

Dimensioning of Data Networks

Aleksi Penttinen

Department of Communications and Networking,

TKK Helsinki University of Technology

Outline

- 1. The data network dimensioning problem
- 2. Dimensioning of fixed networks
- 3. Extensions
- 4. Dimensioning of wireless mesh networks
- 5. Conclusions

1. The data network dimensioning problem

The dimensioning problem

- Consider a communications network carrying *elastic* traffic, e.g., file transfers, on pre-defined routes
- How much capacity you must allocate on each link to meet the performance requirements of data traffic?

The dimensioning problem (2)

- Input parameters:
 - network topology and routing for each traffic class
 - link capacity costs
 - traffic load (bps) of each class (note that the system is dynamic, i.e. the file transfers are initiated randomly and depart upon completion)
 - performance requirement for each route of for the average over the routes
- Output:
 - link capacities (fixed networks)
 - radio capacity (wireless networks)

The dimensioning problem (3)

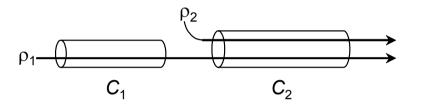
- We define the throughput of a flow class (route) i, denoted by γ_i as the ratio of mean flow (file) size and flow duration in the class
- Assume that the bandwidth is allocated according to the balanced fairness principle, then

$$\left(\sum_{l\in\mathcal{R}_i}\frac{1}{c_l-r_l}\right)^{-1} \le \gamma_i \le \min_{l\in\mathcal{R}_i}c_l-r_l$$

where c_l and $r_l = \sum_{i \in \mathcal{F}_l} \rho_i$ are the capacity and load of link l, respectively

• Since the link capacity must be larger than the offered load, we need to determine the excess capacities $d_l = c_l - r_l$

Example



Capacity costs of the links equal,

 $\gamma_i = 1$ Mbps,

$$ho_1=5 {
m Mbps}, ~
ho_2=7 {
m Mbps},$$

 C_1,C_2 ?

2. Dimensioning of fixed networks

Average throughput constraint

• Consider only the weighted average throughput of the network:

$$\begin{split} \min_{\mathbf{d}} \mathbf{w}^{\mathrm{T}} \mathbf{d}, \\ \left(\sum_{i} \frac{\rho_{i}}{\rho_{\mathrm{tot}}} \sum_{l \in \mathcal{R}_{i}} \frac{1}{d_{l}} \right)^{-1} \geq \gamma_{\mathrm{ave}}, \\ \mathbf{d} > 0 \end{split}$$

- Parameters: \mathbf{w} link costs, \mathbf{d} excess capacities
- This yields explicit values for the excess capacities

$$d_l = \gamma_{\text{ave}} \sqrt{\frac{r_l}{w_l \rho_{\text{tot}}}} \sum_j \sqrt{\frac{r_j w_j}{\rho_{\text{tot}}}} \,\forall l.$$

Per-class constraints

• The second model assumes that each route has its own throughput target

$$\min_{\mathbf{d}} \mathbf{w}^{\mathrm{T}} \mathbf{d},$$

 $\Gamma_i(\boldsymbol{\rho}, \mathbf{c}) \ge \gamma_i, \quad \forall i$
 $\mathbf{d} > 0$

• We have two approaches based on the limit expressions for throughput under balanced fairness

Per-class constraints: Lower bound

• Problem formulation

 $\min_{\mathbf{d}} \mathbf{w}^{\mathrm{T}} \mathbf{d}, \\ \min_{l \in \mathcal{R}_{i}} d_{l} \ge \gamma_{i}, \quad \forall i \\ \mathbf{d} > 0$

• Excess capacity must be at least as large as the largest throughput demand on that link:

$$d_l = \max_{i \in \mathcal{F}_l} \gamma_i$$

Per-class constraints: Upper bound

• Dimensioning problem with store-and-forward bound as the throughput model

 $\min_{\mathbf{d}} \mathbf{w}^{\mathrm{T}} \mathbf{d}$

 $\mathbf{A}\mathbf{d}^{-1} \leq \boldsymbol{\gamma}^{-1},$ $\mathbf{d} > 0$

• Parameters: A route-link incidence matrix (routing), γ throughput demands

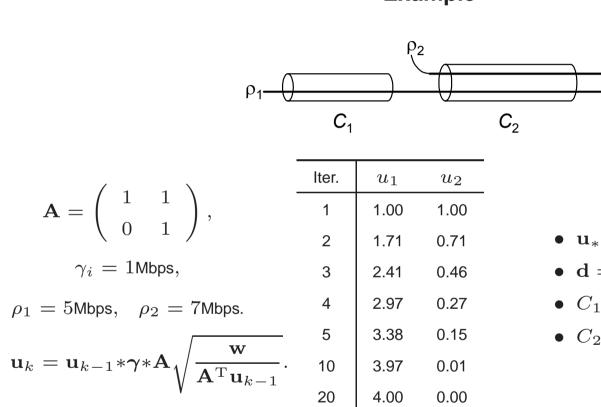
Solution

• Iterative algorithm for dual variables

$$\mathbf{u}_k = \mathbf{u}_{k-1} * oldsymbol{\gamma} * \mathbf{A} \sqrt{rac{\mathbf{w}}{\mathbf{A}^{ ext{T}} \mathbf{u}_{k-1}}}$$

- It can be shown that the iteration converges from any strictly positive \mathbf{u}_0 to a unique \mathbf{u}_*
- Primal solution

$$\mathbf{d} = \sqrt{\frac{\mathbf{A}^{\mathrm{T}}\mathbf{u}_{*}}{\mathbf{w}}}$$



•
$$\mathbf{u}_* = (4, 0)^{\mathrm{T}}.$$

•
$$\mathbf{d} = (2, 2)^{\mathrm{T}}$$
.

•
$$C_1 = \rho_1 + d_1 = 7$$
Mbps

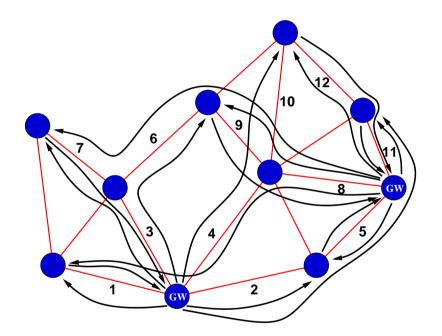
•
$$C_2 = \rho_1 + \rho_2 + d_2 = 14$$
 Mbps.

Per-class constraints (3): Alternative upper bound

• "Improved store-and-forward bound":

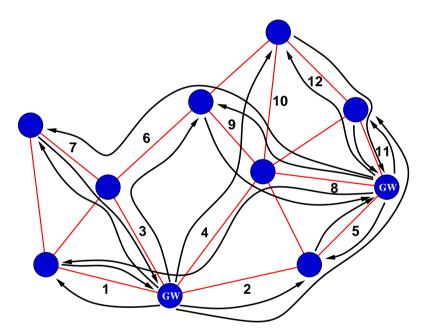
$$\gamma_i \le \left(\max_{l \in \mathcal{R}_i} \frac{1}{d_l + r_l} + \sum_{l \in \mathcal{R}_i} \frac{r_l}{d_l(d_l + r_l)} \right)^{-1}$$

- Can be solved analogously to the SF case
- Increased computational complexity:
 - for each flow class, the number of constraints equals to the number of links used



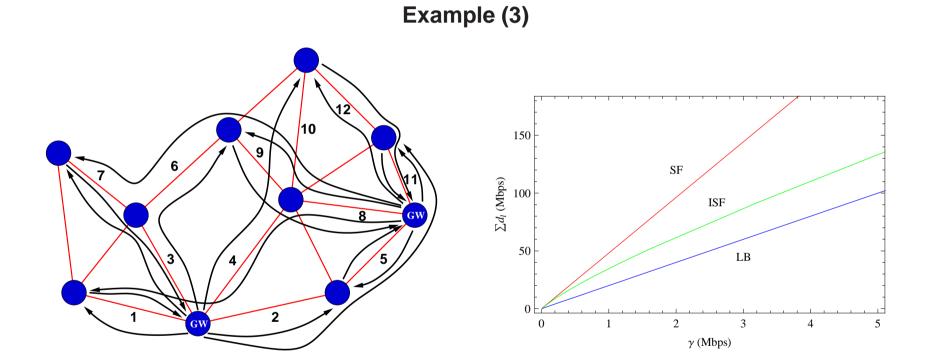
Example

- 18 flow classes, 12 links
- w_l =1 for all l
- $\rho_i = 1$ Mbps for all i
- $\gamma_{\rm ave}$ = 0.1 Mbps, γ_i = 0.1 Mbps



Example	(2)
---------	-----

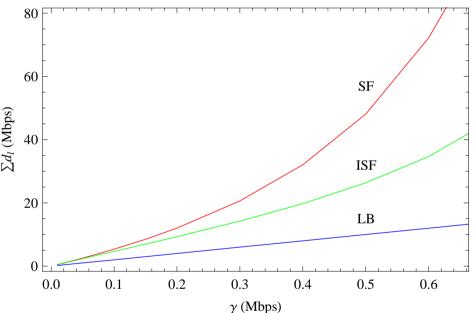
Link	AVE	LB	UB-SF	UB-ISF
1	3.19	3.1	3.27	3.23
2	2.15	2.1	2.29	2.28
3	3.19	3.1	3.13	3.13
4	2.15	2.1	2.28	2.27
5	3.19	3.1	3.29	3.27
6	2.15	2.1	2.39	2.36
7	3.19	3.1	3.39	3.36
8	4.22	4.1	4.45	4.41
9	3.19	3.1	3.38	3.35
10	1.11	1.1	1.15	1.15
11	5.24	5.1	5.32	5.31
12	2.15	2.1	2.14	2.14



3. Extensions

Effects of access rate limitations

- Flow access rates may have per-flow or per-class limits
- These can be easily included in the algorithms $V_{P_{\alpha}}^{(sd_{W})}$
- When the throughput requirement approaches the access rate limit, the dimensioning costs increase considerably



Multiservice networks

- We have considered dimensioning of data networks subject to constraints on file transfer performance
- Also delay-constrained real-time traffic could be included (e.g. VoIP calls)
- In M/M/1 queuing network the packet delay on route i is

$$D_i(\mathbf{c}) := \sum_{l \in \mathcal{R}_i} \frac{1}{c_l - r_l} \le T_i$$

• Add delay constraints to the formulation

Multiservice networks (2)

• Three approaches proposed: Best effort network, separate networks, and prioritized real-time traffic

$$\begin{split} \min_{\mathbf{d}} \mathbf{w}^{\mathrm{T}} \mathbf{d} & \prod_{\mathbf{c}^{\mathrm{el}}} \mathbf{w}^{\mathrm{T}} \mathbf{c}^{\mathrm{el}}, \\ \min_{\mathbf{d}} \mathbf{w}^{\mathrm{T}} \mathbf{d} & \Gamma_{i}(\mathbf{c}^{\mathrm{el}}) \geq \gamma_{i}, \quad \forall i, & \min_{\mathbf{c}} \mathbf{w}^{\mathrm{T}} \mathbf{c}, \\ \mathbf{A}^{\mathrm{el}} \mathbf{d}^{-1} \leq \boldsymbol{\gamma}^{-1}, & \mathbf{c}^{\mathrm{el}} > \mathbf{r}^{\mathrm{el}} & D_{i}(\mathbf{c}, \mathbf{r}^{\mathrm{rt}}) \leq T_{i}, \quad \forall i, \\ \mathbf{A}^{\mathrm{rt}} \mathbf{d}^{-1} \leq t, & \min_{\mathbf{c}^{\mathrm{rt}}} \mathbf{w}^{\mathrm{T}} \mathbf{c}^{\mathrm{rt}}, & \Gamma_{i}(\mathbf{c} - \mathbf{r}^{\mathrm{rt}}, \mathbf{r}^{\mathrm{el}}) \geq \gamma_{i}, \quad \forall i, \\ \mathbf{d} > 0 & D_{i}(\mathbf{c}^{\mathrm{rt}}) \leq T_{i}, \quad \forall i, & \mathbf{c} > \mathbf{r} \\ & \mathbf{c}^{\mathrm{rt}} > \mathbf{r}^{\mathrm{rt}} \end{split}$$

4. Dimensioning of wireless mesh networks

Dimensioning of wireless networks

- Obtain an order-of-magnitude estimate of the required physical resources of a wireless mesh network when
 - the performance target is expressed in terms of average flow throughput for data traffic
 - the capacity of network is efficiently utilized by scheduling
- Assumption: all nodes use only one transmission rate (or other radio parameter) which is to be dimensioned

Dimensioning of mesh networks: Scheduling

• Virtual link capacities are obtained by scheduling:

$$\mathbf{c} = \begin{pmatrix} c_{11} & 0 & 0 & 0 & c_{15} & 0 & c_{17} \\ 0 & c_{22} & 0 & 0 & 0 & c_{26} & 0 \\ 0 & 0 & c_{33} & 0 & c_{35} & 0 & 0 \\ 0 & 0 & 0 & c_{44} & 0 & c_{46} & c_{47} \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \\ t_3 \\ t_4 \\ t_5 \\ t_6 \\ t_7 \end{pmatrix}$$

where ${f t}$ is the schedule satisfying $\sum_i t_i = 1$

Dimensioning of mesh networks: Capacity parameterization

• For nominal link rate dimensioning

$$\mathbf{c} = b\mathbf{Mt}$$

where $m_{lj} = 1$ if link l is active in transmission mode j and 0 otherwise.

• For nominal tranmission power dimensioning

$$\mathbf{c} = \mathbf{S}(p)\mathbf{t}$$

where s_{lj} is the Shannon capacity of link l when it is interfered by the other active links in transmission mode j

– transmission power is fixed to \boldsymbol{p} for all active links

Dimensioning of mesh networks: Throughput

- Generally, route throughputs of the dynamic system cannot be expressed in a closed form (even if balanced resource allocation is assumed)
- We may utilize different bounds for performance under balanced fairness
 - Store-and-forward bound:

$$\Gamma_i(\mathbf{c}) = \left(\sum_{l \in \mathcal{R}_i} d_l^{-1}\right)^{-1}$$

- Upper bound for throughput:

$$\Gamma_i(\mathbf{c}) = \left(\max_{l \in \mathcal{R}_i} \frac{1}{c_l - r_l}\right)^{-1}$$

Dimensioning of mesh networks: Problem

• Problem formulations for both capacity parameters:

$$b = \min_{\mathbf{q}} \mathbf{e}^{\mathrm{T}} \mathbf{q}, \qquad p = \{p : \min_{\mathbf{q}} \mathbf{e}^{\mathrm{T}} \mathbf{q} = 1\},$$

$$\Gamma_{i}(\mathbf{M}\mathbf{q}) \ge \gamma_{i}, \quad \forall i, \qquad \Gamma_{i}(\mathbf{S}(p)\mathbf{q}) \ge \gamma_{i}, \quad \forall i,$$

$$\mathbf{q} \ge 0 \qquad \mathbf{q} \ge 0$$

- Difficult computational problem:
 - number of variables large (number of modes large)
 - difficult non-linear constraints
- Approximative methods are needed

Approximation I: LP

• The upper bound of throughput

$$\Gamma_i(\mathbf{c}) = \left(\max_{l \in \mathcal{R}_i} \frac{1}{c_l - r_l}\right)^{-1}, \, \forall i \qquad \Leftrightarrow \qquad c_l \ge r_l + \varphi_l, \forall l$$

where $\varphi_l = \max_{a_{li}=1} \gamma_i$

• Now the scheduling part reduces to an LP problem:

$$b = \min_{\mathbf{q}} \mathbf{e}^{\mathrm{T}} \mathbf{q},$$
$$\mathbf{M} \mathbf{q} \ge \mathbf{r} + \boldsymbol{\varphi},$$
$$\mathbf{q} \ge 0$$

Approximation II: Fixed schedule (FS)

• Idea:

- Fix the schedule t^{\ast} by, e.g., solving the LP approximation
- Scale the capacity parameter upwards until the improved store-and-forward bound is satisfied for each route
- Now we have a simple line search:

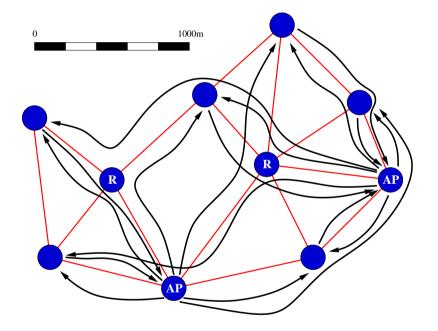
$$b = \arg \min_{b}$$

 $\Gamma_i(b\mathbf{Mt}^*) \ge \gamma_i, \quad \forall i$

Approximation III: Fixed capacity vector

- Solve the virtual link capacities \mathbf{c}^* by using a fixed network dimensioning formulation
- Again, the scheduling part becomes an LP problem:

$$egin{aligned} &=& \min_{\mathbf{q}} \mathbf{e}^{\mathrm{T}} \mathbf{q}, \\ && \mathbf{M} \mathbf{q} \geq \mathbf{c}^{*}, \\ && \mathbf{q} \geq 0 \end{aligned}$$



Numerical example

- 22 links, 18 traffic classes (routes)
- $ho_i=2$ Mbps, $\gamma_i=0.2$ Mbps
- (Radio parameters)
- Capacity limits b_{CL} =36 Mbps, p_{CL} =350 mW

Numerical example: Results

Approximation	Boolean (Mbps)	Shannon (mW)
LP	38.2	500
FS	41.1	1390
FC	41.8	860

5. Conclusions

Conclusions

- Goal:
 - to provide order-of-magnitude estimates of required resources,
 - to evaluate feasibility of a given network plan.
- Pros
 - easy-to-obtain motivated quantitative results
 - only load information suffices on traffic, no need for distribution
- Cons
 - fixed routing
 - resource sharing may differ in practice
- First step in dimensioning process