
Helsinki University of Technology January 13, 1999
Laboratory of Telecommunications Technology

Traffic in modem pools of
Helsinki University of Technology

Jani Lakkakorpi
jlakkako##cc.hut.fi

Traffic in modem pools of Helsinki University of Technology 2
__

Preface

The capacity of HUT staff modem pool was 120 simultaneous connections (2 *
Portmaster 3) until the end of April 1998. Since then the staff pool capacity has been
60 connections (only one Portmaster 3).

The student modem pool capacity was 60 simultaneous connections (48 modem
connections and 12 ISDN -connections) until the end of April. Since then the pool
capacity has been 180 connections (3 * Portmaster 3).

The figures from October 1997 and January 1998 are from the old system and the
figures from May, June and September 1998 are from the new system. In addition to
these changes in pool capacities, the pricing policy of Helsinki Telephone
Corporation has changed (18.3.1998): now the evening (17.00-07.00) and weekend
rates are no longer fixed (47 p./call) - you have to pay 5.5 p. extra for every minute
that exceeds 30 minutes…

Last summer I did some research about the traffic in these two pools >1@. The log files
were from October 1997 - before the changes. It would be very interesting to see what
kind of an effect these changes have on traffic in these modem pools. Do people now
hang up after 30 minutes and call again? Has the student pool now enough capacity?

Traffic in modem pools of Helsinki University of Technology 3
__

Contents

Preface 2

1. Log files 4
2. AWK-scripts 6
3. Processing data with Matlab 7
 3.1. System occupancy averages 7
 3.2. Holding times 12
4. Conclusions 19
5. References 20

Appendices:

I. AWK- scripts 21
II. Matlab -functions 27

Traffic in modem pools of Helsinki University of Technology 4
__

1. Log files

The modem pool log files are text files (created in the HUT computing center by
Kimmo Laaksonen) with the following structure (it has changed a bit since I analyzed
the log files of October 1997 last summer >1@):

• Each line contains the information of a single connection
• Comma is the field separator
• Information fields starting from left are:

1. Starting time of a connection YYMMDDHHMMSS
2. Weekday (0=sunday, 1=monday etc.)
3. Encrypted user ID
4. Session duration (sec.)
5. Bytes in
6. Bytes out
7. Caller phone number (3 last digits removed) or 99999 if unknown
8. Port type code:

 Async = 0 (=modem)
 ISDN = 2
 ISDN-V120 = 3
 ISDN-V110 = 4

9. Termination cause code:
 User request = 1
 Lost carrier = 2
 Lost service = 3
 Idle time-out = 4
 Session time-out = 5
 Admin reset = 6
 Admin reboot = 7
 Port error = 8
 NAS error = 9
 NAS request = 10
 NAS reboot = 11
 Port unneeded = 12
 Port preempted = 13
 Port suspended = 14
 Service unavailable = 15
 Callback = 16
 User error = 17
 Host request = 18

10. Initial connection speed etc. (if known) e.g. 33600 LAPM/V42BIS

Traffic in modem pools of Helsinki University of Technology 5
__

Usually, a log file contains the user information of one month. This seems to be an
appropriate amount of information to be processed at one time. Here is a small piece
from the beginning of the student modem pool log file (September 1998):

980825093930,2,xwISNWQ6sxM,617818,0,0,99999,0,0,
980825093939,2,xwISNWQ6sxM,718083,0,0,99999,0,0,
980827142659,4,xwISNWQ6sxM,528041,0,0,99999,0,0,
980901062155,2,7t9wdkSzUBY,3404,975412,3067655,99999,0,1,
980901062812,2,LNKacPlzS3c,5281,167988,541033,095485,2,1,64000
980901063622,2,xRn3rvSSsqo,1374,256662,2634077,99999,0,1,

Traffic in modem pools of Helsinki University of Technology 6
__

2. AWK-scripts

AWK-scripts are needed to extract the desired information from the log files so that
Matlab-functions will be able to process that information. (For example starting
times, holding times and weekdays).

AWK-script is formed of three parts. The first part is BEGIN-part, where some
initializations are carried out. (For example date routines.)

The second part (BODY), is carried out for every line of the source file. For example:
in extract_times.awk we change the starting time of a connection to seconds using
00:00:00 January 1st 1970 as offset time. Starting and termination times are stored in
an array called events. Starting time is marked with +1 and termination time (starting
time + holding time) is marked with -1. Now we have a list of arrivals and departures.
Because AWK-arrays are not “real” arrays, we don’t have to worry about the huge
dead time since 1970.

In the last part (END) we go trough the data gathered and find the time for the first
and the last event. Then we count the new offset time for this data so that it is the start
of that day (00:00:00), where the first event lies. Finally the script prints out all the
events (+1 or -1) with new times (seconds from the start of the first day).

Scripts can be used in the following way:

[jlakkako@keskus jansep98]$ awk -f extract_times.awk < 9809 >
sepstudents.times

Before this file can be used successfully in Matlab we have to sort the file and then
remove the first three lines (Min, Max, Newoffset etc.):

[jlakkako@keskus jansep98]$ sort -n < sepstudents.times >
sepstudents.sortedtimes

This file now includes the moments of the events and the information whether the
event was an arrival or a departure. It looks like this:

1880 1
21178 1
23371 1

AWK-scripts extract_times.awk ja extract_data.awk are modified versions of the
scripts written by Esa Hyytiä [2] .

Traffic in modem pools of Helsinki University of Technology 7
__

3. Processing data with Matlab

3.1. System occupancy averages

System occupancy is the number of customers at the pool in a particular moment of
time. Matlab-function events.m counts and prints the system occupancy during the
measurement period. It takes two arguments: the moments of time and the
information whether the event was an arrival or a departure. Because the behavior of
the system can be considered periodical, we can compute and print out the system
occupancy average over selected days. The traffic in these days should be quite
similar - for example we can compute the system occupancy average for weekdays
and weekends (Sat. & Sun.). We use a Matlab-function average.m to compute and
print the system occupancy average over the selected days. Functions events.m and
average.m are written by Esa Hyytiä >2@.

By using the following macro sep_stu_ave_w.m we can easily (just by typing
sep_stu_ave_w in Matlab) compute and print out the weekdays’ system occupancy
average in September in the student modem pool. To see the variation within different
days, all days are first plotted with broken lines, and finally the average line is plotted
with a continuous line.

load sepstudents.times;
[x, y] = events(sepstudents(:,1), sepstudents(:,2));
for i=10:36,
 if (i ~= [12 13 19 20 26 27 33 34])
 [xi, yi] = average(x, y, [i]);
 plot(xi, yi, 'w');
 plot(xi, yi, 'c:');
 hold on;
 end;
end;
[x0, y0] = average(x, y, [10 11 14 15 16 17 18 21 22 23 24 25 28
29 30 31 32 35 36]);
axis([0, 24, 0, 120]);
plot(x0, y0, 'r');
hold off;

Traffic in modem pools of Helsinki University of Technology 8
__

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20
Averaged system occupancy over the days 2 5 6 7 8 9 12 13 14 15 16 19 20 21 22 23 26 27 28 29 30

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20
Averaged system occupancy over the days 3 4 7 8 9 10 11 14 15 16 17 18 21 22 23 24 25

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

Graph 1 Graph 2
Average number of customers in the staff
modem pool on weekdays of January 1998.

Average number of customers in the staff
modem pool on weekdays of May 1998.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20
Averaged system occupancy over the days 3 4 5 8 9 10 11 12 15 16 17 18 19 22 23 24 25 26 29 30

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20
Averaged system occupancy over the days 10 11 14 15 16 17 18 21 22 23 24 25 28 29 30 31 32 35 36

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

Graph 3 Graph 4
Average number of customers in the staff
modem pool on weekdays of June 1998.

Average number of customers in the staff
modem pool on weekdays of September 1998.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20
Averaged system occupancy over the days 2 3 6 7 8 9 10 13 14 15 16 17 20 21 22 23 24 27 28 29 30 31

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

Graphs 1 trough 5 describe the traffic
in the staff modem pool on weekdays.
There are no significant changes (from
October 1997) here. (Graph 5 is
reprinted here for comparison. >1@) The
number of pool users is slowly
increasing, but the use of this pool is
still quite weak.

Graph 5
Average number of customers in the staff modem
pool on weekdays of October 1997.

Traffic in modem pools of Helsinki University of Technology 9
__

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20
Averaged system occupancy over the days 3 4 10 11 17 18 24 25 31

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20
Averaged system occupancy over the days 5 6 12 13 19 20 26 27

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

Graph 6 Graph 7
Average number of customers in the staff
modem pool on weekends of January 1998.

Average number of customers in the staff
modem pool on weekends of May 1998.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20
Averaged system occupancy over the days 6 7 13 14 20 21 27 28

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20
Averaged system occupancy over the days 12 13 19 20 26 27 33 34

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

Graph 8 Graph 9
Average number of customers in the staff
modem pool on weekends of June 1998.

Average number of customers in the staff
modem pool on weekends of September 1998.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20
Averaged system occupancy over the days 4 5 11 12 18 19 25 26

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

Graphs 6 trough 10 describe the traffic
in the staff modem pool on weekends.
(Graph 10 is reprinted here for
comparison. >1@) The daytime use of
this pool seems to be a bit more
intense during weekends (which is
quite natural, since people are at
home).

Graph 10
Average number of customers in the staff
modem pool on weekends of October 1997.

Traffic in modem pools of Helsinki University of Technology 10
__

0 5 10 15 20
0

20

40

60

80

100

120
Averaged system occupancy over the days 3 6 7 8 9 10 13 14 15 16 17 20 21 22 23 24 27 28 29 30 31

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

0 5 10 15 20
0

20

40

60

80

100

120
Averaged system occupancy over the days 4 7 8 9 10 11 14 15 16 17 18 21 22 23 24 25

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

Graph 11 Graph 12
Average number of customers in the student
modem pool on weekdays of January 1998.

Average number of customers in the student
modem pool on weekdays of May 1998.

0 5 10 15 20
0

20

40

60

80

100

120
Averaged system occupancy over the days 3 4 5 8 9 10 11 12 15 16 17 18 19 22 23 24 25 26 29 30

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

0 5 10 15 20
0

20

40

60

80

100

120
Averaged system occupancy over the days 10 11 14 15 16 17 18 21 22 23 24 25 28 29 30 31 32 35 36

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

Graph 13 Graph 14
Average number of customers in the student
modem pool on weekdays of June 1998.

Average number of customers in the student
modem pool on weekdays of September 1998.

0 5 10 15 20
0

20

40

60

80

100

120
Averaged system occupancy over the days 3 6 7 8 9 10 13 14 15 16 17 20 23 24

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

Graphs 11 trough 15 describe the
traffic in the student modem pool on
weekdays. Traffic in January is still
very similar to traffic in October 1997
>1@ (graph 15 is reprinted here for
comparison), but the next three graphs
differ from these. Now there seems to
be enough capacity in this modem pool
(for 180 users), too. The peak at 17.00
(cheaper rates until 07.00 next
morning) is very clear in every graph.

Graph 15
Average number of customers in the student
modem pool on weekdays of October 1997.

Traffic in modem pools of Helsinki University of Technology 11
__

0 5 10 15 20
0

20

40

60

80

100

120
Averaged system occupancy over the days 4 5 11 12 18 19 25 26 32

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

0 5 10 15 20
0

20

40

60

80

100

120
Averaged system occupancy over the days 5 6 12 13 19 20 26 27

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

Graph 16 Graph 17
Average number of customers in the student
modem pool on weekends of January 1998.

Average number of customers in the student
modem pool on weekends of May 1998.

0 5 10 15 20
0

20

40

60

80

100

120
Averaged system occupancy over the days 6 7 13 14 20 21 27 28

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

0 5 10 15 20
0

20

40

60

80

100

120
Averaged system occupancy over the days 12 13 19 20 26 27 33 34

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

Graph 18 Graph 19
Average number of customers in the student
modem pool on weekends of June 1998.

Average number of customers in the student
modem pool on weekends of September 1998.

0 5 10 15 20
0

20

40

60

80

100

120
Averaged system occupancy over the days 4 5 11 12 18 19

Time/hour

N
um

be
r

of
 c

us
to

m
er

s

Graphs 16 trough 20 describe the
traffic in the student modem pool on
weekends. Traffic in January is still
very similar to traffic in October 1997
>1@ (graph 20 is reprinted here for
comparison), but the next three graphs
differ from these. Now there seems to
be enough capacity in this modem pool
(for 180 users), too.

Graph 20
Average number of customers in the student
modem pool on weekends of October 1997.

Traffic in modem pools of Helsinki University of Technology 12
__

3.1. Holding times

Holding time is the duration of a single connection. Matlab-function
tail_holding_times.m computes and prints out the tail distribution of the holding times
of a particular measurement period. The step for these holding times is set to 100
seconds. The following macro hold_times_sep_stu_w_d.m computes the tail
distribution for the weekday (07.00 - 17.00) holding times of the student modem pool.
It uses the function mentioned earlier.

load sepstudents.data;

len = length(sepstudents(:,3));
newlen = 0;

for i=1:len,
 if ((sepstudents(i,3) ~= [6 0]) &
 ((mod(sepstudents(i,1),86400) < 61200) &
 (mod(sepstudents(i,1),86400) > 25200))),
 newlen = (newlen + 1);
 end;
end;

x = zeros(newlen,1);
y = zeros(newlen,1);

k=1;

for j=1:len,
 if ((sepstudents(j,3) ~= [6 0]) &
 ((mod(sepstudents(j,1),86400) < 61200) &
 (mod(sepstudents(j,1),86400) > 25200))),
 x(k) = sepstudents(j,3);
 y(k) = sepstudents(j,4);
 k = (k + 1);
 end;
end;

tail_holding_times(x, y);
axis([0,120,0,15500]);
text(40, 7750, sprintf('The total number of daytime
 (0700 - 1700)\nstudent calls on workdays: %d', newlen));

Traffic in modem pools of Helsinki University of Technology 13
__

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 16.903. Sample standard deviation: 30.947.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of daytime (0700 − 1700)
personnel calls on workdays: 1679

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 13.324. Sample standard deviation: 25.245.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of daytime (0700 − 1700)
personnel calls on workdays: 2754

Graph 21 Graph 22
The tail distribution of the holding times in the staff
modem pool on weekdays (07.00-17.00) of January
1998.

The tail distribution of the holding times in the staff
modem pool on weekdays (07.00-17.00) of May 1998.

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 16.556. Sample standard deviation: 139.18.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of daytime (0700 − 1700)
personnel calls on workdays: 2614

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 20.223. Sample standard deviation: 214.63.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of daytime (0700 − 1700)
personnel calls on workdays: 3139

Graph 23 Graph 24
The tail distribution of the holding times in the staff
modem pool on weekdays (07.00-17.00) of June
1998.

The tail distribution of the holding times in the staff
modem pool on weekdays (07.00-17.00) of September
1998.

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

800

900

1000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 17.829. Sample standard deviation: 28.882.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of daytime (0700 − 1700)
personnel calls on workdays: 787

Graph 25
The tail distribution of the holding times in the staff
modem pool on weekdays (07.00-17.00) of October
1997.

Graphs 21 trough 25 describe the
holding times in the staff modem pool
on weekdays (07.00 - 17.00). No major
changes here. Graph 25 is reprinted
here for comparison >1@. Note the
different scales in these graphs.

Traffic in modem pools of Helsinki University of Technology 14
__

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 28.953. Sample standard deviation: 37.157.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of non−daytime (1700 − 0700)
personnel calls on workdays: 3715

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 24.322. Sample standard deviation: 30.795.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of non−daytime (1700 − 0700)
personnel calls on workdays: 5059

Graph 26 Graph 27
The tail distribution of the holding times in the staff
modem pool on weekdays (17.00-07.00) of
January 1998.

The tail distribution of the holding times in the staff
modem pool on weekdays (17.00-07.00) of
 May 1998.

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 25.903. Sample standard deviation: 31.28.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of non−daytime (1700 − 0700)
personnel calls on workdays: 5035

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 25.579. Sample standard deviation: 69.721.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of non−daytime (1700 − 0700)
personnel calls on workdays: 6410

Graph 28 Graph 29
The tail distribution of the holding times in the staff
modem pool on weekdays (17.00-07.00) of
June 1998.

The tail distribution of the holding times in the staff
modem pool on weekdays (17.00-07.00) of
September 1998.

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 46.235. Sample standard deviation: 73.854.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of non−daytime (1700 − 0700)
personnel calls on workdays: 1854

Graph 30
The tail distribution of the holding times in the staff
modem pool on weekdays (17.00-07.00) of
October 1997.

Graphs 26 trough 30 describe the
holding times in the staff modem pool
on weekdays (17.00 - 07.00). Average
holding time has shortened
dramatically from October 1997 (46
minutes). The curve seems to be
exponential after 30 minutes in graphs
26 - 29. Note the different scales in
these graphs.

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 29.953. Sample standard deviation: 34.089.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of personnel calls on weekends
of the measurement period: 2551

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 25.93. Sample standard deviation: 34.847.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of personnel calls on weekends
of the measurement period: 3112

Graph 31 Graph 32
The tail distribution of the holding times in the staff
modem pool on weekends of January 1998.

The tail distribution of the holding times in the staff
modem pool on weekends of May 1998.

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 25.205. Sample standard deviation: 38.625.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of personnel calls on weekends
of the measurement period: 2163

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 27.517. Sample standard deviation: 36.854.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of personnel calls on weekends
of the measurement period: 3857

Graph 33 Graph 34
The tail distribution of the holding times in the staff
modem pool on weekends of June 1998.

The tail distribution of the holding times in the staff
modem pool on weekends of September 1998.

0 20 40 60 80 100 120
0

500

1000

1500

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 44.935. Sample standard deviation: 123.92.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of personnel calls on weekends
of the measurement period: 1073

Graph 35
The tail distribution of the holding times in the staff
modem pool on weekends of October 1997.

Graphs 31 trough 35 describe the
holding times in the staff modem pool
on weekends. Average holding time
has shortened dramatically from
October 1997 (45 minutes). The curve
seems to be exponential after 30
minutes in graphs 31 - 34. Note the
different scales in these graphs.

Traffic in modem pools of Helsinki University of Technology 16
__

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

12000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 20.943. Sample standard deviation: 38.085.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of daytime (0700 − 1700)
student calls on workdays: 11992

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

12000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 19.804. Sample standard deviation: 38.625.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of daytime (0700 − 1700)
student calls on workdays: 12513

Graph 36 Graph 37
The tail distribution of the holding times in the
student modem pool on weekdays (07.00-17.00) of
January 1998.

The tail distribution of the holding times in the student
modem pool on weekdays (07.00-17.00) of
May 1998.

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 20.166. Sample standard deviation: 90.224.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of daytime (0700 − 1700)
student calls on workdays: 9825

0 20 40 60 80 100 120
0

5000

10000

15000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 26.534. Sample standard deviation: 292.44.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of daytime (0700 − 1700)
student calls on workdays: 15177

Graph 38 Graph 39
The tail distribution of the holding times in the
student modem pool on weekdays (07.00-17.00) of
June 1998.

The tail distribution of the holding times in the student
modem pool on weekdays (07.00-17.00) of
September 1998.

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 30.744. Sample standard deviation: 92.145.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of daytime (0700 − 1700)
student calls on workdays: 10268

Graph 40
The tail distribution of the holding times in the
student modem pool on weekdays (07.00-17.00) of
October 1997.

Graphs 36 trough 40 describe the
holding times in the student modem
pool on weekdays (07.00 - 17.00). No
major changes here. Average holding
time has shortened a little. Note the
different scales in these graphs.

Traffic in modem pools of Helsinki University of Technology 17
__

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 31.956. Sample standard deviation: 39.32.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of non−daytime (1700 − 0700)
student calls on workdays: 20000

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 27.627. Sample standard deviation: 35.335.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of non−daytime (1700 − 0700)
student calls on workdays: 19455

Graph 41 Graph 42
The tail distribution of the holding times in the
student modem pool on weekdays (17.00-07.00) of
January 1998.

The tail distribution of the holding times in the student
modem pool on weekdays (17.00-07.00) of
May 1998.

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 29.054. Sample standard deviation: 60.38.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of non−daytime (1700 − 0700)
student calls on workdays: 19709

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

x 10
4

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 28.753. Sample standard deviation: 63.914.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of non−daytime (1700 − 0700)
student calls on workdays: 26476

Graph 43 Graph 44
The tail distribution of the holding times in the
student modem pool on weekdays (17.00-07.00) of
June 1998.

The tail distribution of the holding times in the student
modem pool on weekdays (17.00-07.00) of
September 1998.

0 20 40 60 80 100 120 140 160 180
0

1000

2000

3000

4000

5000

6000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 84.077. Sample standard deviation: 139.83.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of non−daytime (1700 − 0700)
student calls on workdays: 7798

Graph 45
The tail distribution of the holding times in the
student modem pool on weekdays (17.00-07.00) of
October 1997.

Graphs 41 trough 45 describe the
holding times in the student modem
pool on weekdays (17.00 - 07.00).
Average holding time has dramatically
shortened (October 1997: 84 minutes).
Sample standard deviation is smaller,
too. (October 1997: 140.) Note the
different scales in these graphs.

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

12000

14000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 32.709. Sample standard deviation: 51.016.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of student calls on weekends
of the measurement period: 13337

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 29.231. Sample standard deviation: 36.886.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of student calls on weekends
of the measurement period: 11363

Graph 46 Graph 47
The tail distribution of the holding times in the
student modem pool on weekends of January 1998.

The tail distribution of the holding times in the student
modem pool on weekends of May 1998.

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 29.803. Sample standard deviation: 39.543.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of student calls on weekends
of the measurement period: 9152

0 20 40 60 80 100 120
0

5000

10000

15000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 28.811. Sample standard deviation: 37.712.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of student calls on weekends
of the measurement period: 15419

Graph 48 Graph 49
The tail distribution of the holding times in the
student modem pool on weekends of June 1998.

The tail distribution of the holding times in the student
modem pool on weekends of September 1998.

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

2500

3000

3500

4000

The tail distribution of the holding times.
(Step = 100 sec.) Average holding time: 102.52. Sample standard deviation: 210.09.

Time/minutes

N
um

be
r

of
 h

ol
di

ng
 ti

m
es

The total number of student calls on weekends
of the measurement period: 4057

Graph 50
The tail distribution of the holding times in the
student modem pool on weekends of October 1997.

Graphs 46 trough 50 describe the
holding times in the student modem
pool on weekends. Average holding
time has dramatically shortened
(October 1997: 103 minutes). Sample
standard deviation is smaller, too.
(October 1997: 210.) Note the
different scales in these graphs.

Traffic in modem pools of Helsinki University of Technology 19
__

4. Conclusions

It seems that there is no congestion in either one of these modem pools anymore.
Staff pool doesn’t need all the excess capacity it had before May 1998. The number
of simultaneous users in the staff pool hardly never exceeds 20. So, the capacity for
60 users is enough.

The student modem pool was suffering from congestion when it had only 60 lines.
Now, with 180 lines, it no longer suffers from congestion. The highest number of
simultaneous users this far (in May, June or September - the other months have not
been analyzed) has been about 120. There seems to be enough capacity here, too.
Together with the increased pool capacity the new call rates (of Helsinki Telephone
Corporation) are likely to prevent congestion in the future.

The shortening of the holding times was expected when Helsinki Telephone
Corporation announced last winter its new evening and weekend call rates.
Surprisingly, this had a great effect on holding times even before the rates were
adopted (that was 18.3.1998). The average evening holding time in the student
modem pool in January 1998 was only one third of what it was in October 1997
while the pricing policy was exactly the same. Students seem to be very cautious
people…

We should notice, that while the holding times have radically shortened (evening and
weekend averages in the student pool are now less than 30 minutes), the number of
connections per month has also dramatically increased. For example in September
1998 the average evening holding time (in the student pool) was 29 minutes and the
number of these connections was 26500, while back in October 1997 >1@ these figures
were 84 minutes and 8000 customers. It seems, that customers tend to hang up after
30 minutes and then they start a new connection. The use of telephone lines may
have decreased a little, because people now make connections only when they have
to. Before these new rates it was possible to have a weekend lasting modem
connection (or a telephone conversation…) with just 47 p. It might be too expensive
(at least for students) now.

Traffic in modem pools of Helsinki University of Technology 20
__

5. References

>1@ Jani Lakkakorpi: TKK:n modeemipoolien lokitiedostojen analysointi (erikoistyö)
>2@ Esa Hyytiä: Modem pools of Helsinki University of Technology (memo)

Traffic in modem pools of Helsinki University of Technology 21
__

Appendix I. AWK-scripts

extract_times.awk:

##
#
Simple awk-script to extract starting and ending
times of connections from log files.
#
Esa Hyytiä 1998
Revised by Jani Lakkakorpi 1998

##
#
This is from Emacs info pages
#

function init_mktime() {
Initialize table of month lengths
 _tm_months[0,1] = _tm_months[1,1] = 31;
 _tm_months[0,2] = 28; _tm_months[1,2] = 29;
 _tm_months[0,3] = _tm_months[1,3] = 31;
 _tm_months[0,4] = _tm_months[1,4] = 30;
 _tm_months[0,5] = _tm_months[1,5] = 31;
 _tm_months[0,6] = _tm_months[1,6] = 30;
 _tm_months[0,7] = _tm_months[1,7] = 31;
 _tm_months[0,8] = _tm_months[1,8] = 31;
 _tm_months[0,9] = _tm_months[1,9] = 30;
 _tm_months[0,10] = _tm_months[1,10] = 31;
 _tm_months[0,11] = _tm_months[1,11] = 30;
 _tm_months[0,12] = _tm_months[1,12] = 31;
 _tm_debug = 0;
}

decide if a year is a leap year
function _tm_isleap(year, ret) {
 ret = (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)
 return ret;
}

convert a date into seconds
function _tm_addup(a, total, yearsecs, daysecs, hoursecs, i, j) {
 hoursecs = 60 * 60;
 daysecs = 24 * hoursecs;
 yearsecs = 365 * daysecs;

 total = (a[1] - 1970) * yearsecs;

extra day for leap years
 for (i = 1970; i < a[1]; i++)
 if (_tm_isleap(i))
 total += daysecs;

 j = _tm_isleap(a[1]);
 for (i = 1; i < a[2]; i++)
 total += _tm_months[j, i] * daysecs;

 total += (a[3] - 1) * daysecs;
 total += a[4] * hoursecs;
 total += a[5] * 60;
 total += a[6];

Traffic in modem pools of Helsinki University of Technology 22
__
 return total;
}

mktime --- convert a date into seconds,
compensate for time zone

function mktime(str, res1, res2, a, b, i, j, t, diff) {
 i = 1;
 i = split(str, a, " "); # dont rely on FS

 if (i != 6)
 return -1;

force numeric
 for (j in a)
 a[j] += 0;

validate
 if (a[1] < 1970 ||
 a[2] < 1 || a[2] > 12 ||
 a[3] < 1 || a[3] > 31 ||
 a[4] < 0 || a[4] > 23 ||
 a[5] < 0 || a[5] > 59 ||
 a[6] < 0 || a[6] > 61)
 return -1;

 res1 = _tm_addup(a);
 t = strftime("%Y %m %d %H %M %S", res1);

 if (_tm_debug)
 printf("(%s) -> (%s)\n", str, t) > "/dev/stderr";

 split(t, b, " ");
 res2 = _tm_addup(b);

 diff = res1 - res2;

 if (_tm_debug)
 printf("diff = %d seconds\n", diff) > "/dev/stderr";

 res1 += diff;

 return res1;
}

##

expects a timestr of format VVKKPPHHMMSS
and returns integer number of seconds since
00:00:00 on January 1, 1970

function convert_time(timestr) {
 year = substr(timestr,1,2);
 year = year + 1900;
 if (year < 1970)
 year = year + 100;

 month = substr(timestr,3,2);
 day = substr(timestr,5,2);
 hour = substr(timestr,7,2);
 min = substr(timestr,9,2);
 sec = substr(timestr,11,2);

 astr = year " " month " " day " " hour " " min " " sec;
 time = mktime(astr);

 return time
}

##

Traffic in modem pools of Helsinki University of Technology 23
__

BEGIN {
#
First we define the input field separator.
#
 FS = ",";
 init_mktime();

 if (ARGC > 2)
 exitval = 1
 else if (ARGC == 2)
 format = ARGV[1]
}

#
From each line we get starting and ending points
and add those moments in events structure
#
{
 secs = convert_time($1);
 duration = int($4);
 events[secs]++;
 end = secs + duration;
 events[end]--;
}

#
All data has been preprocessed and saved in
events structure.
#
END {

#
Find the minimum and maximum point in time
#
 min = -1;
 max = -1;
 for (time in events) {
 if (time < min || min == -1)
 min = time;
 if (time > max || max == -1)
 max = time;
 }

 minstr = strftime("%Y %m %d %H:%M:%S", min);
 maxstr = strftime("%Y %m %d %H:%M:%S", max);

#
Round the starting point to nearest full day
#
 dh = strftime("%H", min);
 dm = strftime("%M", min);
 ds = strftime("%S", min);
 delta = 3600*dh+60*dm+ds;

 printf "Min: %d => %s\n", min, minstr;
 printf "Max: %d => %s\n", max, maxstr;

 newoffset = strftime("%Y %m %d %H:%M:%S", min-delta);
 printf "Newoffset: %s\n", newoffset;

 for (time in events) {
 printf "%s\t%d\n", time-min+delta, events[time];
 }
}

Traffic in modem pools of Helsinki University of Technology 24
__

extract_data.awk:

##
#
Simple awk-script to extract the desired data from log files.
#
Esa Hyytid 1998
Revised by Jani Lakkakorpi 1998

##
#
This is from Emacs info pages
#

function init_mktime() {
Initialize table of month lengths
 _tm_months[0,1] = _tm_months[1,1] = 31;
 _tm_months[0,2] = 28; _tm_months[1,2] = 29;
 _tm_months[0,3] = _tm_months[1,3] = 31;
 _tm_months[0,4] = _tm_months[1,4] = 30;
 _tm_months[0,5] = _tm_months[1,5] = 31;
 _tm_months[0,6] = _tm_months[1,6] = 30;
 _tm_months[0,7] = _tm_months[1,7] = 31;
 _tm_months[0,8] = _tm_months[1,8] = 31;
 _tm_months[0,9] = _tm_months[1,9] = 30;
 _tm_months[0,10] = _tm_months[1,10] = 31;
 _tm_months[0,11] = _tm_months[1,11] = 30;
 _tm_months[0,12] = _tm_months[1,12] = 31;
 _tm_debug = 0;
}

decide if a year is a leap year
function _tm_isleap(year, ret) {
 ret = (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)
 return ret;
}

convert a date into seconds
function _tm_addup(a, total, yearsecs, daysecs, hoursecs, i, j) {
 hoursecs = 60 * 60;
 daysecs = 24 * hoursecs;
 yearsecs = 365 * daysecs;

 total = (a[1] - 1970) * yearsecs;

extra day for leap years
 for (i = 1970; i < a[1]; i++)
 if (_tm_isleap(i))
 total += daysecs;

 j = _tm_isleap(a[1]);
 for (i = 1; i < a[2]; i++)
 total += _tm_months[j, i] * daysecs;

 total += (a[3] - 1) * daysecs;
 total += a[4] * hoursecs;
 total += a[5] * 60;
 total += a[6];

 return total;
}

mktime --- convert a date into seconds,
compensate for time zone

function mktime(str, res1, res2, a, b, i, j, t, diff) {
 i = 1;
 i = split(str, a, " "); # dont rely on FS

Traffic in modem pools of Helsinki University of Technology 25
__
 if (i != 6)
 return -1;

force numeric
 for (j in a)
 a[j] += 0;

validate
 if (a[1] < 1970 ||
 a[2] < 1 || a[2] > 12 ||
 a[3] < 1 || a[3] > 31 ||
 a[4] < 0 || a[4] > 23 ||
 a[5] < 0 || a[5] > 59 ||
 a[6] < 0 || a[6] > 61)
 return -1;

 res1 = _tm_addup(a);
 t = strftime("%Y %m %d %H %M %S", res1);

 if (_tm_debug)
 printf("(%s) -> (%s)\n", str, t) > "/dev/stderr";

 split(t, b, " ");
 res2 = _tm_addup(b);

 diff = res1 - res2;

 if (_tm_debug)
 printf("diff = %d seconds\n", diff) > "/dev/stderr";

 res1 += diff;

 return res1;
}

##

expects a timestr of format VVKKPPHHMMSS
and returns integer number of seconds since
00:00:00 on January 1, 1970

function convert_time(timestr) {
 year = substr(timestr,1,2);
 year = year + 1900;
 if (year < 1970)
 year = year + 100;

 month = substr(timestr,3,2);
 day = substr(timestr,5,2);
 hour = substr(timestr,7,2);
 min = substr(timestr,9,2);
 sec = substr(timestr,11,2);

 astr = year " " month " " day " " hour " " min " " sec;
 time = mktime(astr);

 return time
}

##

BEGIN {
#
First we define the input field separator.
#
 FS = ",";
 init_mktime();

 if (ARGC > 2)
 exitval = 1
 else if (ARGC == 2)

Traffic in modem pools of Helsinki University of Technology 26
__
 format = ARGV[1]
}

#
From each line we get starting and ending points
and add those moments in events structure
#
{
 secs = convert_time($1);
 day = int($2);
 duration = int($4);
 bytes_in = int($5);
 bytes_out = int($6);
 port_type = int($8);
 term_cause = int($9);

 events[secs]++;
 days[secs] = day;
 durations[secs] = duration;
 bytes_ins[secs] = bytes_in;
 bytes_outs[secs] = bytes_out;
 port_types[secs] = port_type;
 term_causes[secs] = term_cause;
}

#
All data has been preprocessed and saved in
events structure.
#
END {

#
Find the minimum and maximum point in time
#
 min = -1;
 max = -1;
 for (time in events) {
 if (time < min || min == -1)
 min = time;
 if (time > max || max == -1)
 max = time;
 }

 minstr = strftime("%Y %m %d %H:%M:%S", min);
 maxstr = strftime("%Y %m %d %H:%M:%S", max);

#
Round the starting point to nearest full day
#
 dh = strftime("%H", min);
 dm = strftime("%M", min);
 ds = strftime("%S", min);
 delta = 3600*dh+60*dm+ds;

 printf "Min: %d => %s\n", min, minstr;
 printf "Max: %d => %s\n", max, maxstr;

 newoffset = strftime("%Y %m %d %H:%M:%S", min-delta);
 printf "Newoffset: %s\n", newoffset;

 for (time in events) {
 printf "%s\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n", time-min+delta,
 events[time], days[time],
 durations[time], bytes_ins[time],

 bytes_outs[time], port_types[time],
 term_causes[time];

 }
}

Traffic in modem pools of Helsinki University of Technology 27
__

Appendix II. Matlab-functions

events.m:

function [x,y] = events(xe,ye);
%
% This function plots events. It also returns
% data plotted. X-axis is scaled to days.
%
len = length(xe);
yy = cumsum(ye);
y = zeros(2*len-1,1);
x = zeros(2*len-1,1);
for i=1:(len-1)
 y(2*i-1) = yy(i);
 y(2*i) = yy(i);
 x(2*i-1) = xe(i);
 x(2*i) = xe(i+1);
end;
x(2*len-1) = xe(len);
y(2*len-1) = ye(len);
x = x / 86400; % Scaled to days
plot(x,y);
grid;
xlabel('Time/days');
ylabel('Number of customers in the system');

average.m:

function [ax,ay] = average(x, y, days)
%
% function [ax,ay] = average(x, y, days)
%
% This function calculates average number of customers
% in system on given days. Time ax is in hours.
%

% First we make a vector of system occupancy with discrete
% one minute steps

const = 24*60;
x2 = x * const;
xmax = floor(max(x2)) + 1;
y2 = zeros(xmax, 1);

t1 = floor(x(1)*const);
for i=2:length(x) % first event of that day
 t2 = floor(x(i)*const);
 curr_y = y(i-1);
 while(t1 < t2)
 y2(t1) = curr_y;
 t1 = t1 + 1;
 end;
end;
y2(t1) = curr_y;

%
% Ok, now collect given days from this "minute" vector
%

Traffic in modem pools of Helsinki University of Technology 28
__
ay = zeros(const, 1);
ax = (1:const)/60;
for d=1:length(days)
 t1 = (days(d)-1) * const;
 t2 = t1 + const;
 if (t1 < 1)
 t1 = 1;
 end;
 if (t2 > xmax)
 t2 = xmax;
 end;
 while(t1 < t2)
 tmod = mod(t1,const) + 1;
 ay(tmod) = ay(tmod) + y2(t1);
 t1 = t1 + 1;
 end;
end;
ay = ay / length(days);

plot(ax, ay);
grid;
daystr = sprintf(' %d', days);
title(sprintf('Averaged system occupancy over the days%s', daystr
));
xlabel('Time/hour');
ylabel('Number of customers');

tail_holding_times.m:

function [x, y] = holding_times(xe, ye);
%
% This function plots the tail distribution of
% the holding times of the connections.
% Vector xe contains the days of the week. Vector ye contains
% the corresponding holding times.
%

ys = sort(ye); % First we sort the holding times
len = length(ye); % The number of all
connections
points = floor(max(ye) / 100); % The number of
observation points
step = 100; % The step of holding
times (100sec)

y = zeros(points+2, 1);
x = zeros(points+2, 1);

x(1) = 0; % Unsuccessful logins?
i=1;

while (ys(i) == 0)
 y(1) = (y(1) + 1);
 i = (i + 1);
end;

start = i; % First non-zero holding
time

left = (len - y(1));

for j=2:(points+2),
 x(j) = ((j-1)*step);
 y(j) = left;

 while ((ys(i) > (j-2)*step) & (ys(i) <= ((j-1)*step)) & (i <
len)),
 i = (i + 1);

Traffic in modem pools of Helsinki University of Technology 29
__
 left = (left - 1);
 end;

end;

dev2 = 0;
ave = sum(ys)/(len-y(1)); % Average does not contain zero
holding times!
for k=start:len, % Neither does sample standard
deviation...
 dev2 = (dev2 + 1 / ((len-y(1)) - 1) * (ys(k) - ave)^2);
end;
dev = sqrt(dev2);
x = x/60; % Scaled to minutes

bar(x, y);
grid;
results = sprintf('Average holding time: %0.5g. Sample standard
deviation: %0.5g.', ave/60,dev/60);
title(sprintf('The tail distribution of the holding times. \n(Step
= 100 sec.) %s', results));
xlabel('Time/minutes');
ylabel('Number of holding times');

