions are called Berl_i and Berl_d.

13

(3) Anick-Mitra-Sondhi handling functions are not included in the qlib-file and cannot be used via MathLink. No Mathematica -versions of these
 functions are either available.
(4) Call pattern for Mathematica -version of Mg1 is Mg1[Integer, Real, Function]. Here is an example - first we define function F:
 F[t_] := If[t < 1, 0, 1] (M/D/1) and then use Mg1: Mg1[3, 0.4, F].

See manual pages of the functions for more information.

14

3. Maintenance of the library

3.1 Maintenance in UNIX

When we want to add a new file to the library, we add the name of the file to OBJS -line of
Makefile (we replace '.c' with '.o'). In the end of Makefile are the dependencies of this file
from other files. An example: if the added file is called func.c and it has two header -files,
func1.h and func2.h, we add the dependency in a following way:

func.c: func1.h func2.h.

After this, we compile the library by command make. Now the tar -file can be created with
the command:

tar cvf traffic.tar traffic/

in the parent directory of traffic.

Library is compiled with optimizations. If we want to debug the library, the '-O9' in line
CFLAGS of Makefile has to be replaced with '-g'.

3.2 Maintenance in PC

First we open the project file of the library (qlib.ide), from Project -menu. Then we click the
uppermost node in the project window with the right mouse button, add the desired files, add
the locations of the possible new header files to Include Directories and rebuild the library
(Section 1.2).

qlibtm.c -file has to be updated (from qlib.tm with mprep) and qlib.exe -file has to be rebuilt
(Section 2.4.2), if we want to use our new function(s) from Mathematica..

