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Abstract

In this paper we consider the problem of estimating blocking probabilities
in the multiservice loss system via simulation, applying the static Monte Carlo
method with importance sampling. Earlier approaches to this problem include
the use of either a single exponentially twisted version of the steady state distri-
bution of the system or a composite of individual exponentially twisted distrib-
utions. Here, a different approach is introduced, where the original estimation
problem is first decomposed into independent simpler sub-problems, each roughly
corresponding to estimating the blocking probability contribution from a single
link. An importance sampling distribution is presented, which very closely ap-
proximates the ideal importance sampling distribution for each sub-problem. The
distribution is a conditional distribution and the samples generated from it are
directly in the blocking state region in each sub-problem. We show how samples
from this conditional distribution can be generated effectively by the so called
inverse convolution method. Finally, a dynamic control algorithm is given for
optimally allocating the samples between different sub-problems. The numerical
results demonstrate that the variance reduction obtained with the inverse convo-
lution method is truly remarkable, between 670 and 1 000 000 in the considered
examples.

1 Introduction

Modern broadband networks have been designed to integrate several service types into
the same network. On the call scale, the process describing the number of calls present
in the network can be modeled by a loss system, see e.g. [3]. One of the basic tasks is



to calculate the steady state blocking probability for each traffic class in the system.
The steady state distribution of the system is of the well known product form, from
which it is easy to write down analytic expressions also for the blocking probabilities.
A problem with the exact solution, however, is that it cannot be computed for realistic
size networks due to the prohibitive size of the state space. Recursive methods can
be used to alleviate the problem, but they are applicable only in the case of a small
number of links.

In such a situation there are two alternatives: to use analytical approximations
or to simulate the problem to a desired level of accuracy. In this paper we will be
dealing with the latter approach. Then, as the form of the stationary distribution is
known, the static Monte Carlo (MC) method can be used to perform the simulation. In
order to make the simulation more efficient, it is possible to use importance sampling
(IS), where one uses an alternative sampling distribution, which makes the interesting
samples more likely than under the original distribution. The twist in the distribution
is then corrected for by weighting the samples with the so called likelihood ratio.

In this paper an efficient IS distribution is derived aiming at approximating the
properties of the ideal IS distribution as closely as possible. Previous work on estimat-
ing the blocking probabilities via the static Monte Carlo method includes the works
of Ross [3, chap. 6] and Mandjes [2]. Ross has presented heuristics which attempt to
increase the likelihood of the blocking states while, at the same time, trying to limit
the likelihood of generating misses from the allowed state space, resulting in a rather
conservative twist. Mandjes has proposed to use an importance sampling distribution
which is an exponentially twisted version of the stationary distribution of the system
that shifts the mean of the sampling distribution to match the most probable block-
ing state in the network. In [1], we presented an approach based on using a similar
technique with exponentially twisted distributions, but we extended the approach with
ideas suggested by the large deviation results obtained by Sadowsky and Bucklew in
[4]. They have shown that for estimating the probability of sets having a similar shape
as the set of the blocking states, the asymptotically optimal IS distribution is of a
composite form.

Here a slightly different approach is adopted. The basic idea is the same as in
[1], to effectively sample the blocking states lying on the boundary of each active link
constraint. Instead of using a composite form distribution for this, the problem is first
decomposed into separate sub-problems. The decomposition corresponds to breaking
the blocking probability down to components each of which essentially gives the block-
ing probability contribution from a single link. Then an effective IS method to solve
each subproblem is given. In this method the earlier used exponentially twisted distri-
butions are replaced with a more accurate approximation of the ideal IS distribution.
The idea is to generate samples directly into the set of blocking states of a given link,
assuming solely that link to have a finite capacity. This is achieved by using a certain
conditional distribution as the IS distribution. Samples from this distribution can be
generated by a method we call the inverse convolution method. The method drasti-
cally improves the performance of the IS sampling. In the examples considered, the
reduction of the standard deviation obtained by the inverse convolution method varied
from 26 to 1000, using the direct Monte Carlo method as a reference. In terms of the
required number of samples for a given accuracy this translates to a reduction by a



factor of the order from 670 to 1 000 000.
The paper is organized as follows. Section 2 presents briefly the multiservice loss

system. The simulation of the blocking probabilities and the IS method together with
the properties of a proper IS distribution for estimating the blocking probabilities are
discussed in section 3. Sections 4 contain the main results of the paper and describes
the inverse convolution method. In section 5 we describe the dynamic method for
optimally allocating the number of samples to be used for each sub-problem and give
some numerical examples demonstrating the effectiveness of the two methods. Section
6 contains our conclusions.

2 The multiservice loss system

Consider a network consisting of J links, indexed with j = 1, . . . , J , link j having a
capacity of Cj resource units. The network supports K classes of calls. Associated
with a class-k call, k = 1, . . . , K, is an offered load ρk and a bandwidth requirement
of bj

k units on link j. Note that bj
k = 0 when class-k call does not use link j. Let the

vector bj = (bj
1, . . . , b

j
K) denote the required bandwidths of different classes on link j.

Further, we denote by Rk the set of links used by the traffic class k, i.e.

Rk = {j ∈ J | bj
k > 0},

where J = {1, 2, . . . , J} denotes the set of link indexes.
We assume that the calls in each class arrive according to a Poisson process, a call

is always accepted if there is enough capacity available, and that the blocked calls are
cleared. Let X = (X1, . . . , XK) denote the state of the system, with Xk giving the
number of class-k calls in progress. Consider first the case where the capacities of the
links are infinite. The system behaves as K independent Poisson processes. The state
space is then

I = {x | x ≥ 0},
where xk ∈ N with N denoting the set of natural numbers {0, 1, 2, . . .}. The steady
state distribution, P , of X is of the product form

f(x) = P{X = x} =
K∏

k=1

fk(xk), x ∈ I, (1)

where fk(x) = (ρx
k/x!) e−ρk is the one-dimensional Poisson distribution.

Also, let Y j
k denote the random variable for the occupancy of link j due to the

traffic of class k, i.e Y j
k = bj

kXk. The distribution of Y j
k is then

mj
k(y) = P{Y j

k = y} =
{

fk(x), ∃x ∈ N : y = bj
kx,

0, otherwise.
(2)

For the finite capacity system, the set of allowed states, S, can be described as

S =
{
x ∈ I | ∀ j : bj · x ≤ Cj

}
,



where the scalar product is defined as bj ·x =
∑

k bj
kxk. The steady state distribution,

π, is given by the truncation of (1) to the allowed state space, S,

π(x) = P{X = x |X ∈ S} =




P{X = x}
P{X ∈ S} , x ∈ S,

0, otherwise.

The set of blocking states for a class-k call, Bk, is

Bk =
{
x ∈ S | ∃ j : bj · (x + ek) > Cj

}
,

where ek is a K-component vector with 1 in the kth component and zeros elsewhere.
The blocking probability of a class-k call, Bk, can then be expressed in the form of a
ratio of two state sums, denoted by βk and γ,

Bk =
∑
x∈Bk

π(x) =

∑
x∈Bk

f(x)∑
x∈S f(x)

=
P{X ∈ Bk}
P{X ∈ S} =

βk

γ
. (3)

We can note here that, instead of having the state space I for X, we could consider
any Cartesian product space enclosing S.

For later purposes, we introduce the set Dj
k of blocking states for link j,

Dj
k =

{
x ∈ I | Cj − bj

k < bj · x ≤ Cj

}
.

Thus the set Dj
k consists of the blocking states in a system where only link j has a

finite capacity and all other links have an infinite capacity.

3 Decomposition and importance sampling for loss
systems

In what follows we discuss the estimation of the blocking probabilities via the impor-
tance sampling simulation method. As the form of the stationary distribution f(x) is
known, a natural choice for the simulation method is the static Monte Carlo method.
The main problem in the simulation is to quickly get a good estimate for βk, i.e. the
numerator in (3), especially in the case, when the Bk are very small. For completeness,
we note that the blocking probability Bk does not only depend on βk, but also on the
state sum γ given by the denominator of (3). The direct Monte Carlo method for esti-
mating γ corresponding to the probability P{X ∈ S}. This probability is usually close
to 1 and is therefore easy to estimate using the standard MC method. Therefore, in the
rest of this paper we concentrate on efficient methods for estimating βk. Furthermore,
in the following, we suppress from the notation the index k of the class for which the
state sum βk (and the blocking probability) is to be estimated.

In our case, we can apply IS very effectively by first decomposing the problem into
independent sub-problems and then using IS for each subproblem. The decomposition



is based on the following observation. The set of blocking states (for traffic class k)
can be expressed as

B = S ∩
⋃

j∈R
Dj .

This is illustrated in Figure 1 on the left hand side, which shows a two traffic class
example with three links. The grey areas represent the blocking state regions Dj of
some traffic class for each link. The whole set of blocking states B is then the area
between the continuous black lines. Now, β is an expectation of the form E[h(X)]
where h(x) = 1x∈B. Thus h(x) can be decomposed as

h(x) = 1x∈B =
∑
j∈R

1
ν(x)

1x∈S 1x∈Dj ,

where ν(x) is a function giving the number of sets Dj that the point x belongs to, i.e.
it takes care of weighting those points appropriately that lie in the intersection of two
or more Dj sets. Then, also the computation of the original expectation decomposes
into independent sub-problems, i.e.

E[h(X)] =
∑
j∈R

1
ν(X)

1X∈S 1X∈Dj .

Now, let hj(x) = 1x∈S 1x∈Dj/ν(x). The value of one of the hj(·) functions is illustrated
in Figure 1 on the right hand side. Note that with slight modification we could also
decompose the set B into non-overlapping regions, whence there would not appear any
1/ν(x) term in the hj(x) function.
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Figure 1: Decomposition of the set B into three subsets in a network with two traffic
classes and three link constraints (left figure) and the values of one of the hj(·) functions
in different parts of Dj (right figure).

To estimate each ηj = E[hj(X)] efficiently we apply importance sampling. To
this end, let X∗ ∈ I be another random variable with distribution p∗j(x) and let
w(x) = f(x)/p∗j (x) denote the so called likelihood ratio. As is well known, the general
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Figure 2: Estimation of ηj .

idea in IS is to find a distribution p∗j (x) such that the variance of the IS estimator,

η̂j =
1

Nj

Nj∑
n=1

1
ν(X∗

n)
1X∗

n∈S 1X∗
n∈Dj w(X∗

n), (4)

is minimized (Nj denotes the number of samples). Obviously, in this case, the ideal
IS distribution would always generate points that lie in Dj and are always inside the
allowed state space S, i.e. points that are in B, with a distribution proportional to
f(x)/ν(x). Consequently, the value of the observed variable w(·)/ν(·) would be a
constant. This conditional distribution is unrealizable but we approximate it by another
conditional distribution

p∗j (x) = P{X = x |X ∈ Dj} =




P{X = x}
P{X ∈ Dj} =

f(x)
vj

, x ∈ Dj ,

0, otherwise,

(5)

where vj is the probability mass of the set Dj . This is illustrated in Figure 2. With IS
distribution (5) we are generating points in the set Dj (area between the dashed lines)
and simulation is needed essentially only to determine which part of the probability
mass of D is actually inside S (factor 1X∗∈S , grey area in the figure). Additionally
we have the factor 1/ν(X∗) to compensate for double (or multiple) counting for such
points x that belong to more than one of the sets Dj . However, the effect of this is of
minor importance as, in practice, most of the points belong to only one set Dj .

The efficiency gain obtained with the above can be shown as follows (where, for
clarity, we omit the effect of the factor 1/ν(·)). When using the original distribution f(·)
as the IS distribution in (4), we need to estimate the probability p = E[1X∈S 1X∈Dj ].
Then each sample generated from f(·) is an independent Bernoulli variable and the
relative error (or relative deviation) of the estimate, given by the ratio of the standard
deviation and the mean of the estimate, after N samples have drawn is

√
(1− p)/(pN).

Thus, assuming for instance p = 0.005, we need almost 80 000 samples to have a relative
error of 5% for the estimate. On the other hand, when using (5) as our IS distribution,



we only need to estimate the conditional probability p′ = E
[
1X∈S |X ∈ Dj

]
. This

probability is typically much greater than p. Thus, assuming for example that p′ = 0.9
we only need about 45 samples to reach the same 5% relative error level, giving us
a decrease by a factor of almost 2000 in the required sample size. Our numerical
experiments verify that efficiency gains of this order or even greater can be obtained
in practice, as well.

When using (5) as our IS distribution, the likelihood ratio is a constant,

w(x) =
f(x)

f(x)/vj
= vj ,

and the estimator for ηj becomes

η̂j =
vj

N

N∑
n=1

1
ν(X∗

n)
1X∗

n∈S .

Then the final estimator for β is simply

β̂ =
∑
j∈R

η̂j .

Now, given the total number of samples N to be used for the estimator, the number
of samples Nj allocated to each subproblem is a free parameter. In section 5 we show
how to choose each Nj to minimize the variance of β̂.

In the next section we describe how the probability P{X ∈ Dj} of our conditioning
event is computed, and how samples can be generated directly into the set Dj .

4 The inverse convolution method

As we are now only considering the estimation of ηj for a fixed j ∈ R we omit the
link index j from the notation. This implies that Cj , bj

k and Dj
k are denoted here

by C, b and D, respectively (remember that dependence on the traffic class k being
under inspection was suppressed earlier). To further simplify the notation, we also
assume, without loss of generality, that the traffic classes which use link j have the
indexes 1, . . . , L. The following method is based on the observation that it is relatively
easy to generate points into the set D from the conditional IS distribution (5), i.e.
P{X = x |X ∈ D}, by reversing the steps used to calculate the occupancy distribution
of the considered link by convolutions.

Recall that the occupancy due to the traffic of class-k calls on the link under con-
sideration is denoted by Yk with the distribution mk(·) as defined in (2). Let Sl, with
l = 1, . . . , L, denote the occupancy distribution on the considered link caused by the
superposition of the first l classes, i.e.

Sl =
∑
l′≤l

Yl′ , l = 1, . . . , L.



We can also express Sl = Sl−1 + Yl, where both Sl−1 and Yl are independent. The
distribution of Sl, ql(x) = P{Sl = x}, can be obtained recursively from the convolution

ql(x) =
x∑

y=0

ql−1(x− y)ml(y). (6)

Thus we also obtain the probability mass of the set D, v, from

v = P{X ∈ D} = P{C − b < SL ≤ C} =
C∑

i=C−b+1

qL(i).

The event Sl = x is the union of the events {Yl = y, Sl−1 = x−y}, y = 0, . . . , x with the
probabilities ml(y)ql−1(x − y). Conversely, given Sl = x, the conditional probability
of the event Yl = y is ml(y)ql−1(x − y)/ql(x), for y = 0, 1, . . . , x. These probabilities
can be precomputed and stored. Then, given Sl = x, using these probabilities it is
easy to draw a value, say y, for Yl and consequently for Sl−1 = x − y. In fact, it is
advantageous to store directly the values of the cdf

P{Yl ≤ y |Sl = x} =
y∑

y′=0

ml(y′)ql−1(x− y′)/ql(x). (7)

Then the value of Yl ≤ y can be drawn by finding the smallest y such that P{Yl ≤ y |
Sl = x} ≥ U , where U is a random variable drawn from the uniform distribution in
(0, 1).

Now, SL is the occupancy of the link, and the set D corresponds to C−b < SL ≤ C.
A point in D can be generated by first drawing a value for SL using the distribution
qL(·) conditioned on C − b < SL ≤ C, which is also precomputed and stored. This is
shown in Figure 3 on the left hand side. Then, as described above, (YL, SL−1) can be
drawn. This is shown in Figure 3 in the middle. Once the value of SL−1 is fixed, we
can draw (YL−1, SL−2). This process is continued until the value of the last component
Y1 has been drawn. The most important thing here is to note that the distributions
of the conditional sets (Yl, Sl−1) for a fixed value of Sj

l are easily precomputed and,
hence, each component Yl is generated as an outcome from a simple table lookup. The
other classes not using the link, i.e. classes L + 1 to K, are independent from classes
1, . . . , L and from each other. Hence, their values are drawn independently from the
distributions fk(·), k = L + 1, . . . , K.

The generation of samples is as fast as in a standard MC method, once the con-
ditional distributions have been computed. Furthermore, the memory requirements
of the algorithm, i.e. the number of elements in the arrays, are not prohibitive. The
number of array elements to be stored can be seen to be 1

2KC(C + 1). It should be
noted that the dependence on K is only linear whereas the size of the state space grows
exponentially with K. However, if this memory requirement grows too large, the min-
imum requirement is that the ql and ml distributions have been precomputed. Then
the conditional distribution P{Yl ≤ y |Sl = x}, given by (7), must be constructed on
the fly, making the sample generation somewhat slower.

In summary the procedure for generating samples from (5) with the inverse convo-
lution method can be described as follows. First we have the preparatory steps:
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Figure 3: Sample generation into the set D with the inverse convolution method.

1. Compute the distribution of SL recursively from (6).

2. Compute the conditional distributions given by (7), for l = 1, . . . , L.

To generate a sample we perform the following

1. Generate a value, say s, for link occupancy SL from P{SL = x |C−bL < SL ≤ C}.
2. For i from L downto 2

- Generate the value of Yi from the distribution P{Yi ≤ y |Si = s} (eq. (7)).

- Set Xi ← Yi/bi.

- Set s← s− biXi.

3. Set X1 ← s/b1.

4. For i from L + 1 to K, generate Xi from fi(x) = (ρx
i /x!) e−ρi .

5 Numerical results

5.1 Allocation of the sample points

Here we reintroduce the dependence on the link index j explicitly in the notation.
Above we have decomposed the problem of estimating the expectation β = E[h(X)] into
J independent problems of estimating the expectations η(j) = E[hj(X)], j = 1, . . . , J ,
with β =

∑
j η(j), and correspondingly β̂ =

∑
j η̂(j). Each of the estimators η̂(j),

η̂(j) =
1

Nj

Nj∑
n=1

h(j)(X(j)
n ),

where X(j) is a random vector obeying the distribution p∗j (·), gives an unbiased estimate
for η(j), irrespective of the number of samples Nj used. The allocation of the total



number of samples N between different subproblems, N = N1 + · · · + NJ , should be
made based on the minimization of the variance of the final estimator β̂. Because the
estimators β̂j are independent we have

V[β̂] =
∑

j

V[η̂(j)] =
∑

j

s2
j

Nj
,

where we have denoted s2
j = V[hj(X(j))]. Now the minimization of this expression

with respect to the Nj under the constraint
∑

j Nj = N readily leads to the optimal
allocation

Nj =
sj∑J
i=1 si

N, j = 1, . . . , J. (8)

Of course, the sj are not known before the simulation. Therefore a dynamic sample
allocation scheme is needed. One practical solution is to make the simulation in batches,
using J ∗M samples per batch, where M is a suitable integer, for instance M = 100.
In the first batch, all the samples are distributed evenly for different links, i.e., M
samples are used per link. Then initial estimates for the sj are obtained. Using these
estimates, the optimal sample sizes after the second batch, i.e. for N = 2J ∗M , can be
calculated from (8). If the calculated Nj is less than the number of samples already
used (M samples in the first batch) no samples of the new batch are allocated for that
link. Otherwise, the available J ∗M new samples are distributed between the links in
proportion to the deficiencies (deficiency being the difference between the calculated
optimal value after the new batch and the actual number of samples used so far). Real
numbers are appropriately rounded to integers. After the new batch, new estimators
are calculated for the sj and the procedure is repeated.

5.2 Numerical examples

Here some numerical examples are presented in order to illustrate the efficiency of the
presented method in Monte Carlo simulation of the blocking probabilities. First we
consider a simple two traffic class network with three links. The parameters of the
network are: Cj = [100, 120, 170],b(1) = (2, 0),b(2) = (0, 3) and b(3) = (2, 3). We
consider the blocking probability of traffic class 1 with two different loads such that
the blocking probabilities are of the order 1.03 · 10−2 and 1.22 · 10−4 (Cases 1 and 2 in
Table 1, respectively). The offered loads were ρ = (35, 22) (Case 1) and ρ = (27, 18)
(Case 2). The inverse convolution method (labeled with “Convolution” in the table) is
compared against results obtained with the composite method (“Composite”) from [1],
the standard MC and the methods proposed by Mandjes (“Single twist” in Table 1)
in [2] and Ross in [3, chap. 6], which both correspond to the use of a single twisted IS
distribution. To this end, we estimated the relative deviation of the estimator, given
by (V[β̂k])1/2/β̂k, for 104 samples (Case 1) and 105 samples (Case 2). Our second
example is the large network example from [6] for the scaling factor N = 25. The
example network is a lightly loaded network with blocking probabilities of the order
10−3 for each traffic class. There are 10 traffic classes and 13 links with large capacities
(several hundreds of capacity units). Again, we estimated the relative deviation of β̂k

for traffic classes 6 (Case 3) and 8 (Case 4) with 105 samples.



Table 1: The relative deviation of the estimates β̂k for the examples.

Case Convolution Composite Single twist Ross MC
1 0.0023 0.051 0.060 0.066 0.099
2 0.0003 0.017 0.027 0.076 0.302
3 0.0007 0.031 0.031 0.071 0.095
4 0.0014 0.017 0.020 0.029 0.037

As can be seen, the variance reductions obtained with the inverse convolution
method are remarkable. For example, in Case 2, the ratio between the deviations
of the standard MC and the inverse convolution method is about 1000 and even in the
large network examples the ratio is about 135 in Case 3 and 26 in Case 4. These ratios
of the deviations correspond to ratios of 1 000 000 (Case 2), 18 000 (Case 3) and 670
(Case 4) in terms of the required number of samples.

Also, we can note here that with the inverse convolution method the estimation
of the variance of the estimates is guaranteed to be reliable. In rare event simulation
(which is not the main interest here), a problem is that one can get results that appear
to be very accurate judging by the estimated variance, but the results can, in reality,
be far from the correct value. This can happen e.g. when using a single heavily twisted
IS distribution and the reason is that the likelihood ratio w(·) can have a huge value
at some point in the state space, but under the twisted distribution these points are
very rare and are never encountered during the course of a simulation run. Hence, the
estimates, especially for the variance or other higher moments, can be heavily under
estimated, as has been rigorously shown in [5]. However, with the inverse convolution
method the estimation is always reliable, since the observed values of the samples are
bounded within the interval [0, 1]. Thus, the problem of the occurrence of events with
a very small probability under the IS distribution but having a significant contribution
to the estimate does not occur with the inverse convolution method.

6 Conclusions

In this paper we have presented a new approach to the problem of estimating blocking
probabilities in a multiservice loss system by using the static Monte Carlo simulation
method and importance sampling. First we observed that the estimation problem can
be decomposed into separate simpler sub-problems each roughly corresponding to the
estimation of the blocking probability contribution from a single link. For the solution
of the sub-problems, we presented the inverse convolution method, which very closely
approximates the generation of samples with the ideal IS distribution. The idea is to
generate samples directly into the set of blocking states of a given link in the system,
where all the other links are assumed to have an infinite capacity. This set of course
extends beyond the allowed state space of the system. Then, simulation is essentially
only needed to determine which part of this set is actually inside the allowed state
space. In terms of the obtained variance reduction, the inverse convolution method



by far surpasses all previously reported results. The excellent results of the inverse
convolution method, however, are obtained at the cost of high, though manageable,
memory requirements. However, it can be noted that the memory requirements of
the inverse convolution algorithm can be significantly reduced by constructing the
conditional distributions on the fly for each sample with the trade-off of making the
sample generation process somewhat more time consuming.
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