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Ruuhkahinnoittelu on yksinkertainen hallintaperiaate Internet-tyyppiselle paketti-
verkolle. Se voidaan toteuttaa mm. seuraavasti: Verkko signaloi paikalliset (ylivuo-
doista riippuvat) ruuhkakustannukset merkitsemällä hintaleimoja reitittimen läpi
kulkeviin paketteihin. Merkityistä paketeista peritään korvaus paketin lähettäjältä
ja näin ruuhkatilanteissa kasvava merkkien vuo, hinta, kannustaa käyttäjiä vähen-
tämään aiheuttamaansa kuormitusta. Kuinka paketit tulisi sitten merkitä?
Tässä työssä syvennytään merkintäongelmaan matemaattisten mallien avulla. Aluk-
si analysoidaan koko järjestelmää yleisemmin, lähtien taustalla olevasta �loso�asta
ja päätyen vaihtoehtoisiin käytännön toteutusmenetelmiin. Tarkemmin syvennytään
ylläkuvattuun teoreettiseen mallikehyseen (Kelly et al. [21]), sekä heuristisiin mer-
kintätekniikoihin.
Työssä esitetään kolme erilaista M/M/1/K-jonomalliin perustuvaa lähestymistapaa
ja osoitetaan, että oikeiden hintojen saamiseksi paketti voidaan merkitä sillä to-
dennäköisyydellä, millä kyseisen kiirejakson aikana tapahtuu ylivuoto. Ruuhkariski
voidaan myös sellaisenaan tulkita jatkuva-arvoiseksi hintaleimaksi. Näin tarjotaan
käyttäjille ennakkovaroitus uhkaavista ylivuodoista ja jopa vältetään pakettien me-
netyksiä.
Merkintään suositellaan seuraavaa politiikkaa: Ylivuodon tapahtuessa kaikki sys-
teemin paketit merkitään ja muulloin merkitsemättömän paketin poistuessa systee-
mistä se saa merkin senhetkisellä hintatodennäköisyydellä. Menetelmää kutsutaan
ennakoivaksi merkinnäksi.
Tilariippuvat ylivuototodennäköisyydet lasketaan myös M/G/1/K- ja prioriteetti-
jonomalleille. Huomataan, että hinta tilan funktiona pysyy mallista riippumatta
jokseenkin samanmuotoisena. Tätä muotoa approksimoidaan GI/GI/1/K malleille
yksinkertaisella eksponentiaalisella kaavalla, joka on johdettu di�uusioapproksimaa-
tion avulla. Approksimaation tarkkuus havaitaan numeeristen esimerkkien valossa
lupaavaksi.
Parametrien estimointitarpeesta huolimatta ennakoiva merkintä ratkaisee merkintä-
ongelman yksinkertaisten mallien puitteissa. Oletus korreloimattomasta liikenteestä
saattaa kuitenkin rajoittaa menetelmän suoraa sovellusta käytäntöön.

Avainsanat: pakettimerkintä, ruuhkahinnoittelu, Internetin ruuhkanhallinta
di�erentioidut palvelut
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Chapter 1

Introduction

There is no need to commend the scale or importance of the current Internet.

It has established its �rm status on the communications area and more and

more services are installed to be available world-wide through the network.

In terms of technology, however, the Internet is becoming old � so old that

the �rst symptoms of the age are already turning up. Although the available

capacity is growing with developing technologies, the demand for the same

capacity is growing even faster. New services, such as multimedia applications

and distributed computing, have emerged on large scale to co-exist with the

more traditional data tra�c such as e-mail and �le transfer. The principles,

standards and the software, which have successfully reigned over the Internet

for more than a decade, are becoming inescapably outdated in many ways. It is

not only that the bandwidth is becoming inadequate, but the heterogeneity of

the new demands which is forcing the foundation of the network, the principles

of controlling it, to shape up to meet the challenge.

Increasing utilization of real-time services puts new demands on the resources

consisting of preferences on delays and packet losses, i.e. on Quality of Ser-

vice (QoS). These demands are completely strange to the way Internet was

designed to operate and so the requirements cannot usually be met. Thus,

a user running a real-time application in the Internet is given an incentive to

bypass the mechanisms controlling the �ows which, to a large extent, threatens

the stability of the whole network. Hence, it is quite natural that there is a

wide consensus that changes in the current congestion control principles are

unavoidable.
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The intense ongoing research is looking for alternatives to enable the transport

of audio, video, real-time, and classical data tra�c within a single network

infrastructure. Within the Internet Engineering Task Force (IETF), which

is a large open international community of researchers concerned with the

evolution of the Internet, there are two working groups addressing the problem

from di�erent perspectives. The Integrated Services (intserv) approach is to

provide connection-oriented schemes, where the QoS requirements are met with

admission control and resource reservation. The other approach, Di�erentiated

Services (di�serv), is aiming at to provide QoS by priority classes and queuing

disciplines within a connectionless environment.

In this thesis we shall explore a di�erent approach to the Internet congestion

control. Suppose that the network generates charges to direct users actions.

Rising prices act as an incentive for the users to reduce their load and so the

aggregate �ows evolve towards a goal set by the network. A natural selection

for this goal would be the maximization of the resource usage which means

that the charges can be interpreted as the congestion costs occurred in the

network. In this case the users themselves decide the fair allocation of the

resources by de�ning their own reactions to the prices. This means roughly

that if you want better service than another user you must be ready to pay

more than that user. These are the principles of congestion pricing.

Pricing can also be motivated from a somewhat di�erent premise. Any scheme

equipped with service di�erentiation must include some form of pricing or other

incentive to avoid the �tragedy of commons�, lack of any reason to use anything

else than the best possible priority or service. Thus, the future Internet must

apply some form of pricing in order to serve ever altering demands of diverse

tra�c �ows. Optimally the pricing would be implemented so that it will allow

new services to be developed without the need of changing the whole pricing

system every time there is a new type of demand emerging.

The proposals for the future Internet are many and varied, even within the

congestion pricing principle, but one of the most elegant approaches is the

Proportionally Fair Pricing by Kelly et al. Proportionally Fair Pricing (PFP),

described in detail in the next chapter, is able to provide fairness, stability

and arbitrarily di�erentiated services all in one simple network model. It

seems especially appealing for the reason that it can be implemented by using
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existing Internet standards and proposals.

The principle of the scheme is straightforward; users send their tra�c and the

network generates feedback signals which are small charges to the users. All

the complexity is left on the end users who may behave as they wish, knowing

that they will be charged accordingly. The congestion control and fairness is

so implemented solely by the self interest of the users. The network is left only

with the task to generate these price signals re�ecting the congestion costs in

each resource. How should the prices be calculated?

This work is intended to introduce a parallel interpretation to these prices

and to be a survey of mathematical models related to determining the prices

of individual packets within PFP. From this starting point one cannot hope

to derive an ultimate solution to the problem and so the aim is merely to

explore the possibilities and limitations such models pose and to bring new

aspects into the discussion. We shall provide a solid groundwork for further

development believing that the issues considered here are relevant also for

problems appearing in other Di�Serv proposals.

The organization of the thesis is as follows. Chapter 2 sheds light on the back-

ground of congestion pricing. We start from the economic philosophy behind

the scheme, continue by outlining some incentives to improve the current In-

ternet technology, and then describe in detail the mathematical framework,

Proportionally Fair Pricing by Kelly et. al, as an example to put all this in

practice. The chapter is concluded with a brief survey on the other proposed

implementations of Congestion Pricing.

Chapter 3 is devoted to packet marking procedures, how the end-nodes can be

made aware of the congestion prices at resources by piggy-backing the infor-

mation on the traversing packets and especially how this information should

be determined. In Chapter 4, after relating the packet price to the over�ow

probability, we shall look into calculations required to reveal this probability

in the context of various mathematical models.

In Chapter 5 we examine the robustness and the behaviour of price under

di�erent assumptions. Without going into any detail with tra�c modelling we

are able to �nd the general form of the pricing function easily described by a

functional form that requires only a few parameters to be estimated.
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Finally we conclude in Chapter 6 and discuss further possible developments

available in this �eld of study.



Chapter 2

Congestion Pricing

2.1 Foundations

The concept of congestion pricing emerged from idealistic economic models,

where the aim was to provide fair resource allocation between competing in-

stances by means of pricing. Concurrently, when these models were suggested

for Internet tra�c management, a pragmatic development on congestion con-

trol was under way within the TCP/IP protocol suite to �ght the menace of

congestion collapse of the furiously expanding Internet. As the premises of

both the economists and the engineers were roughly the same, it was natural

that the mathematical theory of congestion pricing evolved by combining ideas

from both camps. This section will shed light on the foundations of conges-

tion pricing, both in economics and in the Internet world and then follow the

evolution which lead to various independent theoretical proposals, of which

the proportionally fair pricing scheme by Kelly et al. [11, 21, 17] will play an

essential role in this presentation.

2.1.1 Economic background

Fairness in networks

When a network becomes congested, the limited resources must be shared

between users and some data must be rejected or subjected to delay. Although
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the principle of sharing could be arbitrary, maximum e�ciency and stability is

in this case achieved by a socially accepted, fair, resource allocation. This can

be motivated by noting that an allocation that is not fair could provoke cut-

throat competition among the users, essentially including some sort of greedy

behaviour resulting in increased losses at the resource and hence ine�ciency

in the network.

However, the fairness issue is far from unambiguous. From the network point

of view, dividing the resource equally among the users would seem fair, but it

is the users' point of view solely that can have any e�ect on their demands. An

equal share seems not fair to users as they may have very di�erent requirements

on the resource. For example, consider a situation where a user is watching

an important real-time video footage and his share may not be enough for

performing the task smoothly while some other may be transferring a large �le

and gone to have a cup of co�ee meanwhile and would not mind if the transfer

took a few seconds more. If the video is that important would it not be fair to

allocate a larger share for that service than the �le transfer? Maybe yes, but

the network is not generally aware of the importance of the data it carries and

thus not well placed to decide for the allocation. In the classic cake sharing

analogy, it is not the cake which can decide how it should be divided but the

people eating it.

Pricing for fairness

Users' requirements and preferences on a network may di�er in quantity and

quality both in location and time. Obviously only users themselves can an-

nounce their own needs, but they cannot be assumed to cooperate voluntarily.

Furthermore, the possibility of users negotiating the allocation themselves is

far too slow and complex to be implemented in a communications network.

The simple solution is that the users announce the importance of their own

data to the network which decides the fair allocation based on the information

received from the users. Naturally, if we allow any kind of priorization in the

network there must be an incentive for a user not to use a better service than

what is fair. Otherwise everybody could announce, just for convenience, that

their information is of utmost importance and the whole construction of im-

portance classi�cation breaks down. This incentive should be so strong that
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even the possible misbehaving users causing congestion on purpose would have

to seriously consider their actions.

The economic approach is to put a price on the social cost of congestion. All the

users having a share of the resource pay a constant price proportional to their

share, a price that depends only on how much and how important data cannot

be carried due to the congestion. If all the tra�c can be transmitted there

will be no costs to the users. In economic terms congestion is an extrenality

to users � a factor that has an e�ect on one's welfare but is under somebody

else's control. Setting an appropriate price for the congestion, users' welfare

is changed and congestion becomes their concern by limiting the increase in

welfare in the presence of congestion.

The e�ect of pricing is threefold: It provides an incentive to avoid congestion

and even to balance the load over the time scale so that the utilization is

maximised and �nally it provides an arbitrarily di�erentiated set of services

as users have total control on their data and only the charges di�er. This

is the general principle of pricing; information (prices) is conveyed to direct

consumption. If the prices are set to correspond the marginal cost of upgrading

the resource (so that it would be able to handle all the o�ered tra�c), the

market equilibrium is reached.

Resource pricing has always been commonly used in other areas of economics,

think about electric power markets, airlines or even common market places,

but in the Internet context this view was �rst introduced by economists McKie-

Mason and Varian [28], who proposed an online packet auction, smart market.

Their work is further discussed in section 2.3.

Fairness of pricing

Whilst congestion pricing is a result of a very clear line of thought, it raises

some justi�ed doubts on the underlying assumptions which should be dis-

cussed.

First of all, is there a demand for the congestion pricing scheme in the Internet

altogether? The framework provides a somewhat di�erent set of services than

traditional pricing for �at rate, admission or carried tra�c. In those users

can predict the cost of their actions, while in congestion pricing they are not
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only uncertain about the rate they receive but also about the price they have

to pay. However, although the costs cannot be forecasted, one can transfer

�les with arbitrary criteria, for example �as fast as possible�, �by the next full

hour� or �with minimum cost� which are not supported in the common best-

e�ort network with predictable prices. It is hard to predict whether or not the

freedom of congestion pricing is preferred to the predictability of traditional

pricing in the process of standardization.

Assuming that congestion means higher price for the users and hence higher

revenue to the network provider, what if the network provider is deliberately

allowing congestion in order to gain pro�ts? To answer this question we have to

go back into the �real world� analogies as the problem is the one of monopoly.

If the monopolist has enough freedom over pricing it can maximise its rev-

enue anyway regardless of the pricing method used. It could be argued that

in a competitive world such monopolies cannot exist; users will change their

operator if experiencing bad quality of service and high prices.

Another area of concern is about the pricing or more accurately use of money

associated with fairness. If one gets his tra�c through to network only by

paying, will the Internet then become the property of the wealthy? What

happens to the universities and non-pro�t organizations? This is a problem of

distribution of wealth, not of the method. It should be noted that the prices

do not have to be directly counted in money as long as it provides an incentive

for users to react. Some kind of distributed mint could provide the solution.

This is an obvious and interesting problem, which cannot be neglected, but

due to its philosophical nature it is out of the scope of this thesis.

In summary, as the amount of resource cannot be increased in the operating

time scale, the network controls the demand by pricing; users are expected to

react to alterations in price by changing their transmission rate. Congestion

causes prices to rise and higher prices should attenuate demand. From the

users' point of view, a user selects his own preferences from the network by

deciding how much he is willing to pay for the packets to be carried. In order

to get a larger share of the resource or decreased blocking probability, user

must be ready to pay a higher unit price.

Congestion pricing is a part of vast �eld of Internet economics (for a compact

overview see e.g. [29]) but it should not be confused with any business model
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of a network provider. Although it could �nance some upgrading, it is not

intended to cover any infrastructure or operating costs but merely encourage

the end-users to avoid causing congestion by economical means.

2.1.2 Congestion and the Internet

Another major incentive to the development of congestion pricing has been

the technology of the Internet. It is a typical example of a packet switching

network where the data is transmitted between two end nodes in individual

packets of varying sizes each containing the source and destination addresses.

Packets travel trough the network independently via routers which handle the

switching operations. At a router, in case of heavy tra�c, packets are bu�ered

until the router is able to forward them and, if the bu�er becomes full, the

arriving packets will be discarded.

TCP/IP and congestion

In the current Internet the TCP/IP protocol suite handles the tra�c man-

agement operations on the logical links (for detailed description see e.g. [40])

between routers and end-nodes all over the world. Internet Protocol (IP) is

responsible for providing connectionless service between end systems whilst

the connection establishment/termination and the actual data transfer is done

above it on the transport layer. The transport layer protocols de�ned in the

TCP/IP stack are the Transmission Control Protocol (TCP) and the User

Datagram Protocol (UDP).

From the congestion point of view the most important feature of transport

level protocols is the �ow control. In TCP the �ow control comprises of a

window system with the slow start mechanism and the congestion avoidance

algorithm of Jacobson [13]. Next we will outline the principles how it handles

congestion situations.

All successfully received packets are con�rmed by destination-nodes in form

of acknowledgments (ACK). Each sender has a certain number, allowed win-

dow, of packets which can be sent without acknowledgment. This corresponds

roughly to the transmission rate. Sender's allowed window is the smaller of
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the dynamically adjusted congestion window (cwnd) and the allowed window

announced by the receiver. TCP aims to avoid congestion by changing the size

of cwnd and thus the sending rates of users. Congestion window updating was

originally implemented followingly [41]; when initializing a connection cwnd is

increased by one segment for each received ACK (this is called slow start, al-

though the growth is actually exponential) and in the case a segment (packet)

loss is detected due to a timeout, a threshold, ssthresh, is set to be half of

the current congestion window. After that cwnd is set to one and is again

increased by one segment for each ACK until the threshold is reached. Above

ssthresh the window grows by one per round trip time (that is, linearly).

Again, at any time if a timeout occurs ssthresh is set to be half of cwnd and

the transmission starts with cwnd=1.

This is the standard �ow control procedure in TCP, but it soon proved to

be too conservative and later variants of the protocol include also other fea-

tures. Jacobson [14] proposed two improvements in the basic algorithm, fast

retransmit and fast recovery. Fast retransmit enables TCP to quickly replace

a damaged packet within the �ow without the need of waiting for the time-

out. Fast recovery means that in case of a lost segment retransmission is done

and then, instead of starting with the slow start, cwnd is cut half and then

increased linearly.

In this presentation there is no need to go into further details of the protocol

(an excellent collection of related papers can be found from [1]), but to notice

that the �ow control is essentially implemented by detecting packet losses. Al-

though the data integrity is secured by e�ective retransmission policies, this

makes TCP slow and usually unable to provide e.g. constant amount of band-

width.

Naturally TCP cannot provide satisfying service for some types of tra�c, es-

pecially real-time applications, and so the use of the user datagram protocol

(UDP) is becoming popular. UDP, however, does not have any built-in end-to-

end congestion control or error recovery and hence is able to compete unfairly

against TCP for resources. Increase in these unresponsive �ows (ones that fail

to reduce their o�ered load at a router when experiencing an increased packet

drop rate) could lead to congestion collapse of the Internet as argued by Floyd

and Fall [7]. Furthermore, there is an increasing demand for applications with
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di�erent requirements on QoS or delay, while the current TCP/IP is suitable

only for �best-e�ort� type tra�c.

These problems have stimulated intense research on the future Internet (as well

as other network) protocols to increase performance and robustness and on the

other hand to provide increased �exibility for the services. Although many of

the problems and solutions to them have been recognised a long time a ago,

the fast development of the commercial network overruled the early schemes,

such as [37], which did not receive much attention at the time. Next we will

brie�y discuss some of the more recent proposals which are indeed reaching

the implementation phase.

Emergence of ECN

Floyd [6] presented Explicit Congestion Noti�cation (ECN), described in detail

in [35, 36], to provide congestion awareness extension into the current TCP/IP

suite. The idea of the method is as follows; a single ECN-bit in the IP header

is marked in a router in the imminence of congestion and thus the congestion

is detected before a signi�cant amount of packets are lost. Floyd and Jacobs-

son also suggested an algorithm, Random Early Detection (RED) [8], for the

implementation of a bu�er control applying the ECN, which is discussed in

some detail in the next chapter.

The engineering approach has provided elegant and practical methods to im-

prove the Internet. However, the solutions are severely constrained by the cur-

rent protocols and the fundamental question of fairness is completely evaded.

Is the TCP/IP combination a valid choice for the diverse requirements on the

future Internet? What prevents the users from neglecting the ECN-marks

or modifying the TCP-protocol to �ght more aggressively for available band-

width?

2.2 Proportionally Fair Pricing

Motivated by the problems of the Internet, a body of work following Gibbens

and Kelly [11] has emerged to provide a di�erent approach to network con-

gestion control. Their premise is that the the queuing delays are becoming
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smaller compared to propagation times due to the evolving technology [18]

and so there would be no need for priorities within the network.

The principle of this approach, named Proportionally Fair Pricing (PFP),

is that the users have a complete freedom in sending their packets but the

network supplies feedback to users in form of prices re�ecting the congestion

costs. This simple congestion pricing scheme is able to provide di�erential

quality of service [23] (services de�ned by the users) and the advantages of the

smart market in a simple and robust fashion in any packet network. It is not

bounded to any particular transmission protocol and the users may behave as

they wish knowing that they will be charged accordingly by the network.

If using a packet marking technology similar to ECN, PFP is compatible with

the TCP and RED. Next we shall look brie�y into the mathematical model

behind the proposal.

2.2.1 Mathematical framework

Next presentation of the underlying theory is based on the paper of Kelly et

al. [21]. The discussion here will merely outline the theory and thus emphasise

the important concepts rather than proofs.

The model

Assume a set of resources (J ) and routes (R) indexed by j and r, respectively.

Each route, a subset of the resources r ⊂ J , can be seen as a user who has a

transmission rate xr and each resource has the capacity cj . Denote

A = {ajr} =

{
1 if j ∈ r

0 otherwise,
(2.1)

so that the �ow through the resource j can be written as

yj =
∑

r

ajrxr. (2.2)
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Let x = (xr, r ∈ R) be a vector of rates and c = (cj, j ∈ J ). x is said to be

feasible if x ≥ 0 and ful�lls capacity limitations in the network, i.e.

Ax ≤ c. (2.3)

Each user r has a utility denoted by Ur depending on the rate xr. Suppose that

the functions Ur(xr) are concave, continuously di�erentiable, with U ′
r(xr) → ∞

as xr ↓ 0 and U ′
r(xr) → 0 as xr ↑ ∞. This means that when the prices depend

linearly on the rate, there is an unique utility maximum. Adaptive tra�c

having this kind of utility is called elastic tra�c following Shenker [39].

Before going into the details of the actual problem we need to de�ne some

important concepts related to fairness.

De�nitions of fairness

The common fairness de�nition, much discussed by philosophers, is the max

min fairness.

It is de�ned as follows: x = (xr, r ∈ R) is max min fair if it is feasible and for

each r ∈ R xr cannot be feasibly increased without decreasing some other xr∗

which is smaller or equal to xr.

Whereas max min fairness is seen to provide a fair resource allocation in context

of political sciences, when talking about bandwidth sharing it gives an absolute

priority to the smaller �ows. The problem is, a decrease, no matter how small,

in a smaller �ow cannot reimburse an increase, no matter how large, in a larger

�ow. Such an extreme situation may occur in e.g. case of multiple bottlenecks

in the network and therefore max min fairness may not be the best or the most

e�ective alternative here. This is not a �aw of the de�nition but merely an

intentional choice to de�ne what is fair. An alternative de�nition, suggested by

Kelly [17], weights the small �ows somewhat less and is thus a more convenient

criterion for the problem of bandwidth sharing.

The proportional fairness criterion is de�ned as follows: x = (xr, r ∈ R) is

proportionally fair if it is feasible and for any other feasible x∗ the aggregate
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of proportional changes is zero of negative:

∑
r∈R

x∗
r − xr

xr
≤ 0. (2.4)

Further, let w = (wr, r ∈ R) be a vector of weights and de�ne weighted

proportional fairness as: x = (xr, r ∈ R) is weighted proportionally fair if for

any other feasible x∗, ∑
r∈R

wr
x∗

r − xr

xr
≤ 0. (2.5)

If we use the interpretation that a weight is an amount to pay per unit time

this de�nition means that the allocation is proportionally fair per unit charge.

This means that the resource is divided among the users depending roughly

on how much they are willing to pay.

Three optimization problems

PFP aims at maximising the aggregate utility, which we can write as an opti-

mization problem SYSTEM(U,A, c):

max
x

∑
r∈R

Ur(xr)

Ax ≤ c

x ≥ 0.

As the users' utilities are generally not known to the network we consider the

users and the network separately. Each user determines his preferences from

the network by choosing an amount to pay per unit time, a parameter called

willingness-to-pay, wr. In return each user receives a �ow xr = wr/λr, where

λr can be seen as the cost per unit �ow and time on the route r. Now the

USER(Ur; λr) becomes

max
wr

Ur

(
wr

λr

)
− wr

wr ≥ 0.

On the other hand the network attempts to share its resources fairly to the

users. We can assume that the users' preferences, the vector w = (wr, r ∈ R),

is known to the network and we can select the NETWORK(A, c;w) problem
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as

max
x

∑
r∈R

wr log xr

Ax ≤ c

x ≥ 0.

Now that the problems have been presented, it is necessary to motivate the

choices made so far. It straightforward to verify that a vector x solves the

problem NETWORK(A, c;w) if and only if the rates are proportionally fair

per unit charge. Consider deviating x so that x∗
r = xr + δxr with all r ∈ R.

The corresponding increase in the objective function of the network problem

is

∑
r∈R

wr (log (xr + δxr) − log xr)

=
∑
r∈R

wr

(
log

(
1 +

δxr

xr

))

=
∑
r∈R

wr
δxr

xr
+ o(δx)

=
∑
r∈R

wr
x∗

r − xr

xr

+ o(δx) (2.6)

Due to the convexity of the feasible region and the strict concavity of the

objective function this increase is always zero or negative at maximum. This

is actually an equivalent de�nition to the proportional fairness (2.5) and thus

the reason for selecting the logarithmic objective function.

Solution of the problems

Here we shall sketch the solution for the optimization problems described above

by using standard tools of constrained nonlinear optimization. References to

the methods used here can be found, e.g. in [4].

First we take the users' position. Solution of the USER(Ur; λr) problem

∂

∂wr

[
Ur(

wr

λr
) − wr

]
=

1

λr
U ′

r

(
wr

λr

)
− 1, (2.7)
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suggests that, in order to maximise their net utility, the users should select the

wr (and thus the rate) where the derivative of their utility equals to the sum

of the shadow prices along the route, that is

U ′
r

(
wr

λr

)
= λr. (2.8)

Assume then that the network now shares the resource to users using its fair-

ness criteria based on the wr. The Lagrangian for the NETWORK(A, c;w)

is

Lnetwork(x, z; µ) =
∑
r∈R

wr log xr + µT (c − Ax− z), (2.9)

where the z ≥ 0 is a vector of slack variables and µ is a vector of Lagrange

multipliers µ = (µj, j ∈ J ) associated with the capacity limits of each resource

j ∈ J . The Lagrange multipliers have an interpretation of shadow prices of

the resources or implied costs per unit �ow at the resources [17]. Now the

solution to the network problem can be found by derivation of the Lagrangian

(2.9)
∂Lnetwork

∂xr

=
wr

xr

−
∑
j∈r

µj, (2.10)

and so the unique optimum is

xr =
wr∑
j∈r µj

. (2.11)

If the prices are right, namely if the cost along the route r is given by

λr =
∑
j∈r

µj, (2.12)

and the users are acting to maximise their utility doing the selection 2.8, the

solution of the NETWORK(A, c;w) equals to the solution of the whole the

system. The Lagrangian of the SYSTEM(U,A, c) is

Lsystem(x, z; µ) =
∑
r∈R

Ur(xr) + µT (c − Ax− z), (2.13)

and so by derivation
∂Lsystem

∂xr
= U ′

r(xr) − λr. (2.14)

In summary, the system problem (or its dual problem) may be solved by de-
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composing it to separate network and user problems which are solved simul-

taneously. Formally, we may write

Problem decomposition: There exist vectors λ, w and x so that wr = λrxr

for all r ∈ R and wr solves the corresponding USER(Ur; λr) while x solves

the NETWORK(A, c;w) and the SYSTEM(U,A, c).

The model presented above is in a sense quite general and tells nothing about

the actual solution mechanism in a dynamic network environment. Next we

shall look into one way to solve the optimization problems dynamically.

An implementation

In practice, solution of the model above in a network environment would es-

sentially require conveying information on prices to users and correspondingly

weights wr to the resources. The network problem could be processed in such

centralised fashion but a more simple and robust approach would be decen-

tralised as the delays and failures would be problems of individual end-nodes

rather than of the system. That is, the computational e�ort is placed on the

users themselves, while the network does only the pricing by generating con-

gestion signals. Users may try to control, e.g. the rate of cost they have to

pay, i.e. wr, by dynamically adjusting their rate.

The strategy is then to design user-algorithms to solve the network problem

implementing proportional fairness. One possibility would then be to use fol-

lowing strategy for controlling the sending rate

d

dt
xr(t) = κ

(
wr(t) − xr(t)

∑
j∈r

µj(t)

)
, (2.15)

where κ is a parameter controlling the rate of convergence. In this model the

resource j sends feedback signals at rate yj µj(t) = yj pj(yj(t)) (pj(·) is a load

dependent marking function) of which user r receives the proportion xr/yj.

Now equation 2.15 describes the user's behaviour: it increases rate linearly

proportionally to wr and multiplicatively decreases it at rate proportional to

the received feedback signal �ow [11]. It can be shown [21] that the system

of di�erential equations of type (2.15) has a stable point (2.11) by noting that
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the expression

U(x) =
∑
r∈R

wr log xr −
∑
j∈J

∫ yj

0

pj(ξ)dξ, (2.16)

provides a Lyapunov function for the di�erential equation (2.15).

The algorithm controls the rate attempting to equalize the aggregate cost of

a �ow with a target value wr. pj(yj) can be seen as the cost per unit �ow

at the resources. It is important to note that the algorithm is only approx-

imative; the functions pj(·) can be chosen that (2.16) is arbitrarily close to

NETWORK(A, c;w). In fact, we are actually dealing with relaxations of the

original constrained optimization problem. This point of view will be explained

and motivated next.

Suppose that under a heavy load the network incurs some utility cost, in

terms of delay or loss. In this sense it can be interpreted that the algorithm

is penalising the proximity to the capacity constraint for each resource j, i.e.

costs are incurred at the rate

Cj(yj) =

∫ yj

0

pj(ξ)dξ. (2.17)

We call the value of the function

pj(yj) =
d

dyj
Cj(yj), (2.18)

the shadow price of the resource j. Note that if

pj(yj) =

{
∞ yj > cj

0 yj ≤ cj

, (2.19)

the distributed algorithm becomes the problem NETWORK(A, c;w). This,

however, cannot be applied directly as the stability is compromised by high

values of p′j(yj).

What is done here is actually the relaxation of SYSTEM(U,A, c) (and thus also

the network problem), which can be seen as seeking the total net utility (given

that the costs and utilities are additive, this assumption will be subjected to

discussion later)

max
x

∑
r∈R

Ur(xr) −
∑
j∈J

Cj(yj). (2.20)
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In optimization terms, the constraints of the problem have been replaced by a

penalty function which depends on the load. It can be shown that under mild

regularity conditions on the functions pj(yj) (pj(·) nonnegative, continuous and
smoothly increasing function) the problem decomposition still holds under the

identi�cation

λr =
∑
j∈r

pj(yj). (2.21)

2.2.2 Discussion

We have described the development of mathematical background of congestion

pricing above following the works of Kelly et al. Based on a simple decomposi-

tion of an optimization problem, we showed that it is possible to share network

resources fairly among the users even when the network is not explicitly aware

of the users' utilities. Further, we showed that this optimization process can

be implemented by decentralised simple rate control algorithms. The focus of

this work is to study the network part of this framework and how the network

should set prices on the �ows. Before that, some discussion on the model is

required.

The original decomposition required the knowledge on the Lagrange multipli-

ers, the shadow prices. In the relaxed dynamic solution model it is not possible

to include these as de�ned without compromising stability and so they are re-

placed with utility-additive penalty functions. Although on the �ow level it

should be relatively easy to �nd penalty functions which, in theory, force the

problem to converge to the feasible optimum, in the spirit of congestion pric-

ing the cost should be relative to the utility of the information that could not

be carried. The original model does not tell what happens if the capacity con-

straints are temporarily exceeded before reaching stability after each change in

the �ow. Probably some data will then be lost, but which �ows su�er losses

and which do not? What is the value of lost data?

It makes no sense to de�ne the value of lost data using the users' utility func-

tions. For example, imagine a compressed multicast real time video stream

which incurs some packet loss due to congestion. If the stream cannot be de-

compressed the value of lost data is closer to the value of the whole stream

than just of the loss rate. We would actually need another set of utility func-
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tions describing each user's preferences on the quality of service. The model

does not take this into account and we are forced to make the assumption that

all such packet losses are equal in utility. This can be motivated so that the

cost function is actually the cost to the network or to the whole system and

not to individual users who care only about their allowed rate.

We selected the cost to the network, the social cost of congestion, be the rate

of lost packets in a resource in this presentation. The selection is arbitrary but

quite natural; each lost packet has to be typically retransmitted. Similarly we

could follow, for example, delays instead of lost packets.

Now that the cost is explicitly de�ned, the implementation of PFP turns to

the world the Internet. The congestion signalling is implemented by marking

packets in RED/ECN-style and in this sense we can see the algorithm (2.15)

as a variant of TCP, see, e.g. [19, 24] for comparison. The marking decisions

and thus the shadow prices are calculated on the packet level, which will be

thoroughly discussed in the next chapter.

The marking on the packet level is well motivated not only by the compatibility

with the existing standards but also by the fact that the unavoidable averaging

(estimating �ow or prices) becomes a problem of the end-nodes rather than of

the network. This seems desirable under the very diverse round trip times in

the Internet environment.

We have not addressed here the behaviour of a large network implementing

this scheme. Stability, convergence, random e�ects, time-lags and such are

essential in the framework though and have received a lot of attention. The

interested reader should see e.g. [21, 42]. An important observation is that in

the presence of di�erent round trip times (RTT) the equilibrium is not changed

but the stability may be compromised by high values of p′j(yj). The lower

the bu�er level where the marking occurs, the lower the chance of oscillatory

behaviour of the solution [18].

Finally, suppose there is a non-adaptive user, against the assumptions put on

the utilities above, who will not react to the cost signals received. The (pre-

emptive) congestion control has to be done then before the user is admitted to

the network. The PFP framework provides a method for this situation using

distributed admission control [20]. When a call arrives, a number of probe
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packets are transmitted along the preferred route and the call is accepted only

if none of the probe packets are marked or lost.

Areas for further research are mainly new user policies to solve the network

problem (see e.g. [22]) and how the shadow prices should be implemented.

This is one of the key issues of this presentation. In the next chapter we shall

look into the principles of conveying the price information, but before that a

brief introduction to other congestion pricing proposals is presented.

2.3 Other related schemes

Various other approaches parallel to PFP have been suggested for implement-

ing the congestion control of the future Internet. We shall next give a brief

overview on the important ones based on pricing.

Smart market by McKie-Mason and Varian [28], was one of the �rst of the

kind. It is an auction where the data with highest bids are carried at the

market-clearing price (�rst rejected), always lower than all the admitted bids.

Users can decide how much they are willing to pay for their data to be carried.

If the prices determined by the network are right, the social optimum is found:

Users get their fair share and from the network point of view the resource

utilization is optimum. Although the elegance of this approach is alluring, it is

rather impractical to implement from the technical perspective: It is unrealistic

to assume that users would bid on packet-by-packet basis in the fast moving

Internet. Furthermore, major new investments in router hardware should be

made and the stability of such auction would be very hard to predict. Hence

it is unlikely that the approach ever makes it into reality.

The Optimization Flow Control (OFC) approach described by Low and Lap-

sley, ([27], [26]), is a close relative to PFP. Basically the same maximum ag-

gregate source utility is solved but in somewhat di�erent manner: network

calculates a price vector from the rates, information which is then conveyed

to the users which decide their next transmission rate. This distributed opti-

mization algorithm causes the price vector to converge to a proportionally fair

allocation of resources. The main di�erence to PFP is that in OFC the users

decide their rates and pay what the network charges whereas in PFP the users
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decide their payments.

Paris Metro Pricing (PMP) by Odlyzko [34] is the simplest di�erentiated ser-

vices solution where pricing is used to control tra�c. It is based on the former

pricing used in the Paris Metro system. The cars were divided into 1st and

2nd class cars which di�ered from each other only in price; 1st class was twice

as expensive as the 2nd class. This way only the passengers who did not want

to experience congestion (wanted to get a seat, avoid crowd or noisy teenagers

etc.) selected the expensive 1st class which was much less congested. In similar

fashion PMP provides two (or more likely three or four) similar (logical) sub-

networks without any technical di�erences. As in the paragon, the improved

quality in it is achieved only by the natural behaviour of the self-interested

users. Users are assumed to select the route capable of meeting their require-

ments at lowest possible cost. Setting the prices and capacities for each class is

a di�cult problem. Also some research suggest that PMP would have di�cul-

ties to survive under competitive market situation [10] as it would not emerge

naturally in such environment.



Chapter 3

Marking

3.1 Basics of marking

As discussed in the previous chapter, the end-nodes are informed on the con-

gestion costs by congestion signals sent by the network. All the complexity and

calculations are o�oaded onto users and so the core of the network is kept sim-

ple to increase robustness. However, there are still two important functions

the network have to perform: determining the right congestion information

and conveying it to end-nodes.

The users can be made aware of the congestion prices several di�erent ways.

A classic approach would be the use of a separate (logically or physically)

signalling network, but in the Internet context it is more convenient either to

send separate �price packets� or more practically to piggyback the congestion

information onto the transferred packets themselves when they pass through

the congested resources. To this end, each packet should contain a data �eld

in the network layer protocol header or trailer for this information.

Writing or updating the congestion data �eld in a packet is called marking

following the convention from ECN. In the simplest form, marking means

indeed setting a single bit in the network layer protocol header, and, to keep

things simple, we will refer to this simple form of marking in the following

sections. That is, if a packet is marked its congestion bit is set to 1 and

otherwise it will be 0. Here the congestion price will be associated with the

marking probability. Later it will be discussed whether this is enough for
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implementing the PFP framework.

As the premise of the PFP framework was that the queuing delays are becom-

ing small, we may omit the detriments caused by the delays and de�ne the

congestion cost to be solely the amount of information lost due to congestion.

When packets traverse the network, each resource marks packets according to

the local congestion costs so that the information at the receiving end-node

corresponds the sum of the shadow prices along the route of the packet. Next

example from [11] will motivate the marking mechanisms.

3.1.1 Sample Path Shadow Prices

A simple slotted-time model

Assume a slotted time system where N packets are handled in a time slot and

a number of users, indexed by r, with Poisson distributed independent loads

in each slot with means xr. The aggregate load Y at the resource is then also

Poisson distributed with the mean y =
∑

xr. Expected number of lost packet

per a slot (cost) is given by

C(y) = E[Y − N ]+ =
∑
n≥N

(n − N)e−y yn

n!
, (3.1)

and thus the shadow price

p(y) = C ′(y) =
∑
n≥N

e−y yn

n!
. (3.2)

If an over�ow occurs in a time slot, all the Y arrived packets are marked,

see Figure 3.1. If the resource occupation is n, the user r has a binomially

distributed number of packets in the system, (Xr|Y = n) ∼ Bin(n, xr/y).

Thus, the expected number of received marks (or lost packets, both are treated
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Figure 3.1: SPSP marking in slotted time

equally) by that user per unit time is

E[Xr|Y > N ] =
∑
n>N

P(Y = n)E[Xr|Y = n]

=
∑
n>N

n
xr

y
e−y yn

n!

=
∑
n>N

xre
−y y(n−1)

(n − 1)!

= xr

∑
n≥N

e−y yn

n!

= xrp(y). (3.3)

Interpretation is straightforward; for Poisson statistics, marking every packet

when the resource is overloaded gives precisely the correct price information.

It is discussed in [11] that the relationship between the expected increase in

system cost caused by a load increment, and the expected charge to that

increment is more profound; it does not require any distributional assumption

on the increment. This leads to the natural de�nition of the sample path

shadow price.

Sample path shadow price (SPSP) of a packet is one if deleting it causes

one less packet drop at the resource.
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SPSP in continuous time

More realistic models of the Internet resources include �nite bu�ers. To be able

to de�ne SPSP in this environment let us recall some de�nitions on queuing

models. Busy period is the time between an arrival to an empty system and

the �rst departure that leaves the system empty. Critical congestion interval

is the period between the start of the busy period until the last packet loss.

Generalising the SPSP to continuous time queuing models we should ideally

mark all the packets arriving during the critical congestion interval. See Figure

3.2 for illustration. However, there is a problem with the queuing model; some

of the packets arriving during the interval may already have left the system

before any congestion is detected. It is generally impossible to say whether the

resource �rst over�ows or empties when the packet is in the queue. Despite this

drawback, several marking algorithms have been suggested in the literature.

Some of them are presented in the next section.

The ideal marking algorithm can be implemented also in a parallel way giving

exactly the same information on average and providing a convenient early

warning of congestion. Instead of concentrating on marking exactly the right

packets with the price one we give each packet a price which (locally) is a

real number between [0, 1]. (In the single bit marking scheme this can be

implemented by associating the price with the marking probability and on the

user's end the price is estimated from the �ow of marks.). We shall show in

the next chapter that this price is essentially related to predicting over�ows

during the ongoing busy period. Therefore refer to this as predictive marking.
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3.2 Di�erent marking schemes

Several marking schemes have been discussed in the literature, mainly in the

context of ECN-style marking. In this section some di�erent approaches are

presented and discussed. However, our aim is not to describe the methods in

detail but merely to emphasise important design aspects related to approxi-

mating the SPSP scheme in bu�ers.

3.2.1 Mark after loss

Mark after loss, proposed in [11], is based on the observation that it seems to

be enough to mark a correct number of packets on average instead of selecting

just the ones arriving during the critical congestion interval. In this approach

the resource keeps track on the number of packets arrived since the start of

the current busy period. In case of an over�ow, the resource starts to mark

packets until to correct number of marks are placed.

Alternatively, the resource could mark packets from the over�ow until the

bu�er becomes empty. Based on the argument on correct number of packets,

this makes sense if the queue size were a reversible stochastic process and the

busy periods were to contain over�ows as the distribution of packets arriving

before the last packet drop would be the same as of the packets leaving after

the �rst drop.

By de�nition these schemes are obviously not fair as �they close the stable doors

after the horse has bolted, and then blame the horses left inside for running

away!� as colourfully described by Wischik [44]. Further, if the feedback delays

are relatively short or the aim is to reach low packet drop ratio, the packets

have to be market somewhat earlier in the busy period so that the losses could

be prevented.

3.2.2 Threshold

The simplest possible predictive marking method is the use of a marking

threshold � if the bu�er occupancy exceeds a certain prede�ned limit the ar-

riving packet receives the congestion mark. The problem with this method
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is obviously that it makes no di�erence whether the occupancy lies relatively

close to the threshold or if the bu�er is almost empty. So even if there was

only a small amount of mark-free bu�er space left, users behave essentially in

same way as when the bu�er is empty. Naturally this leads to large bursts in

tra�c above the threshold, which now emphasises the main tradeo� made in

setting the limit: If the threshold is high compared to the physical capacity of

the resource we are likely to have bursts of lost packets and the early warning

feature (and the whole idea of congestion control scheme) is lost and stability

will also be jeopardised. On the other hand if the threshold is set low we will

lose in the e�ciency as users are actually aiming at using the resource up to

the threshold instead of the resource capacity. This method, however, could

be considered if delays play an important role in the system compared to the

actual transmission capacity. That is, the limit is set to keep the queuing

delays short rather than preventing packet loss.

3.2.3 Virtual Queue

The Virtual Queue, �rst proposed in [11] was designed as an alternative way

to anticipate congestion. As the name implies this approach is based on the

idea that instead of tracking the actual bu�er, a separate virtual queue is

maintained at the resource. It has exactly the same arrival process as the

real queue but the service rate (and maybe the capacity) is scaled down by a

factor κ. This means that a virtual over�ow will happen before the real bu�er

becomes congested.

The marking is performed by setting the congestion bit in the packets which

would receive mark using, e.g. the mark after loss or the threshold principle

in the �ctitious queue. In fact, the users are then noti�ed about the shadow

prices of the virtual system but by setting the scaling factor appropriately this

should give the right information.

For instance, using an M/M/1 queuing model with the tra�c intensity ρ for

the actual bu�er, the rate of packets arriving into a full system (K or more

packets present) is ρpK(ρ) = ρK+1 and the shadow prices are given by

d

dρ
ρpK(ρ) = (K + 1)ρK . (3.4)
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Suppose that the virtual system serves at a fraction of κ of the real bu�er. If

marking occurs when the arriving packet �nds K or more packets from the

virtual queue which happens at the probability pK(ρ/κ). Equating this with

the shadow prices (3.4) Kelly et. al. [20] proposed a factor for the service rate:

κ = (K + 1)−1/K . (3.5)

When compared to the mark after loss scheme, virtual queue reacts faster

to threatening congestion. Still, it tends to blame the innocent, as the over-

�ow mechanism in the virtual queue is essentially di�erent from that of the

real bu�er. This feature is emphasised with small values of κ. Furthermore,

the same tradeo� between utilization and the threshold must be made if the

threshold marking scheme is used in the virtual queue.

3.2.4 RED

Random Early Detection (RED) by Floyd and Jacobsson [8] was developed

as an independent bu�er management algorithm for ECN and TCP/IP, but

there is no reason why it could not be applied to provide correct information for

SPSP scheme. The exponentially weighted moving average of the queue size

is maintained and then compared to two thresholds. No packets are marked

below the lower threshold and every packet receives a mark (or is dropped

in case of non-cooperative sources) while above the higher one. Between the

limits a linear function of the average queue size is used to give the marking

probability which is then weighted with a coe�cient depending on the packet

count since the last marked packet.

The essential parameters here are the weighting used to determine the average

queue size and the location of the lower threshold. Although these parameters

could be set to approximate the SPSP, decision based on average queue size

is generally too slow to react to random �uctuations and the method is thus

prone to zigzag-e�ect as all the users are given incentives to react similarly at

the same time.



3.2. Di�erent marking schemes 30

3.2.5 REM

Random Exponential Marking by Athuraliya et. al [3] is a variant of RED.

Although originally developed for the �ow control scheme discussed in Section

2.3, it can be applied as a full queue management scheme [2]. A price informa-

tion is updated explicitly at the resource and the marking probability depends

exponentially on the price. The motivation for this form is that the end-to-end

marking probability becomes exponentially increasing in the sum of the link

prices along the path. In e�ect, if the resource has a workload W present at

the packet arrival, the packet is marked with the probability 1 − φqW with

some parameter φ.



Chapter 4

Predictive Marking

4.1 Mathematical modelling

The whole theoretical framework of congestion pricing leans on the assumption

that a network is able to provide the correct congestion price information to its

end-nodes. As the exact prices for all the tra�c are impossible to determine,

as noted before, the pragmatic marking methods discussed in the previous

section were mainly concerned about providing an early warning of congestion.

This work, conversely, takes an essentially di�erent approach to Sample Path

Shadow Prices through mathematical modelling, aiming at to give the right

price to each packet on average.

By dealing with these idealizations, however, we face the obvious controversy.

Whilst mathematical models are able to provide tractable, exact and unar-

guable answers within their domain, the domains themselves are impossible

to perfectly �t to cover the dynamic reality to be modelled. In this context

we are essentially modelling the tra�c going through a network resource. By

modelling we simplify the reality, force it to follow some prede�ned laws, which

may at best give some kind of approximation or capture some dominant fea-

ture from the real tra�c. Generally there is a trade-o� between the models

which describe the reality accurately and the models which can give answers

to the preset questions. In other words, the model's complexity can invalidate

its usability.

Each model is based on a set of assumptions. When the assumptions are valid,
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the obtained results are valid given that they are interpreted correctly. This

gives to each model a certain limited range of validity where it can be applied.

In this section our intention is, on the one hand, to discuss and motivate certain

models and, on the other hand, to provide solutions for them. As decisions of

marking have to be fast and robust, the simplicity of the results a model o�ers

plays a signi�cant part in the selection of the model.

The most natural selection for the model of an Internet router is a �nite queue

operating in continuous time. Although the Sample Path Shadow Prices are

impossible to calculate exactly in such environment, with stochastic queuing

models it is indeed possible in the sense of expectations. Our premise is that

this itself may be enough for the implementation of congestion pricing scheme

on the �ow level. We are pricing the risk of over�ow. Moreover, by deploying

available information extensively the models can get very close to imitating

the ideal SPSP-marking scheme also in packet-per-packet basis.

We shall start the journey, however, by a simple example shedding light on

the SPSP scheme in continuous time. The profound observation is that the

Sample Path Shadow Prices can be determined by calculating the probability

of over�ow during the busy-period when the packet has arrived.

4.1.1 Simple M/M/1/K queuing model

Consider an M/M/1/K queue model for a network resource. Packets arrive

independently according to a Poisson process with the parameter λ and the

service times are exponentially distributed with the parameter µ. Denote the

tra�c intensity ρ = λ/µ. The queue works with the �rst-in-�rst-out (FIFO)

discipline with one packet served (transmitted) at a time. If an arriving packet

�nds the system with K packets it will be discarded. From the user point of

view we shall make no di�erence between whether the packet was discarded or

merely just marked.

First, for purposes of determining the probability of over�ow from a given

state before the end of the busy period an embedded Markov chain, so called

jump chain, is constructed. The states of this chain are the queue occupancy

after any change (arrival or departure) in the queue. It has the transition
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Figure 4.1: Embedded Markov chain of the M/M/1/K-queue.

probabilities

u =
λ

λ + µ
=

ρ

ρ + 1
, (4.1)

d =
µ

λ + µ
=

1

ρ + 1
, (4.2)

upwards and downwards, respectively, and absorbing states at 0 and K + 1,

see Figure 4.1. This method is often referred to as the �rst step analysis [5].

Calculation of the over�ow probability is now straightforward. Regardless of

the state from where the chain starts, the absorption will happen almost surely,

that is with probability 1. This corresponds to that the bu�er becomes empty

or over�ows in the original model. The interesting event here is the absorption

to the state K + 1 when starting from a given state of the system. Denote the

probability of absorption to the state K + 1 from the state n by pn. Due to

the Markovian property of the chain, it holds that

pn = u pn+1 + d pn−1 n ∈ {1, . . . , K},
p0 = 0, pK+1 = 1. (4.3)

This linear homogenous di�erence equation can be solved by using standard

methods [38]. First the characteristic equation is formed by setting pn = rn

and dividing by rn, which leads to

ur2 − r + d = 0. (4.4)

The characteristic equation is of quadratic form and thus has the roots

r1 =
1 +

√
1 − 4ud

2u
, (4.5)

r2 =
1 −√

1 − 4ud

2u
. (4.6)
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Due to the linearity, the solution of (4.3) is of the form

pn = Ar1 + Br2, (4.7)

for some constants A and B which can be determined using the boundary

conditions, that is




p0 = A + B = 0,

pK+1 = ArK+1
1 + BrK+1

2 = 1.

(4.8)

The solution of the problem then becomes

pn =
rn
1 − rn

2

rK+1
1 − rK+1

2

, (4.9)

which can be simpli�ed by using the identities (4.1) and (4.2), leading to the

simple form given by

pn = ρK+1−n (ρn − 1)

(ρK+1 − 1)
. (4.10)

Next we shall generalise the result from the slotted time model of Gibbens

and Kelly discussed in section 3.1.1. Consider an M/M/1/K system described

above with a number of users, indexed by r, with a Poisson arrival process

with with parameters xr. The aggregate arrival process to the resource is

then also Poisson with mean y =
∑

xr. The service rates are exponentially

distributed with the mean service time 1/µ. Denote the tra�c intensity of user

r by ρr = xr/µ and the total intensity ρ = y/µ. The steady state probability

of state i is

πi = ρi 1 − ρ

1 − ρK+1
. (4.11)

Expected rate of loss of data, the congestion cost, is given by arrivals to the

system in the state K, i.e. at the bit rate

C(ρ) = ρP(system full) = ρρK 1 − ρ

1 − ρK+1
, (4.12)

and thus the shadow price is obtained by derivation

p(ρ) = C ′(ρ) =
ρK(ρK+2 − (K + 2)ρ + K + 1)

(ρK+1 − 1)2
. (4.13)
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Assume that upon arrival to the system, a packet is given the price determined

by the equation (4.10) when after the arrival the system is in state n. That

is, we predict whether the packet will be marked or not. Assume also that the

system is at equilibrium and so the expected rate of marked data to the user

r is

ρr

K∑
i=0

πipi+1 = ρr

K∑
i=0

ρi 1 − ρ

1 − ρK+1
ρK+1−(i+1) (ρi+1 − 1)

(ρK+1 − 1)

= ρrρ
K ρ − 1

(ρK+1 − 1)2

K∑
i=0

(
ρi+1 − 1

)

= ρrρ
K ρ − 1

(ρK+1 − 1)2

(
ρ
ρK+1 − 1

ρ − 1
− 1 − K

)

= ρr
ρK(ρK+2 − (K + 2)ρ + K + 1)

(ρK+1 − 1)2

= ρrp(ρ). (4.14)

This means that by marking each arriving packet with the price (or marking

the ECN-bit in the packet with the price-probability) (4.10) gives the desired

information within this Markovian model. This scheme could be called predic-

tive marking.

It should be noted, however, that although the expected value agrees with

the proportion of marked data, the price is now more equally divided among

the packets. In fact, there are almost no free of charge transmissions and the

full price is also a rarity. This is in clear contradiction with the principles

of congestion pricing in which essentially congestion free tra�c should cost

nothing. The phenomenon cannot be completely avoided as the uncertainty

caused by the unknown future is always present.

However, this probabilistic marking scheme is not only an approximation of

SPSP, it is also an alternative formulation of shadow prices within a mathe-

matical model and can be used to implement PFP as it is. If each resource is

able to provide an estimate of the over�ow probability, the user receives the

estimate of the over�ow probability along its route. It has the advantage of

being implementable but the drawback of enjoining the resource to do some

averaging in order to estimate model parameters. Instead of pricing the con-

gestion itself we price the risk of congestion. Here the prices can rise before

any packet is lost and if some users are fast enough they may even be able
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to react before any physical harm is done. Hence, it could be expected that

this would contribute to more stable behaviour than in case of pure congestion

pricing where the users observe essentially on-o� type congestion.

We could even take one step further. It would be even more appealing to convey

the information on the relative occupancy only. In that case the users have to

estimate the tra�c behaviour in the resources along their route. This could

be perhaps implemented by using some known exponential form of marking

probability. The di�erence is that now the prices are not constant for each

mark but they are merely extracted from the �ow of marks knowing exactly

how the marking is implemented in the network. The approach could be called

utilization pricing ; prices depend on the bu�er occupancies only. This topic,

however, is left for further study. It should be noted though that then the

users would be using the same kind of results we derive in this thesis for the

network resources.

From now on we shall mostly refer to approximating the SPSP scheme. It has

no impact on the calculations presented if we instead talked about the risk

pricing as it is actually only another perspective to the same matter. SPSP

provides also a suitable benchmark for the more limited mathematical models.

Before going into the details of marking, we present two alternative approaches

in determining the shadow prices of an M/M/1/K model.

4.1.2 Alternative approaches

While the approach described above gave a simple result, it is useful to examine

other ways of determining the shadow prices both for getting a better insight

into the matter and for obtaining facultative methods for computation for more

complex systems.

Based on the argumentation on the equality of over�ow probability and shadow

price we shall bring forward another way of calculating this probability by

inspecting the net �ow through the states in equilibrium. After that we deduce

the shadow prices by a heuristic argument originating from the context of

Markovian decision processes (MDP). In this case the discussion on the theory

of these processes is omitted and the emphasis is on the heuristics.
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Figure 4.2: Flows from the state n.

Net �ow

Consider the same absorbing Markov chain discussed above. What is the

probability of absorption from the state n?

Assume that a constant �ow of 1 is brought into the state n and the time has

passed so that the system can be considered to be in equilibrium. Now we start

examining the net �ow q and 1 − q, upwards and downwards, respectively. In

the steady state there is a �ow of q from the state n towards the absorbing

state K + 1 and correspondingly a �ow of 1 − q towards state 0, see Figure

4.2. Each system state has the transition intensities λ and µ upwards and

downwards, respectively. Denote the probability of �nding the system in the

state i by pi. Now we can write the balance equations

{
λ · pi−1 − pi · µ = q i > n,

pi · µ − λ · pi−1 = 1 − q i < n,

with the boundary conditions




p0 = 0,

pK+1 = 0,

p−n = p+
n .

(4.16)

The last condition is included to emphasise the fact that the value pn �xes

the value of q when solving the equations starting from both ends at the same

time.

Solution is straightforward. We start at the state pK+1 = 0 and obtain pK =
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q/λ. Generally, when we have come down to state K − i for some i we have

pK−i =
q

λ

i∑
j=0

1

ρj
=

q

λ

ρ−i−1 − 1

ρ−1 − 1
. (4.17)

That is, for state n

pn =
q

λ

ρn−K−1 − 1

ρ−1 − 1
. (4.18)

Correspondingly, starting from state 0 we have

pn =
1 − q

µ

n−1∑
j=0

ρj =
1 − q

µ

ρn − 1

ρ − 1
. (4.19)

By setting both expressions equal at n, we are able to solve q, the net �ow

over the states towards over�ow:

1 − q

µ

ρn − 1

ρ − 1
=

q

λ

ρn−K−1 − 1

ρ−1 − 1
‖ ·µ

(1 − q)(1 − ρn) = q(ρn−K−1 − 1)

q(ρn − ρn−K−1) = ρn−1

q = ρK+1−n (ρn − 1)

(ρK+1 − 1)
.

(4.20)

This is, as it should be, the same as obtained before in (4.10).

Relative costs

An elegant heuristic approach to the problem is based on the Markovian de-

cision processes. Consider a packet arriving into the M/M/1/K system with

n packets present and the load ρ = λ/µ. In principle we are allowed to admit

the packet into the system or reject it. The shadow price will rise from the

comparison of these decision alternatives as it will be motivated below.

If the packet is accepted, the system will be at state n + 1 after the arrival.

Shadow prices were de�ned to be the cost increment for a marginal increase in

load. Hence the interesting property is increase in cost, i.e. the increase in the

expected number of blocked packets in the future, due to the arrived packet.
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Figure 4.3: The e�ect of the starting state on over�ows.

(In MDP terms, we calculate the di�erence of the relative costs of the states

n and n + 1, but it is not necessary to go further into the MDP terminology

here).

The cost of a sample path representing the queue occupancy at a time t is

the number of blocked packets before t. What is the expected increase in cost

when starting from the state n+1 instead of n? Consider two arbitrary paths,

ωn starting from the state n, and ωn+1 starting from state n + 1.

Due to the Markovian property of the process, from the point ωn reaches

the state n + 1 for the �rst time (denote the time this happens by t∗n) it is

statistically identical to ωn+1. Naturally, there cannot be any over�ows on

ωn before t∗n as the process have pass through n + 1 in order to reach higher

states and so also the blocking state. In other words, at any given time t > t∗n,

ωn is stochastically equal to what ωn+1 was the time t∗n ago and so one can

expect an equal number of over�ows during (0, t) on ωn and (0, t−t∗n) on ωn+1.

Thus, the increase in cost at the time t, the expected di�erence in numbers

of over�ows on the paths, is the expected number of lost packets on the ωn+1

between (t − t∗n, t). This is illustrated in Figure 4.3.

When t → ∞, e�ects of the initial value vanish, the system is at equilibrium

and the probability that the system is full (and all the arriving packets are

blocked) is given by

Ovf(K, ρ) =
ρK∑K
i=0 ρi

= ρK (1 − ρ)

(1 − ρK+1)
. (4.21)

On average λE[t∗n] packets arrive during the time (t − t∗n, t) and hence the
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increase in expected number of lost packets becomes

pn = λE[t∗n] Ovf(K, ρ). (4.22)

E[t∗n] can be determined by observing an M/M/1/n system. Immediately after

a blocked packet the system is full, i.e. at the state n. Next time when

blocking happens corresponds the transition from state n into n+1. Hence, t∗n
is distributed as the time between subsequent over�ow events in an M/M/1/n

system (arrivals into full system) and the expectation

E[t∗n] =
1

λOvf(n, ρ)
(4.23)

Now we can state our result: the increase in cost � the shadow price � is given

by

pn =
Ovf(K, ρ)

Ovf(n, ρ)
, (4.24)

which is exactly the same as (4.10) noting that n represents here the state before

the packet is accepted into the system while the price (4.10) is calculated after

the packet has been placed into the queue.

We have shown that the congestion prices arise from the over�ow probability.

In practice, however, the actual implementation of marking is limited by the

technology. In the next section this question will be brie�y addressed.

4.2 On marking mechanisms

While the �single bit in the header at arrival�-marking is usually taken as an

obvious choice following the ECN-technology, there is a wide variety of options

and possibilities to explore. The essence of predictive marking framework is

predicting the future so that it could be predicted whether a certain packet

contributes to congestion cost or not. Although the exact knowledge is not

available at the time of decision, information is needed for the best possible

prediction. The marking mechanism is the key to this information. In this sec-

tion we shall outline the e�ects of the choices in the technical implementation

of the marking.
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4.2.1 Is one bit enough?

ECN-type marking comprises of setting a single congestion bit in the packet.

Naturally it is advantageous to use as little space as possible for this purpose;

in order to be suited to small packet size, the overhead cannot be large in com-

parison to the payload. Furthermore, this is indeed enough for implementation

of the idealistic SPSP. However, if we are using predictive marking and if the

packet size may be large it is necessary to estimate the correct price informa-

tion faster and more bits are necessary. On the �ow level the shadow price

is estimated from the rate of incoming marks. Therefore, further bits would

require less packets to get the right information and it would take less time for

the user to react as there is decreased need to do averaging at the end-node.

(Obviously some averaging is required for the single bit scheme, otherwise the

end-node behaviour would be of the on-o� style).

Moreover, the shadow prices are cumulative along the route. A single bit is

enough to provide correct information only if the congestion is reasonably rare

and so it is highly unlikely to have two or more marks on the same packet.

Thus, it may be necessary to expand the price above the maximum of one.

On the other hand, this may be necessary if the packet sizes are very di�erent

or if the users can change their packet size. Large packets could easily cause

more losses than just one.

4.2.2 Time of marking

The time of marking is the most essential thing to choose and it provides many

alternatives with di�ering motivations. It is closely related to the location of

the ECN-bit in a data packet as after that part of the packet is transmitted it

is impossible to change the congestion information. If the transmission times

of the packets are long compared to inter-arrival times it is essential to mark as

late as possible. For example, the over�ow may already have happened during

the time packet resides in the system or the packet leaves the system almost

full when the over�ow is highly likely to happen.

The common mark at arrival is not the most informative as during the wait-

ing time we are likely to get crucial information on over�ow. However, this
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method would still provide some kind of steady state information of the bu�er

occupancy (cf. Poisson Arrivals See Time Averages property). Here it does

not matter where in the packet the actual congestion data �eld is located.

Another alternative is to mark when the transmission of the packet is started.

This corresponds roughly marking the header when it is send to lower protocol

layers for transmission and thus is easy to implement. The main motivation

for this is, however, that this moment is the last possibility of marking the

header.

The third approach has a pure mathematical motivation. If the marking in-

formation of all the packets in the system is updated at each arrival, the �nal

mark depends on the situation at the last arrival during the time packet is wait-

ing or being transmitted. This way the stochastic properties of the system at

the arrivals could be preserved and it might ease the prediction computation.

However, the implementation of this system may be complicated.

The fourth, and in some sense optimal option is to mark the packet just after

its departure, roughly in the trailer. This way the most current information

becomes available and again the observation moment preserves some stochastic

properties.

There is still one approach, even more di�cult to implement, but which would

provide almost the correct information, given that the round-trip times are

long compared to busy periods. Assuming that each packet is con�rmed by

acknowledgment, the information on the shadow price of the original packet

could be piggy-packed on the acknowledgment traversing back towards the

source. This would require that the same route is used on the way back and

huge tables of users and their tra�c are maintained at the resource. Therefore,

it seems quite remote in the light of current Internet technology, and we will

not pursue this option further.

Other limitations on the available information reside in the software and hard-

ware in routers. Many predictive methods require local parameter estimates

and the accuracy of the estimates may be crucial. Further, the current state (or

even history) of a queue is essential information anyway. Whether it is given

by the number of bits or number of packets or even both, has an e�ect on

the prediction process. Similarly the capacity of the bu�er can be expressed in
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packets or in raw memory and it may not be in same units than the occupancy.

This may increase the complexity further.

Predictive marking can be used to implement the PFP scheme as it is and there

the time of marking does not play a signi�cant role (given that the model is

right), but if we are to mimic the ideal SPSP scheme it does. On the other

hand, all the available information should be used as it increases robustness of

in case of inadequate models. Thus, we propose the following rules.

4.2.3 Predictive marking for approximating SPSP

The examples in the previous section showed that the absorption probability

and SPSP agrees in the sense of expectations. In practice, however, there

are only paths that lead to over�ow and paths that do not. Thus fairness is

compromised if the price is shared equally among the packets arriving at the

same state. To improve the situation while approximating SPSP we propose

the following principles in marking:

1. If an over�ow occurs all the packets in the bu�er are marked.

2. Non-marked packets are marked as late as possible before completely

leaving the system, at the start of transmission (header) or preferably at

the end of it (trailer). The price or the marking probability is given by

the over�ow probability during the busy period.

The �rst point ensures that those who are guilty will be charged and so we

are left with only those that are on the verge of escaping the system. If

we want to provide any early warning on oncoming congestion, these packets

must carry a price re�ecting the congestion situation. By waiting until the

very last moment before marking we are able to convey the information on the

most current situation. Calculations related to the over�ow probability do not

change, given that the Markov property holds for the model. The expected

rate of marked bits remains the same; now the marking happens essentially

with the probability related to the system state without the actual packet, but

we are more likely to mark the right packets. This is the best we can do to get

close to SPSP.
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The function of the mathematical models is then to capture only those un-

marked who are able to leave the system before the current busy period ends.

This increases the robustness of the system as the signi�cance of the model

is thus reduced. The next section will concentrate on the calculation of the

over�ow probabilities in various common queuing models.

4.3 General queuing models with Markovian prop-

erties

4.3.1 Models with embedded Markov chain

Embedded Markov chain can be constructed to all single server queuing models

with Poisson arrival process. This, however, leads to more tedious calculations

with potentially very large matrices. The idea is again to form a chain from

the system states after the departures so that all the over�ow and system-

empty states act as absorbing states. The absorption probability corresponds

the shadow price of the state which is marked to the packet as if the packet

had just left the system.

Absorption probabilities

First we recall some results from the theory of Markov chains, for a more

detailed account see, e.g. [15]. Consider a discrete time Markov chain Xt,

t = {0, 1, . . .}. The transition probability matrix is denoted by

P = {pij}, (4.25)

where the elements are the transition probabilities pij = P(Xt+1 = j|Xt = i).

If we have s transient states and r absorbing states we can partition the matrix

P as

P =

(
Q R

0 I

)
,

where the s × s matrix Q contains the mutual transition probabilities of the

transient states, and the s×r matrixR has the one step transition probabilities
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into the absorbing states. This is called the canonical form of P. The n-step

transition probabilities of the chain can be obtained by

Pn =

(
Qn ?

0 I

)
,

where ? stands for the matrix containing n-step transition probabilities into

the absorbing states, which has no simple presentation at this point. Qn → 0

when n → ∞. This means that the absorption will happen almost surely, with

probability 1.

Let now bij be the probability of absorption into an absorbing state j when

starting from the transient state i, and B = {bij}. Naturally, letting K be the

set of transient states, for each absorbing state j

bij = pij +
∑
k∈K

pikbkj. (4.26)

By writing this in matrix form using the canonical form we get

B = R + QB, (4.27)

which leads to the solution

B = (I − Q)−1R. (4.28)

Basically, if it is possible to construct a time homogenous absorbing Markov

chain, the rest is straightforward calculation to determine the absorption prob-

ability. Next we will present the generation of the transition probability matrix

for a few common models.

M/G/1/K

Consider a M/G/1/K model with the arrival intensity λ and the service time

distribution de�ned by the distribution function fS(t). The system is observed

just after the departures and the occupancy has the values {0, . . . , K}. At the
next observation the state of the chain is the current added with the arrivals

during the service time minus the one departing just before the observation. If
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there are no packets left at any point the chain has absorbed. The probability

of i arrivals during a service time is thus essential in forming the transition

probability matrix and is given by

ti =

∫ ∞

0

(λt)i

i!
e−λtfS(t)dt. (4.29)

Denote the probability of i or more arrivals in a service time by

ti∞ =

∞∑
j=i

tj = 1 −
i−1∑
j=0

tj . (4.30)

Let the indices {1, . . . , K − 1} refer to the corresponding states, K to the

over�ow and K + 1 to the absorbing zero state. Note that the state K is

impossible to reach. If the system were in this position after a departure,

there would have been at least K +1 packets present just before the departure

and over�ow would already have happened. Now we can write the transition

probability matrix in the canonical form

P =




t1 t2 t3 . . . tK−1 0 tK∞ t0

t0 t1 t2 . . . tK−2 0 tK−1
∞ 0

0 t0 t1 . . . tK−3 0 tK−2
∞ 0

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

0 0 0 . . . t0 t1 t2∞ 0

0 0 0 . . . 0 0 1 0

0 0 0 . . . 0 0 0 1




(4.31)

Using this matrix the absorption probabilities are easy to calculate with the

method described above. The �rst column of B gives the probabilities of

over�ow from each starting state before the end of the busy period.

The corresponding results can also be derived for the G/M/1/K model where

the transitions of the embedded chain are induced at the times of arrival of

new packets.
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A limited M/M/1 priority queue

Another example of applications of the embedded Markov chains is a limited

M/M/1 pre-emptive queue with priority classes. This corresponds roughly to

a single resource providing di�erentiated services. Now it should be noted that

packets having a priority over others are not responsible only for the over�ow

among their priority class but also for all the classes with lower priority. This

is a rather arbitrary selection as losses in a lower class would likely be less

expensive (or completely free) for a higher class.

Consider a simple model with two priority classes 1 and 2 with pre-emptive

FIFO queuing discipline and separate limited waiting queues. This means

that for the class 1 tra�c the queue works as a normal M/M/1/K1 queue,

where there are room for K1 − 1 packets to wait for the service. For class 2,

however, the behaviour is more complicated as all the class-1 packets will be

served before any of the class-2 packets is taken into service. Furthermore, a

class-2 packet's service is interrupted by any arrival in the class 1 and there is

a maximum limit of K2 − 1 packets waiting in this class.

We can form a Markov chain consisting of the system occupancy after each

change, arrival or departure, in the system. In Figure 4.4 class 1 is represented

as the horizontal states and class 2 will be served only if the horizontal state is

zero. The horizontal state K1 + 1 and the vertical state K2 + 1 are absorbing

states.

Denote class-1 (horizontal) and class-2 (vertical) arrival probabilities when the

horizontal state is i by a1
i and a2

i , respectively. The corresponding departures

are denoted by d1
i and d2

i . If the arrival and the service rates are given by λ1

and µ1 for class 1, and λ2 and µ2 for class 2, we can write

a1
i =




λ1

λ1 + λ2 + µ2
i = 0,

λ1

λ1 + λ2 + µ1
0 < i ≤ K1,

(4.32)

d1
i =

µ1

λ1 + λ2 + µ1

0 < i ≤ K1, (4.33)
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Figure 4.4: Markov chain of the priority model.

a2
i =




λ2

λ1 + λ2 + µ2

i = 0,

λ2

λ1 + λ2 + µ1
0 < i ≤ K1,

(4.34)

d2
i =

µ2

λ1 + λ2 + µ2
i = 0. (4.35)

For the transition probability matrix we get the block presentation

P =




Q0x Q1x 0 . . . B0

Q2x Q0 Q1 0 . . . B1

0 Q2 Q0 Q1 0 . . . B2

...
. . . . . . . . .

...
...

. . . B2

Q0 B3

0 . . . . . . 0 I




, (4.36)

where the Qi-blocks are of size K1 ×K1, Bi-blocks of size K1 × 2, and I is the

identity matrix of size 2 × 2. The notation Qix means a Qi-block without the

�rst row and column. Using the notation presented above the blocks are given
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by

Q0 =




0 a1
0 0 . . . 0

d1
1 0 a1

1 0

0 d1
2 0

...
. . . . . .

...

0 . . . 0




, (4.37)

Q1 =




a2
0 0 0 . . . 0

0 a2
1 0 . . . 0

0 0 a2
2

...
...

. . .
...

0 . . . 0




, (4.38)

Q2 =




d2
0 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 . . . 0


 . (4.39)

Transition probabilities into the absorbing states are given by

B0 =




0 d1
1

0 0
...

...

0 0


 , B1 =




0 d2
1

0 0
...

...

0 0


 ,

B2 =




0 0
...

...

a1
K1

0


 , B3 =




a2
0 0

a2
1 0
...

...

a2
K1−1 0

a2
K1

+ a1
K1

0




.

(4.40)

Now that we have a complete transition probability matrix, we are able to

partition it and calculate the absorption probabilities again as presented in

the beginning of this section.
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Other possibilities

The two examples discussed above give an idea of the great versatility of the

method. Further generalizations are available for instance into quasi birth-

and-death processes; the interested reader is referred to the original work of

Neuts [30].

Although providing simple and elegant solutions, simple queues with some

Markovian properties have a fundamental problem. They are always bound

to some particular tra�c model and cannot be assumed to perform well if the

tra�c changes. In search of more robust methods we have to step outside the

nice and neat queuing model mindset and explore some approximations having

a theoretical ground for robustness.

4.3.2 Di�usion approximation

Poissonian arrival process may have been an appropriate approximation in

early telephone networks, but it is highly questionable in modern Internet traf-

�c. In this section we shall present a more plausible, although approximative,

model for calculation of the over�ow probabilities.

A typical router in the Internet may have a bu�er of size of thousands of packets

and hundreds of kilobytes in each output. Therefore, it has become excessive to

model the bu�er in terms of separate packets as the discontinuous leaps in the

occupancy at an arrival or departure are small in comparison with the average

state. We are dealing with relatively small changes, so small that the bu�ered

data can be seen as a continuous �ow of �uid entering a piping system. This

model, called the �uid approximation, however, whilst providing nice results

for the average values, fails to take into account the randomness and variability

around the mean. These can be of signi�cant size and of special interest in

problems like the ones dealt in this presentation. If the random variability

is allowed, one enters into the world of continuous stochastic processes. The

approach is called the di�usion approximation.

Di�usion approximation is based on the fact that many independent and iden-

tically distributed sources generate essentially a Gaussian type of aggregate

behaviour due to the central limit theorem (see e.g. [43]) of the probability
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theory. The reason to use the continuous approximation is thus obvious; we

have a theoretical support for the results regardless the source distributions

which otherwise would have to be modelled. A more detailed motivation can

be found e.g. in [25]. Rigorous derivations are outside the scope of this presen-

tation, but we shall now outline the general mathematical framework before

making any modelling decisions. We shall start with the de�nition of the

di�usion processes.

A di�usion process is a continuous time parameter stochastic process which

possesses the (strong) Markov property and for which the sample paths

X(t) are continuous (with probability 1) functions of t [16].

For any such process there are two commonly de�ned in�nitesimal parameters:

µ(x, t) = lim
h→0

E[X(t + h) − X(t)|X(t) = x]

h
, (4.41)

σ2(x, t) = lim
h→0

E[{X(t + h) − X(t)}2|X(t) = x]

h
, (4.42)

which are called the drift parameter and the in�nitesimal variance, respectively.

For our purposes it is necessary to consider only the time homogenous processes

for which the in�nitesimal parameters depend only on the state x and not on

t.

Following the procedure used in the discrete load models, we now set the state

0 and the prede�ned over�ow limit c as absorbing barriers. The problem is

to �nd the probability of absorption into c when starting from the position

X(0) = x, 0 < x < c. Denote this probability by u(x) and select a small time

duration h, so small that the absorption probability is negligible. Naturally

one can set u(0) = 0 and u(c) = 1. Further, let δX = X(h) − x and one can

write

u(x) = E[u(X(h))|X(0)] + o(h)

= E[u(x + δX)|X(0)] + o(h)

= u(x) + E[δX|X(0)]u′(x) +
1

2
E[(δX)2|X(0)]u′′(x) + o(h)

= u(x) + µ(x)hu′(x) +
1

2
σ2(x)hu′′(x) + o(h). (4.43)

From this, by subtracting u(x), dividing by h, and taking the limit when h
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tends to zero, we get a di�erential equation for the desired probability.

0 = µ(x)
du

dx
+

1

2
σ2(x)

d2u

dx2
, 0 < x < c, u(0) = 0, u(c) = 1. (4.44)

The equation (4.44) can be solved elegantly using the scale and speed measures

as represented in [16]. Assume that σ2(x) > 0, let

s(x) = exp

{
−
∫ x 2µ(η)

σ2(η)
dη

}
, (4.45)

and de�ne the scale function of the process as

S(x) =

∫ x

s(τ)dτ =

∫ x

exp

{
−
∫ x 2µ(η)

σ2(η)
dη

}
dτ. (4.46)

The speed density of the process is

m(x) =
1

σ2(x)s(x)
. (4.47)

Now we introduce 1/s(x) as an integrating factor and separate the variables

in (4.44) which leads to

1

2

1

m(x)

d

dx

(
1

s(x)

du

dx

)
= 0. (4.48)

Writing the scale and speed measure in the di�erential form, dS = s(x)dx and

dM = m(x)dx, we get the canonical representation of the problem,

1

2

d

dM

(
du

dS

)
= 0, (4.49)

which can be solved by two successive integrations leading to

u(x) = D + CS(x) u(0) = 0, u(c) = 1. (4.50)

Solving the integration coe�cients we get the �nal result

u(x) =
S(x) − S(0)

S(c) − S(0)
0 ≤ x ≤ 1. (4.51)

The result given here can be easily applied to provide results for all time ho-



4.3. General queuing models with Markovian properties 53

mogenous di�usion processes. For example for the standard Brownian motion

the parameters are µ = 0 and σ2 = 1 which gives the scale function S(x) = x.

So the probability of absorption into barrier at c from the state x becomes

simply

u(x) =
x

c
0 ≤ x ≤ 1. (4.52)

The situation above, however, seldom corresponds a real bu�er behaviour and

it is necessary to discuss the modelling aspects of di�usion approximation. For

a more realistic model we follow the example of Harrison and Patel [12], and

shed light on a GI/GI/1 queuing model with independent inter-arrival time

A and independent service time B with means E[A] = 1/a and E[B] = 1/b,

respectively. The corresponding variances are c2
a/a

2 and c2
b/b

2, where the ca

and cb are the corresponding variation coe�cients.

Now we can approximate the queue state by a continuous path process X(t)

with parameters which are actually constant in steady state. Using the nota-

tion above

µ = µ(x) = lim
t→∞

µ(x, t) = a − b, (4.53)

σ2 = σ2(x) = lim
t→∞

σ2(x, t) = ac2
a + bc2

b . (4.54)

Thus, for a GI/GI/1 queue under the di�usion approximation we get

s(x) = exp

(
−2µx

σ2

)
, (4.55)

S(x) = Cexp

(
−2µx

σ2

)
+ D (with constants C and D). (4.56)

and further the probability of over�ow from state x becomes

u(x) =
e−2µx/σ2 − 1

e−2µc/σ2 − 1
, (4.57)

where the barrier c is K + 1 in the queuing model.

Note that the di�usion approximation requires independent and identically

distributed inter-arrival times and service times. Moreover the mutual inde-

pendence of the arrival and departure processes is required, which is not ex-

actly true on large scale; there cannot be more departures than arrivals at any

time and so the departure process is limited by the arrivals. However, during

a busy period the inter-departure times are just the service times and hence
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independent from the arrival process. This is enough to justify the results

obtained.

Further generalization of the mathematical models requires abandoning the

Markovian property. That is, the tra�c is assumed to depend on the history

rather than just on the current state. As the mathematical properties become

essentially more complicated there are only a few tra�c models suggested

where correlations are involved. One of the most prominent of these is the

fractional Brownian motion which will be discussed next.

4.4 Fractional Brownian motion

Until now we have assumed that the tra�c is independent of its past. This is a

rather natural assumption if we are looking into short periods of time as in cases

we have examined here. Assuming that the round trip times are signi�cantly

longer than busy periods, it seems logical that the arrival process has the

Markovian property. However, various tra�c measurements, starting from

the Bellcore LAN measurements [9], have shown that network tra�c is very

bursty at all time-scales, a feature which the Markovian models cannot explain.

The traces showed self-similar or fractal-like behaviour which can be modelled

with long-range depended processes. On the other hand, due to the reasons

mentioned in discussing the di�usion processes, Gaussian models are desirable

as many independent sources result in essentially Gaussian process. Combining

this with the long-range dependence we arrive at fractional Brownian motion

(fBm).

Next we shall present the storage model with fBm input following the pre-

sentation of Norros [31]. A normalised fractional Brownian motion Z(t) with

the Hurst parameter H is a Gaussian process which has continuous paths,

stationary increments, mean E[Z(t)] = 0 and variance E[Z(t)2] = |t|2H for all

t.

Using the Reich formula we describe the system occupancy or the amount of

work in the bu�er with the leaky bucket model

V (t) = sup
s≤t

(A(t) − A(s) − C(t − s)) , (4.58)
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where A(t) is the amount of work arrived before t and A(0) ≡ 0. C stands for

the service rate.

Now we can de�ne the long-range dependent arrival process as

A(t) = µt +
√

σ2µZ(t). (4.59)

It should be noted that although the parameters of the process (µ,σ2 and

H) can be chosen so that negative arrivals are unlikely, they cannot be fully

avoided and thus the model is rather non-physical at small time scales.

Now the interesting question is, given the process path during the busy pe-

riod, what is the conditional probability to reach over�ow before the end of

the busy period? Although this problem is well de�ned, it seems daunting

indeed. Hence, we take an alternative approach and sketch an approximation

to determine a lower bound for the probability.

Suppose that when a busy period starts, measurements on the work residing in

the system are made at short constant intervals, δ. When a packet is leaving

the system (the marking moment) at the time T after the start of the busy

period the bu�er will have an amount V (T ) of work left. That means that

the busy period will last at least the time V (T )/C from the time T on. This

requires naturally the assumption that A(t) is practically increasing with all

t ∈ (−∞,∞).

Now we can predict the distribution of values of corresponding normalised

process (denote by z1) we would measure during this time (denote the set of

the observation times by Tz1) on condition of all the previous measurements

(denote by z2) during the interval t ∈ [0, T ). If an over�ow is to happen

during this time it will certainly be before the end of the current busy period.

Evaluating the over�ow probability in these discrete points gives a lower bound

for the actual over�ow probability. After the time T +V (T )/C we will not have

certainty whether the busy period continues and it will be computationally

too heavy to calculate all possible conditional outcomes. Thus, we have the
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following limit:

P(V (t) ≥ x| z2, V (s) > 0 ∀ s < t)

(4.60)

≥ P(V (t) ≥ x| z2, t < V (T )/C)

(4.61)

≥ max
t

P(µt +
√

σ2µZ(t) − Ct ≥ x| z2, t ∈ Tz1)

(4.62)

= max
t

P

(
Z(t) ≥ x + (c − µ)t√

σ2µ
| z2, t ∈ Tz1

)
. (4.63)

It makes sense to observe the process in these discrete steps since it simpli�es

the problem tremendously as well as de�nes clearly when the level is crossed.

The time steps should be slightly shorter than the average packet service time.

In order to compute the conditional values of Z(t), we need to determine the

covariances and conditional distributions in FBM context following [33].

First, the covariance of Z(t) and Z(s) is determined by the formula

Cov[Z(t), Z(s)] = Γ(t, s) =
1

2

(
t2H + s2H − |t − s|2H

)
. (4.64)

Assume that a k× 1 vector z consists of two parts (of length k1 and k2 respec-

tively) z = [z1
T , z2

T ]T and we want to know the distribution of z1 when z2 is

known. Let Γ be the corresponding covariance matrix E[zzT ] and A = Γ−1.

Let A be partitioned as follows

A =

(
A11 A12

A21 A22

)
, (4.65)

where A11 is a square matrix of size k1 × k1 and A22 a square matrix of size

k2 × k2 and A12 = AT
21 is a rectangular k1 × k2 matrix. Now the conditional

distribution of z1 is Gaussian with the mean and variance:

E[z1|z2] = −A11
−1A12z2,

E[z1z1
T|z2] = A11

−1. (4.66)

In summary, we are able to determine a rough lower bound for the conditional
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over�ow probability which can be expected to be more accurate when the bu�er

is quite full. However, the inaccuracy and complexity of the model and the

need to estimate parameters such as the Hurst parameter make this method

virtually useless without further improvements in the probability calculation.

Such improvements could maybe be found using the path space approach and

large deviations approximation along the lines of [32] but we leave this for

further study at this point.



Chapter 5

Analysis

In this chapter we compare the mathematical methods presented previously

and examine how closely they can approximate the ideal SPSP marking pro-

cedure. The emphasis is put on the robustness, the applicability and the

behaviour of the methods themselves within mathematical models and the

discussion on the actual model selection to describe tra�c is mostly omitted.

The reason for this is simply that the model selection is too large an issue

to be handled here. The question whether some model is able to capture the

relevant features of some particular stream has been one of the central research

topics in tra�c theory since the earliest stages of this branch of science.

5.1 Comparison of di�erent methods

This section consists of comparisons between the marking probabilities ob-

tained with di�erent methods and a discussion on the di�erences. Di�erences

can occur due to the used approximation, such as di�usion approximation,

or from the fact that the actual tra�c does not follow the used model. This

should shed some light on the robustness of the models.
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5.1.1 E�ects of the process

First we shall study the simple M/M/1/K model. From the general form of

the over�ow probability we instantly have two results on the limit behaviour:

lim
ρ→0

pn = lim
ρ→0

ρK+1 − ρK+1−n

ρK+1 − 1
=

{
0 n < K + 1,

1 n = K + 1.
(5.1)

And correspondingly using the l'Hospital's rule

lim
ρ→1

pn = lim
ρ→1

1 − ρ−n

1 − ρ−(K+1)
= lim

ρ→1

nρ1−n

(K + 1)ρ−K
=

n

K + 1
. (5.2)

That is, the marking probability/price behaves approximately as a barrier at

K + 1 when ρ is small and approaches a linear form under heavy tra�c. Nat-

urally it is possible to determine the prices for ρ > 1 and in this domain the

marking probability is a concave function, approaching value 1 for all posi-

tive states when the intensity grows without bounds. However, in a properly

functioning network, implementing congestion pricing these situations should

be very rare as it is the goal of the whole scheme to avoid dropping packets.

For more complicated models, the dependence is generally on both mean and

variance, but what is signi�cant, the form of the marking probability remains

roughly the same.

Next we compare the M/M/1/K model with two other models: deterministic

and uniformly distributed service times. Exact solutions to these models can

be calculated using the jump chain analysis described in Section 4.3.1. First,

assume that the arrival intensity is λ = 3 and the tra�c intensity is ρ = 0.75

in all cases with the service times

Model E[X] Var[X]

Exp(4) 1/4 1/16

D=1/4 1/4 0

U(0,0.5) 1/4 1/48

For comparison, consider the same models at ρ = 0.9, λ = 9 with the service

times
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Figure 5.1: M/M/1/K, M/D/1/K and M/U(0,0.5)/1.

Model E[X] Var[X]

Exp(10) 1/10 1/100

D=1/10 1/10 0

U(0,0.2) 1/10 1/300

The exact marking probabilities for K = 25 are plotted in Figure 5.1. It is

obvious that smaller variance results in smaller over�ow probability and thus

into lower prices. These examples were given here only to provide insight

on the form of the marking function. The di�erences between the presented

models are not that large, but still large enough so that we cannot play down

the importance of model selection. Especially when the utilization is high but

over�ows relatively rare (i.e. the tra�c has low variability), the model seems

to play a very central role in the price determination. Hence, it will be too

limiting to assume a certain model for the tra�c without proper justi�cation.

The model should be very general with easily estimable parameters, such as

the di�usion processes, which will be discussed next.
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Figure 5.2: Di�usion approximation.

5.1.2 Di�usion approximation

Di�usion approximation has the advantage of being free of the tra�c models.

When there are many independent sources contributing to the load at a re-

source we feel con�dent that this model would perform well. However, this is

just another assumption, the signi�cance of which we intend to determine. This

section attempts to study the approximation under essentially non-Gaussian

environment using the Markovian models from the previous section. For the

sake of robustness, the selected pricing scheme should behave well under all

circumstances and a comparison with these models will help us to determine

the applicability of the approximation in this context.

Should the behaviour be well approximated, this would be the most promising

method to calculate the prices when the tra�c poses little or no long-range

dependence. Figure 5.2 shows the same models for which the exact prices were

computed in Figure 5.1, only now computed using di�usion approximation

(4.57) with the corresponding expectations and variances.

With Poissonian tra�c (M/M/1/K) we see almost identical behaviour to the

original one for large ρ and the two other models, which are by nature far from
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Gaussian, are approximated surprisingly well. The slight underestimation of

the price is a rather encouraging result but, unfortunately, it may not be

accurate enough. It is important that the pricing works well for heavy tra�c

and high states as there the di�erence is largest and the loss prevention actually

takes place. For light tra�c there is less need to control it and thus the

marking does not play so signi�cant role. It should be noted also that under

heavy tra�c in a resource designed to serve a signi�cant number of users, the

heavy tra�c means usually more independent users (rather than larger �ows

for single users) and thus more Gaussian tra�c. This too seems encouraging,

but we may not rely on this assumption.

The convergence to the di�usion approximation depends essentially on the

skewness of the counting process N(t). If the arrival and service processes are

similar in form (which is the case in the M/M/1/K system when ρ grows) the

convergence is fast and excellent results are obtained. Otherwise, the price

will be over or under the estimated, depending on which tail of the counting

process is larger. Naturally one cannot assume that the tra�c would behave so

that the model will work (even if it did) and we are forced to look for solutions

elsewhere.

A profound observation is that the form of the marking probability can be very

well approximated with the di�usion process absorption formula regardless of

the model. Hence, we could include a single real valued correction parameter

δ ∈ (−1, 2) to the calculations re�ecting the bias caused by the skewness

of the counting process distribution. That is, if the system is left to state

n we calculate the price as if the system was in the state n + δ. This minor

adjustment would provide accurate approximations as can be seen from Figure

5.3. Estimation of this correction term is an interesting open question (one

option would be to estimate the over�ow probability from the state K − 1, set

the result equal to u(K − 1 + δ), and solve the term from 4.57), in this case

we had the exact answers available and used the least squares method for the

models:
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Figure 5.3: Adjusted di�usion approximation.

Model λ µ δ

M/D/1/25 3 4 0.9461

M/D/1/25 9 10 0.8581

M/U(0,0.5)/1/25 3 4 0.6358

M/U(0,0.2)/1/25 9 10 0.5791

The di�usion parameters, expectation and variance are straightforward to es-

timate from the incoming tra�c. The estimation procedure, however has its

own pitfalls, basically dealing with the trade-o� between accuracy and respon-

sivity to change, but these implementation aspects are, although interesting,

outside the more general scope of this thesis and will not be discussed further

here.
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5.2 Simulation experiment

5.2.1 Di�erences with SPSP

The experiment consists of simulating the bu�er occupancy of an M/M/1/K

resource, where the exact pricing formula (4.10) is used in parallel with the

ideal SPSP scheme. We generated arrival and service times for a number of

packets and served them in a queue according to the �rst-in-�rst-out principle.

As a result we obtained traces of the queue occupancy where we marked the

packets using the two schemes. In this simulation we were able, unlike in the

reality, to mark all the packets during the critical congestion intervals in the

SPSP scheme. In the approximative scheme, packets were marked using the

rules from Section 4.2.3, that is all the packets in the bu�er receive a mark at

over�ow and unmarked packets are marked according to the state they leave

the system in (using the pricing formula (4.10)). This gives us a good idea

how close it is possible to get to the ideal scheme by the approximation. In

both schemes we did not distinguish the packets which are dropped from those

which were merely marked.

Figure 5.4 shows the di�erence between calculated prices when ρ = 0.9 and

K = 25. The statistics were obtained using 10000 packets with λ = 9 and

µ = 10.

The results show the distribution of the di�erences. The expectation of the

distribution is practically zero, as it should be. Only a small portion (about 7%

here) of SPSP-marked packets escape the system while most of them receive

almost correct price (more 60 % equal to or no more than 0.1 larger than the

correct price). We can conclude that if we are able to determine the risk of

over�ow correctly, we are able approximate the SPSP scheme very accurately.
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Figure 5.4: Approximative prices minus ideal prices.



Chapter 6

Conclusions

As the Internet is expanding at exponential rate we are facing constant di�cul-

ties with evolving demands and constraints. Development of new networks and

protocols and the evolution of the existing ones are unavoidable. In this thesis

we have discussed one promising approach for the model of future Internet.

Congestion pricing is able to provide an elegantly simple method for the net-

work congestion control. Although it is rather controversial even on the con-

ceptual level, mainly because of the di�culties related to fairness of pricing

and distribution of wealth, it is one of the few methods capable of providing

service di�erentiation and almost only one to address the issue of fair resource

allocation in a communications network.

Proportionally Fair Pricing is an stylish adaptation of the congestion pricing

concept into the current world of the Internet, combining the bene�ts of the

economics point of view with the mechanisms already implemented in the

present Internet technology. The network is able to share resources fairly

without explicitly knowing the users' utilities. Congestion, an extrenality to

users, causes a social cost that is divided among those responsible for it. This

cost sharing is implemented through an ECN-type marking procedure.

Marking would be ideally performed by setting the congestion bit to one for all

the packets arriving within the critical congestion interval, between an arrival

to an empty system and the last over�ow within the busy period. However,

this marking scheme, known as Sample Path Shadow Pricing, cannot be im-

plemented as packets may have escaped from the system before any over�ow is
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detected. Even in the ideal case SPSP is not perfect as it requires an over�ow

to happen and therefore probably causes bursts of marks to the users, whose

reactions are likely to lead into oscillatory behaviour. A marking scheme with

an early warning method would be better. This led us to look into alternative

marking possibilities.

We showed that within a mathematical model for a resource it is possible to

replace SPSP by marking packets probabilistically. A packet's price at a given

time equals the probability of over�ow from the state of the system at that

time. In a more general model the probability depends also on the history

of the current busy period. Naturally the best possible imitation of SPSP is

achieved with the following rules. First, every packet is marked at the resource

at the over�ow and then all the unmarked packets are marked as they leave

the system by using the probabilistic marking scheme. This scheme, called

predictive marking, is able to provide the desired early warning of congestion.

In addition to imitating SPSP it can be seen as a stand-alone marking method

with the interpretation that the users are no longer paying only for the lost

packets of other users, but for the risk of congestion.

For the most robust and implementable model we suggest the di�usion ap-

proximation. It has the theoretical support for uncorrelated tra�c and its

parameters are easily estimable.

The drawbacks of the predictive marking are obvious. How well does the

assumed model describe the actual tra�c? In this case we are especially con-

cerned with the assumptions on the Gaussian and Markovian properties of the

bu�er occupancy. Although non-Gaussian nature of the process can, in many

cases, be corrected simply with a small deviation in argument, the possible

internal correlations of the tra�c may cause some inaccuracy. Furthermore,

the estimation of the parameters of the model is required. This leads to a

tradeo� between responsiveness and accuracy as many of the estimators are

based on calculating some kind of average value. If one takes more packets

(and time) into consideration in the estimation process, one will get smaller

variance for the estimator. However, if the underlying properties are subject

to change, the expectation of the estimator becomes more biased at the same

time. Although this method is far more reactive than any of the threshold

methods based directly on the average queue size (e.g. RED), it may not be
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enough. One should be able to answer the question what is the probability of

an over�ow right now, rather than on average in this kind of situation.

It should be noted, however, that the minor biases in the packet level marking

are not that signi�cant. On the �ow level they will be compensated by the vast

amount of packets and ultimately by the congestion events as only a portion

of packets are marked using a model and the rest by congestion events. Under

very light or very heavy tra�c all the models also agree in prices.

In summary, we have found a rather general pricing method the parameters of

which can be estimated from the tra�c. The possibility of its direct application

may still be slightly far-fetched, but it gives some important insight into how

the pricing should work.

6.1 Further work

Further work should be related to the interface between mathematical models

and reality. The concepts should be tested in an appropriate environment, but

how can we ever be sure that there will not be any types of tra�c that cause

the model to choke? The most acute problem of the di�usion approximation is

the estimation of parameters. Fast, simple and accurate estimation of mean,

variance and possibly the correction term is essential. Are these parameters

enough to implement a robust pricing? If not, would the fBm model perform

well enough? Could the risk of over�ow be measured empirically?

More fundamental issue is the averaging. When using the (impossible) ideal

SPSP scheme we do not need to use any kind of averaging at the resource.

However, as mentioned earlier it always requires a loss to occur before any

marks are generated and it is thus not a suitable early warning of congestion.

If any kind of predictive method is used to approximate SPSP, we face the

averaging at the resource.

Consider then a single resource with a number of users with di�erent round-trip

times. If the packets are labeled corresponding to the bu�er occupancy only,

the users themselves can do the averaging to estimate the bu�er behaviour from

their point of view and act correspondingly. The prices could, for example,

be generated by sending marks for each over�owing packet back to the user
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or by extracting the price from the �ow of marks. That is, marks and prices

are separate or their relation is more complex than linear. Users could then

predict the prices using the marks. This framework would further simplify the

core network but naturally becomes complicated when there are more than

one resource. The bottom line is that the marking should be very simple, fair

and transparent so that all the complexity could be left to the end-users.

Finally it should be noted that in all these calculations we have implicitly

assumed that the contribution of a single user is small (for the di�usion ap-

proximation) and that one user cannot change the behaviour of the �ow sig-

ni�cantly. This is a rather natural assumption for a large scale network but if,

for some reason, this cannot be accepted, we face interesting game theoretical

problems as the users anticipate the e�ects of their own behaviour to the price.
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