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Abstract

Random Early Detection (RED) [8] is a proposed mechanism to control con-
gestion in network routers and gateways. We analyze the behavior of a queue
in the case of two traÆc classes with Poisson arrivals aggregated into a bu�er
managed by the RED algorithm. Each class has its own RED parameters, and
the packet dropping probability in a lower priority class may or may not de-
pend on the queue of the higher priority class, the former being the setting of
a RIO algorithm [4]. An ODE approximation is presented to describe the time
evolution of the expectations of the exponentially averaged queue lengths. The
approximation, based on separation of the two di�erent time scales in the system,
is asymptotically accurate for a long averaging time. This paper focuses on the
equilibrium values of the averaged queue lengths of the two classes, viewed as
functions of their loads.

1 Introduction

Random Early Detection (RED) was proposed by Floyd and Jacobson [8] as an e�ective
mechanism to control congestion in the network routers or gateways. Currently it is
recommended as one of mechanisms for so-called active queue management by IETF
(see Braden et al. [2].) and it has been implemented in vendor products. In addition,
RED has been incorporated in various drafts for Di�erentiated Services for the Internet
in such a way that RED operates on di�erent 
ows with di�erent parameters depending
on the 
ows' priority, i.e., RED is used to provide di�erent classes of services. Clark
and Fang [4] propose RED with distinction of \in" and \out" packets as RIO. See
also the Internet draft [1] for Di�erentiated Service proposal and [5] for a framework
utilizing RED or RIO algorithms.
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Figure 1: Illustration of a Di�erentiad Services framework.

RED has been analyzed using simulations or testbeds by Floyd and Jacobson [8],
Lin and Morris [11] and by May et al. [12]. Simulation studies have been complemented
by analytical studies; a detailed analysis of RED was presented by Peeters and Blondia
[14]. Also, complete RED has been analyzed by Sharma et al. in [15]. May et al. use
simple analytical models for RED in [13]. The exponentially averaged queue length,
the key feature in RED, has not been fully addressed in [13], while it is the focus of
our work.

The aim of this paper is to direct the analytical study of RED towards applications
in Di�erentiated Services. A simple framework of Di�erentiated Services, see Figure 1,
consists of two interacting parts: traÆc sources devided into a collection of traÆc
classes and a RED controlled queue that di�erentiates the queue admission based on
the traÆc class. A traÆc class may consist of a population of TCP sources or some
non-TCP-friendly sources. In particular, a traÆc class may or may not react to the
congestion indications produced by the RED controlled queue. However, in this work
we focus on the queue related analysis of the system, where the queue receives an
aggregate 
ow of packets from each traÆc class and reacts dynamically to the changes
in the 
ow rates under the control of the RED algorithm. We model the dynamics of the
RED controlled queue in this setting when arrivals from each class constitute a Poisson
process with time varying intensity �i(t). Such a model can be incorporated into the
full system model describing the interaction of the sources and the RED controlled
queue.

In this work we use an ordinary di�erential equation approximation for the mean
queue length, an approach introduced by Sharma et al. in [15] for one traÆc class, and
study the mean queue lengths of two Poisson arrival streams that are aggregated into a
bu�er controlled by the RED algorithm. Each class has its own RED parameters, and
the packet dropping probability in a lower priority class may or may not depend on the
queue of the higher priority class, the former being the setting of the RIO algorithm.



The recent extension of the work in [15] by Lassila et al. [10] to capture the oscillatory
transient behavior of the mean queue length is not exploited here, as our main interest
is in the equilibrium of the system.

This paper is organized as follows: We begin by reviewing the RED algorithm in
Section 2. The principle of the ODE approximation is given in Section 3 and after
that in Section 4 we derive ODE approximations for the case of two traÆc classes. We
�nish by numerical results in Section 5, where we �rst look at the equilibrium values
of the exponentially averaged queue lengths in each class. We also consider the time
evolution of the averaged queue lengths and we approximate the e�ect of the counter
process omitted in our model.

2 The RED algorithm

Consider a queue with a �nite bu�er that can hold up to K packets at a time. RED is a
congestion control algorithm that may drop (or mark) packets randomly before bu�er
over
ow. Random dropping takes place when the algorithm detects signs of permanent
congestion. The congestion control variable in RED is the average queue size that is
calculated from the instantaneous queue size by using exponential averaging. Persistent
congestion results in an increase of the average queue size, whereas transient bursts in
bu�er have only little in
uence.

Next, we explain the RED algorithm in detail as in [8]. Let qn denote the queue
length, i.e., the number of packets in the system (including the one in service) at
the time of nth packet arrival. Similarly, let sn denote the average queue length (to
be de�ned below) at the time of nth arrival. The nth packet will be discarded with
probability pn that depends on sn and the past history of discarding packets, stored
in the so-called counter variable cn. RED is parametrized by choosing constants w for
calculating the exponentially averaged mean queue length and pmax, Tmin, and Tmax

specifying the dropping probability.
For each arriving packet we compute the average (smoothened) queue length sn

using (
sn = (1� w)sn�1 + wqn; if qn > 0;

sn = (1� w)msn�1; otherwise;
(1)

where m = ( idle time during the interarrival time of the nth packet)=� , � =
typical trasmission time for a small packet, and w is an appropriately �xed constant.
If the bu�er is full the packet is lost (i.e., pn = 1 and we set cn = 0). If sn < Tmin, the
arriving packet is accepted, i.e., pn = 0 and we set cn = �1. If sn > Tmax, the packet
is dropped, pn = 1 and cn = 1. However, if Tmin � sn � Tmax, we set

cn = cn�1 + 1; Cn =
1

pmax

Tmax � Tmin

sn � Tmin
; and pn = minf1; 1=(Cn � cn)g:

Then, with probability pn the packet is discarded.
Typically, in above, the value w is relatively small, i.e., Floyd and Jacobson [8]

propose using w � 0:001. The role of the counter cn in RED is to distribute the packet
drops more evenly.



In this work we simplify the above RED algorithm in two ways: First, arrivals into
an empty queue update sn like arrivals into an occupied queue. Second, we omit the
RED counter cn in the analysis, i.e., we set pn = 1=Cn. The �rst simpli�cation was
done as we are focusing on RED in presence of congestion. Later we see that the second
simpli�cation can be compensated by simple adjustment in the pmax parameter.

3 ODE approximation

Consider a process fqn; sn; cng for a bu�er controlled by the RED algorithm. The main
observation is that two di�erent time scales are involved in fqn; sn; cng. When w is
small, as suggested for practical systems, fsng changes very slowly in comparison to
fqn; cng process, and fqn; cng can be viewed approximately stationary considering the
queue admission control variable sk � s for all k. We denote this hypothetical process

by fq
(s)
n ; c

(s)
n g.

Next we discuss a continuous time ordinary di�erential equation (ODE) approx-
imation for the expected value of s. We assume that the packet arrival stream is a
Poisson process with intensity �(t) and that the packet lengths are i.i.d. from expo-
nential distribution with mean 1=�.

We develop the di�erential equation model from the updating equation (1) for sn,
which can be written as

�sn = sn+1 � sn = w(qn � sn): (2)

In deriving a continuous time equation, we look at a short time interval of length �t.
Taking expectations and conditioning on the number of arrival events A during �t
gives us

E[�s(t)] =
X1

i=0
E[�s(t) j A = i] PfA = ig

= 0 + wE[q(t) � s(t)]�(t)�t +O(�t2)

= �(t)w (E[q(t)]�E[s(t)]) �t+O(�t2):

Observing that E[�s(t)] = �E[s(t)], letting �t approach zero, and by denoting �s(t) =
E[s(t)], we obtain the di�erential equation

d

dt
�s(t) = �(t)w (E[q(t)] � �s(t)) :

Due to slowness of fs(t)g process in comparison to fq(t); c(t)g one can assume that
E[q(t)] is suÆciently well approximated by E� [q

(s)]s=�s(t), where q
(s) is a random vari-

able distributed according to the stationary distibution of fq(s)(t)g 1. Simulations in
[15] indicate that the above approximation is not able to capture the damping oscil-
latory behavior of E[q(t)] prior to reaching its equilibrium. To correct this de�ciency
Lassila and Virtamo [10] have extended the above model with an ODE describing the
evolution of E[q(t)].

1By conditioning E[q(t)] = E[E[q(t) j s]], where we approximate E[q(t) j s] by E[q(s)]. Further, the
distribution of s is assumed to be narrow so that s(t) � E[s(t)] = �s(t), resulting in the approximation
E[q(t)] � E[q(s)]s=�s(t).



4 Two traÆc classes

In this section we derive ODE approximations for two Poisson streams with intensities
�1(t) and �2(t) that are aggregated into a bu�er controlled by the RED algorithm. In
both streams the packet lengths are assumed to be i.i.d. from exponential distribution
with mean 1=�, and for simplicity we also take � = 1 in the analysis.

We refer to packets arriving from Poisson stream with intensity �1(t) as belonging
to class 1, and similarly, class 2 refers to packets arriving with intensity �2(t). We
assume that w is given together with RED parameters pi;max, Ti;min and Ti;max for
each class i = 1; 2. Denote the number of class i packets in queue at the time of nth
arrival by qi;n and the exponentially averaged (the averaging parameter w is the same
for both classes) queue sizes by si;n for i = 1; 2.

4.1 Two uncoupled classes

We derive an ODE approximation for the case of two uncoupled classes that are ag-
gregated into a single bu�er. By uncoupled classes we mean that each class operates
with its own RED parameters and the probability of discarding a packet from the class
i depends only on si;n.

The updating equation (1) written for both classes gives us �si;n = q̂i;n � q̂i;n�1 =
w (qi;n � si;n), for i = 1; 2. Again, in continuous time we look at a small time interval
of length �t. Taking expectations and conditioning on the number of arrival events Ai

in class i during �t results in

E[�si] =
X1

j=0
E[�si j Ai = j]PfAi = jg

= w (E[qi]�E[si])�i�t+O(�t2); for i = 1; 2:

As in Section 3, we get

d

dt
�si(t) = �i(t)w (E[qi(t)]� �si(t)) ; for i = 1; 2;

where �si(t) denotes E[si(t)].
We approximate E[qi] (where explicit time dependency has been omitted from the

notation) by E� [q
(s1;s2)
i ], i.e., the stationary mean queue length of qi if s1;n and s2;n

were identically equal to �s1 and �s2, respectively. Also, we use the approximation
si;n � �si for i = 1; 2 in the RED drop probabilities.

Let p1(�s1) and p2(�s2) denote the probabilities of the RED algorithm discarding
packets from classes 1 and 2, respectively. Observe that the arrival processes thinned
by the RED drop are again Poisson arrivals with intensities �1(1� p1(�s1)) and �2(1�
p2(�s2)), respectively. Moreover, as the packet lengths in both classes are identical, we
may consider a queue with the aggregated arrival process and independently label each
packet into class 1 with probability

�1(1� p1(�s1))

�1(1� p1(�s1)) + �2(1� p2(�s2))



and similarly for class 2.
Therefore, the expected numbers of queued packets in classes 1 and 2 are given by

E�[q
(s1;s2)
1 ] =

�1(1� p1(�s1))

�1(1� p1(�s1)) + �2(1� p2(�s2))
E� [q

(s1;s2)];

E�[q
(s1;s2)
2 ] =

�2(1� p2(�s2))

�1(1� p1(�s1)) + �2(1� p2(�s2))
E� [q

(s1;s2)];

where E� [q
(s1;s2)] is the stationary mean queue length of a M/M/1/K queue with load

� = �1(1� p1(�s1)) + �2(1� p2(�s2)), i.e.,

E� [q
(s1;s2)] =

�

1� �
� (K + 1)

�K+1

1� �K+1
:

From now on, in this paper, we simplify the notation so that E� [q
(s1;s2)] is replaced by

E�[q]. Hence our ODE approximation for two uncoupled classes is given by

d

dt
�s1 = �1w

�
�1(1� p1(�s1))

�1(1� p1(�s1)) + �2(1� p2(�s2))
E� [q]� �s1

�
;

d

dt
�s2 = �2w

�
�2(1� p2(�s2))

�1(1� p1(�s1)) + �2(1� p2(�s2))
E� [q]� �s2

�
:

(3)

4.2 RIO, two coupled classes

Next we derive the ODE approximation for two coupled classes. In this paradigm
class 1 has a higher priority than class 2. In RED algorithm this in implemented by
taking the RED drop in class 2 to depend on congestion levels in both classes. That is,
congestion in class 1 may result in discarding packets from class 2, whereas in terms
of RED the class 1 operates independently from class 2.

ODE approximation can be derived as in the previous section with only minor
modi�cations. We take RED drop functions p1 and p2 for classes 1 and 2, respectively,
such that p1 = p1(�s1) but p2 = p2(�s12), where we indicate the averaged total queue
length by �s12 = �s1+�s2. With this choice of RED drop functions we get a RIO system,
an extension of RED algorithm introduced in [4].

The updating equations for the RIO system are given by �s1;n = w (q1;n � s1;n)
and �s12;n = w (q12;n � s12;n), where q12;n = q1;n+ q2;n. In taking expectations of the
updating equations we condition on the number of arrival events A1 and A2 in classes
1 and 2 in the following manner:

E[�s1(t)] =
X1

j=0
E[�s1(t) j A1 = j]PfA1 = jg

= wE[q1(t)� s1(t)]�1(t)�t+O(�t2)

and

E[�s12(t)] =
X1

j=0
E[�s12(t) j A1 +A2 = j]PfA1 +A2 = jg

= wE[q12(t)� s12(t)](�1(t) + �2(t))�t+O(�t2):



The approximation for E[q1] and E[q12] = E[q] does not change with priorities of
the classes, and hence letting �t approach zero we arrive at the ODE approximation
for the RIO system:

d

dt
�s1 = �1w

�
�1(1� p1(�s1))

�1(1� p1(�s1)) + �2(1� p2(�s12))
E�[q]� �s1

�
;

d

dt
�s12 = (�1 + �2)w (E�[q]� �s12) ;

(4)

where we denote �s1 = E[s1], �s12 = E[s12] and E� [q] stands for the stationary mean
queue length of a M/M/1/K queue with load � = �1(1� p1(�s1)) + �2(1� p2(�s12)).

5 Numerical results

In this section our main focus is on the equilibrium of the expected averaged queue
sizes. Due to space limitations we illustrate only results in the RIO setting. We also
consider the time evolution of the expected values, comment on the impact of the
counter omission, and show how to adjust our model in order to approximate RED
with the counter.

5.1 Equilibrium

We have studied the equilibria of ODE approximations (3) and (4) with di�erent RED
parameters; in a symmetric case we have the same RED parameters pi;max = 0:1,
Ti;min = 10 and Ti;max = 30 for both classes 1 and 2, whereas in the nonsymmetric case
class 2 has worse RED parameters p2;max = 0:5, T2;min = 5 and T2;max = 20 while the
�rst class has the previous parameter values. Parameter choice for class 1 is according
to guidance given in [9], namely p1;max � 0:1, T1;min � 5 and T1;max � 3� T1;min.

We consider a bu�er of size K = 40. Our aim is to study �s1 = E[s1] and �s2 = E[s2]
at the equilibrium (together with other performance characteristics derived from those)
as a function of constant loads (intensities) from sources 1 and 2.

Equilibrium equations for two uncoupled classes can be obtained from (3) yielding:

E[q1]� �s1 =
�1(1� p1(�s1))

�1(1� p1(�s1)) + �2(1� p2(�s2))
E�[q]� �s1 = 0;

E[q2]� �s2 =
�2(1� p2(�s2))

�1(1� p1(�s1)) + �2(1� p2(�s2))
E�[q]� �s2 = 0:

(5)

Similarly, the equilibrium equations for a RIO system can be written in terms of
�s1 and �s2. Observe that E[q] = E[q1] + E[q2] and similarly �s12 = �s1 + �s2, so the
equilibrium equations from (4) give us

E[q1]� �s1 =
�1(1� p1(�s1))

�1(1� p1(�s1)) + �2(1� p2(�s1 + �s2))
E�[q]� �s1 = 0;

E[q2]� �s2 =
�2(1� p2(�s1 + �s2))

�1(1� p1(�s1)) + �2(1� p2(�s1 + �s2))
E�[q]� �s2 = 0:

(6)
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Figure 2: Equilibrium of �s1 and �s2 for a RIO system.

It turns out that the approximations for E[q1] and E[q2] do not work well in cases
with small pmax-values but large intensities. For simplicity, we explain the approxi-
mation in the context of one Poisson class. The approximation assumes that arrival
process is a Poisson process that is thinned by the factor of (1 � p), where p is the
RED drop probability. However, with large load and small pmax, sn increases fast to
some value above Tmax, and RED algorithm discards all arriving packets. Gradually sn
decreases until values below Tmax result in a burst of accepted packets, increase in sn,
and a period of discarging again all packets. This oscillatory behavior of sn together
with almost on-o� behavior of accepting packets is not approximated well by a thinned
arrival process. (See also [13] for observation on consecutive packet drops under high
loads as w tends to zero.)

In our model the above problem arises with uncoupled classes when �2 is small
but �1 is large, or vice versa. In the �rst case we de�ne the equilibrium of �s1 at
T1;max, and correspondingly in the other case. For coupled classes, when �1 + �2 is
large, we de�ne an equilibrium state (�s1; �s2) such that �s1+�s2 = T2;max (assuming that
T2;max � T1;max), unless �s2 = 0. We stress out that our analysis is for the expected
values of s1;n and s2;n at equilibrium. In the above cases single realizations of s1;n and
s2;n oscillate around the expected values.

For numerical reasons (due to the fact that equilibria may lie close to discontinuities
of the RED drop functions), we approximate the RED drop function with a continuous
piecewise linear function that di�ers from the original RED drop function by the linear
increase from pmax to 1 in [Tmax; Tmax + 1=2]. In general, continuous RED drop func-
tions have been proposed to reduce the algorithm's sensitivity to the Tmax and pmax

parameters. However, our linear increase of the drop probability from pmax to 1 is less
\gentle" than the recent \gentle "-mode extension of the RED algorithm implemented
in the NS simulator, see [6] and references therein.

Figure 2 illustrates equilibria of �s1 and �s2 for a RIO system with RED parameters
p1;max = 0:1, T1;min = 10, T1;max = 30, p2;max = 0:5, T2;min = 5, and T2;max = 20. We
see that for �1 � 1:05, RED control completely discards packets from class 2 and �s1
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Figure 3: Probabilities of losing packets for a RIO system at the equilibrium.

increases fast to T1;max. For intensities �1 and �2 so that �1+�2 � 1 but �1 � 1:05 the
equilibrium satis�es �s1+�s2 = T2;max. If the priority of class 2 is increased by using the
same RED parameters for both classes, the surface of �s1 as a function of the intensities
is similar without the rapid incease observable in Figure 2 for �1 increasing from 1.05
to 1.2.

Next we illustrate the proportion of lost traÆc at the equilibrium as a function
of intensities �1 and �2. For each arriving packet the RED algorithm described in
Section 2 checks if the bu�er is full and applies the random drop. Thus, using the
PASTA property, in RIO setting (and for two uncoupled classes with the modi�cation
p2 = p2(�s2)) the probabilities of losing a packet in classes 1 and 2 are given by

Pl;1(�s1; �s2) = 1� (1�Ovf(�;K)) (1� p1(�s1)) ;

Pl;2(�s1; �s2) = 1� (1�Ovf(�;K)) (1� p2(�s1 + �s2)) ;

where Ovf(�;K) = �K=
PK

i=0 �
i is the over
ow probability of a M/M/1/K queue with

load � = �1 (1� p1(�s1)) + �2 (1� p2(�s1 + �s2)).
Figure 3 illustrates the probability of losing packets from classes 1 and 2 with the

RED parameter setting of Figure 2. The main observation is that for �xed intensity �2,
Pl;1 is not an increasing function of the intensity �1. We point out that the probability
of losing packets from class 1 sharply decreases when �1 � 1:05, and then starts to
increase again. Decrease in the packet loss probability takes place when the RED
algorithm discards packets from class 2, and the increase in the packet loss thereafter
is due to load from class 1 packets solely.

Similarly, for class 2 we observe around �1 � 1:05 a sharp increase in packet losses
when RED algorithm starts to discard class 2 completely. However, now for any �xed
intensity �1, the probability of packet losses in class 2 is a nondecreasing function of
�2.

Again, we comment on packet losses with other RED parameter settings. In a
RIO paradigm such that both classes have the same RED parameters pmax = 0:1,
Tmin = 10 and Tmax = 30, for �xed �1 the packet loss probability for class 1 is an
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Figure 4: Comparing the ODE approximation with simulated queue, two uncoupled
classes.

increasing function of �2. Moreover, for �xed �2 in this case the packet losses in class 1
increase monotonically as �1 increases. Contrary to Figure 3 the packet losses appear
to be almost symmetric in �1 and �2. The surface describing the packet losses for class
2 is similar to the one for class 1, with the distinction that packet losses are higher (by
0.1 or less).

5.2 Comparison with simulated systems

In addition to equilibrium studies the ODE approximations (3) and (4) allow us to
study the time evolution of �s1 and �s2, and compare those with simulated systems with
and without the counter process. Recall that our model was simpli�ed by omitting
the counter process in the original RED algorithm. The purpose of the counter in to
distribute the consecutive packet drops more evenly (and in that way to help to reduce
the probability of the global TCP synchronization e�ect). Let X denote the number of
accepted packets between two drop events and assume that the arriving packets see the
same value of sn = s, which is a good approximation for small values of w. Floyd and
Jacobson [8] have shown that with the counter process X is uniformly distributed in
f0; 1; : : : ; b1=p(s)cg, with mean E[X ] = 1

2p(s)+
1
2 , where p(s) = pmax(s�Tmin)=(Tmax�

Tmin). Without the counter process X would be geometrically distributed with mean
E[X ] = 1=p(s).

We look for the probability ~p(s) for the geometric distribution so that the means
of the above distibutions match, resulting to

1

2p(s)
+

1

2
=

1

~p(s)
) ~p(s) =

2p(s)

1 + p(s)
� 2p(s): (7)

Therefore, to approximate the e�ect of the counter process, we adjust in our model the
values of pmax, i.e., for both classes we rede�ne pi;max := 2pi;max (see also [7], where a
similar approximation has been used.)

The e�ect of the correction is with two uncoupled classes approximated by (3). The
RED parameters are taken to be w = 0:001, p1;max = 0:1, T1;min = 10, T1;max = 30,
p2;max = 0:5, T2;min = 5, T2;max = 20, together with constant intensities �1 = 0:4,
�2 = 1:0 and the bu�er size K = 40.



Figure 4 presents the comparison of the ODE approximation (3) with simulated
systems in which arrivals into an empty queue are handled as in the analytical model.
The numerical solution of the ODE (3) is graphed using dashed lines whereas solid
lines correspond to averages of 1000 simulated realizations from the queue evolution.
The undermost pairs of solid and dashed lines correspond to �s1, while the topmost
pairs illustrate �s2. The leftmost graph in Figure 4 shows the solution of (3) and
the simulated system without the counter process. The equilibrium values are �s1 =
9:8 and �s2 = 15:7. Here we see that the approximation agrees well with the RED
algorithm without the counter. However, in the center graph of Figure 4 we compare
the ODE approximation with the evolution of the RED algorithm in which the counter
process has been implemented, and we note that the ODE approximations are above
the simulated curves. The problem is corrected in the rightmost graph, where we have
adjusted pi;max := 2pi;max for i = 1; 2. The last graph shows that the adjusted ODE
approximation can model well the behavior of the RED algorithm with the counter
process.

We �nish this section with some remarks about the weight parameter w. Our model
is based on approximating E[q] by E�[q

(s)], i.e., assuming that fsng process is slow in
comparison to fqng. This approximation can be done if w is small. However, we have
observed that for a RIO system with high load (�1 = 0:9 and �2 = 1:5) a w parameter
value as low as 10�5 was needed so that �s1+ �s2 from (4) approximates well (di�erence
less than 0.4) �s1+�s2 from the simulated system without counter process. On the other
hand, uncoupled systems in general and RIO with similar RED parameters are easier
to approximate than the case we have focused on. For example, the time evolution
for two uncoupled classes with RED parameters w = 0:001, pi;max = 0:1, Ti;min = 10
and Ti;max = 30 for i = 1; 2, and intensities �1 = �2 = 1:5 together with the counter
process can be approximated well even without the adjustment in pi;max-values.

6 Summary

We provided �rst steps towards analytical models for the behavior of the RED algo-
rithm with two traÆc classes, which hopefully helps in gaining a better understanding
of Di�erentiated Service implementations utilizing the RED algorithm. The analysis
of the RED algorithm was simpli�ed by omitting the counter process and later we ad-
justed parameters to model RED with the counter. Our ODE model was based on the
stationarity approximation motivated by the di�erent time scales of the queue length
averaging process and the instantaneous queue size process.

The ODE approximation was used to study the time evolution of the expected
averaged queue sizes �s1 and �s2 in each class. Moreover, the approximation allows us
to study the equilibrium values of �s1 and �s2 as functions of loads from the two traÆc
sources. Such analysis via simulations of the queue behavior would require excessive
computations. From the equilibrium results we point out that the qualitative behavior
of packet loss probability in class 1 depends on the RED parameters for class 2 in the
RIO setting. Lower Tmin and Tmax parameter values for class 2 result in very rapid
discarding of class 2 in some cases, which may not be desirable.

Future extensions of the work include incorporating the ongoing modeling work on



TCP sources into the setting of Di�erentiated Services. This extension also relaxes the
assumptions on the packet size distribution.
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