Flow-level stability and performance of
channel-aware priority-based schedulers

Samuli Aalto, Pasi Lassila
Aalto University School of Science and Technology, Finland
Email: firstname.lastname @tkk.fi

Abstract—Channel-aware scheduling in modern wireless net-
works enables the system to exploit the random rate variations
across different users to increase the performance of the system.
We analyze channel-aware priority-based downlink scheduling
policies at the so-called flow level with a stochastically vary-
ing number of users. The priority can be any monotonously
increasing function of the instantaneous rate of the user, which
generalizes the well-known linear weight-based policies. Also, ties
are allowed within a user class, as well as between user classes.
As the main result, we characterize when these priority-based
policies are stable under an intuitive necessary condition, which
holds for arbitrary tie breaking rules and is independent of the
flow size distribution. Additionally, for the policies for which the
necessary condition is not sufficient, a more stringent condition
is derived in the case of two traffic classes. Finally, extensive
simulations have been performed to compare the performance of
different priority-based and utility-based policies.

I. INTRODUCTION

One key aspect in modern cellular systems affecting the
performance is the scheduling of the radio resources among
the users. In these systems, time is slotted and scheduling de-
cisions can be made at the time scale of milliseconds. The fast
scheduling and channel quality feedback enables the system
to optimize the scheduling for data traffic by exploiting the
fading phenomena causing random variations in the channel
quality across the users. These channel-aware (also known
as opportunistic) schedulers aim at increasing the throughput
of the system by favoring those users having instantaneously
good channels. A well-known example is the proportionally
fair (PF) scheduler proposed for 1XEV-DO systems, see [1].

Channel-aware schedulers can be broadly classified as
utility/maxweight based and rate-based priority schedulers.
Utility/maxweight based approaches use instantaneous rate
information coupled with knowledge of the throughput/queue
sizes/packet delays, see [2], [3], [4]. The rate-based ap-
proaches, such as the relatively best (RB) scheduler [5] and
its generalizations to weight-based strategies [6], only use
information about the rate (channel) statistics. Typically, these
channel-aware schedulers have been analyzed at the time
slot or the packet level with a static population of users,
either assuming a saturated set of users, see [5], [4] or
allowing packet level-dynamics and analyzing the system at
the heavy traffic limit [2], [7]. The results have established that
simple stochastic gradient policies of the utility and so-called
maxweight policies (of either packet delays or queue lengths)
have many desirable properties. However, in the above models
the common aspect is that the number of users stays constant,

which is not entirely valid when considering the performance
of elastic data traffic.

We consider channel-aware downlink scheduling in a dy-
namic setting at the so-called flow level assuming that the
scheduler at the base station always transmits to exactly one
user at a time. Flows correspond roughly to file transfers that
the users are downloading through the base station. Flows
arrive stochastically and have random sizes. The flow-level
abstraction implies that the scheduler observes a randomly
varying achievable rate for each flow in every time slot, and
the system is considered in the limit where the time slot
duration goes to zero. The set of achievable rates is discrete,
but different user classes may have a different stationary
distribution for the rates. Performance at the flow level is
expressed, e.g., as the throughput or the mean flow delay.

In this paper we focus on the flow-level performance
and stability properties of certain channel-aware scheduling
policies. Stability relates, e.g., to the situation where flows
are grouped into classes with different stationary distributions
for the achievable rates (cf., good channel/bad channel) and
stability implies that the number of flows (and the flow delays)
stays finite. While stability in practical systems is guaranteed
by some form of admission control and user impatience, it
is still an important indicator of the robustness of the policy
under unpredictably varying load conditions.

The necessary condition for stability essentially states that
at the stability limit the scheduler always serves the flows
according to the class-specific maximum achievable rates.
Important work in this area has already been done in [6], [8],
[9]. In [6] it has been shown that for the weight-based priority
policies the necessary condition may not be sufficient, and the
sufficient conditions have been characterized. Also, in [8], [9]
it has been shown that for the utility-based policies of the per
user throughput (including PF and other a-fair policies [10]),
the necessary condition is sufficient.

The main result of our paper is the characterization of the
prerequisites under which the necessary condition is sufficient
for a general class of rate-based priority policies. The priority
of a flow can be any monotonously increasing function of its
instantaneous rate. The rate-based priority policies include as
special cases the weight-based strategies in [6] representing
the case of a linear priority function, and the schedulers based
on the cumulative distribution function of the instantaneous
rate [11], which corresponds to a non-linear priority function.
Unlike in [6], we allow the same priority to appear between the

flows of different classes, which is an essential extension when
the transmission rates take values in a finite set. Moreover,
we do not restrict ourselves to the randomized tie-breaking
rule (as in [6]) but allow any rule within priority classes. The
result holds for arbitrary flow size distributions. For the rate-
based priority policies for which the necessary condition is not
sufficient, a more stringent condition is derived that guarantees
stability in the case of two traffic classes.

In addition to the stability analysis, we evaluate the per-
formance of different policies by means of simulations. We
experiment with a number of rate-based priority policies, e.g.,
the RB policy, as well as with utility-based policies, namely
PF and the a-fair policy with o = 2 (minimizing the so-called
potential delay [12]). The results show the potential instability
problems of certain priority policies. Also, while some of the
schedulers may be stable, the resulting performance can be
rather poor. We then experiment with ideas to minimize the
flow-level delay. Assuming that the base station does not use
instantaneous rate information, the system can be modeled as
an M/G/1 queue and the benefits of size-based scheduling
prove to be significant, see [13]. However, combining size-
based and opportunistic scheduling is difficult and no strong
structural results on the optimal policy exist. Our experiments
propose that if the scheduler can use instantaneous rate infor-
mation, the size-based information has a minor role. Instead,
the flow level approach can be used for the optimal choice of
a channel-aware scheduler, e.g., among the a-fair schedulers.

The paper is organized as follows. In Section II we define
our model, while the used policies are introduced in Sec-
tion III. Section IV gives the stability results of the paper.
Numerical results and simulation studies are presented in
Section V, and conclusions are given in Section VI.

II. MODEL AND PRELIMINARIES

We consider downlink data transmissions in a cellular sys-
tem, where the base station always transmits to one single user
within a time slot, as in 1XEV-DO systems. The traffic consists
of elastic flows (corresponding roughly to file transfers) that
the users are downloading through the base station. The flow
sizes, X; (in bits), are independently and identically distributed
with mean Z = E[X]. In the rest of the paper we refer to flows
and users interchangeably.

The achievable rate (in bps) of a flow with index ¢ in a time
slot ¢ varies over time according to some stationary and ergodic
process R;(t) taking values in a finite set R = {ry,...,r;}
such that r; < ... < r;. The finiteness and discrete nature of
the set is motivated by the fact that in the practical systems,
the achievable rates are defined by the adaptive coding and
modulation employed in the system which render the set of
achievable rates discrete and finite. In addition, we assume
that the rate processes are independent from each other.

We assume that there are K different user classes. Within
each class k, the rate processes are assumed to be identically
distributed. Denote

Fy(r)y=P{Ry <r}, r>0,

where R) denotes a generic random variable with as distribu-
tion the stationary rate distribution of class k. Let 7, = E[Ry].
Also, let Ry, denote the set of possible class-k rate values,

Rk:{TERZP{Rk:T}>O}.

Without loss of generality, we assume that R = R;U.. .URk.
Denote the highest rate related to user class k by

ri, = max Ry,
and the second highest rate by
ri =max(Rg \ {r;}).

All these statistical properties of various rate processes are
assumed to be known, e.g., via measurements, for the base
station when making the scheduling decisions.

The different user classes can model, e.g., the fact that
users may have channels with a different quality. In a practical
system, if the mean SNR (signal-to-noise-ratio) is very low it
can render the probabilities of the highest rates astronomically
small. This situation can be modeled by setting the probabil-
ities of such rates equal to zero for the corresponding class.

We consider a dynamic setting where the set of flows, N (),
varies randomly over time ¢. Let Ny (¢) denote the subset
consisting of class-k flows in the system at time ¢. We assume
that new flows of class k arrive according to an independent
Poisson process with rate A;. The total arrival rate is denoted
by A = A1 +...+ Ak The traffic load of class & (with respect
to its maximum rate) is denoted by pr,

AL T

*
pk_ *
Tk

and the total load by p* = p] +... 4 pJ%. A flow departs from
the system as soon as all its X; bits have been transmitted.
The amount Y;(¢) of remaining bits of flow ¢ decreases with
rate R;(t) if flow ¢ is scheduled for time slot .

We assume that the base station perfectly knows the rate
R;(t) of each flow i € N (t) in the beginning of each time
slot t when making scheduling decisions. Based on these rates,
exactly one of these flows, I(t) € N (t), is scheduled for time
slot ¢ (assumed that N (t) # 0). If N'(t) = (), then we define
I(t) = 0. Note that the scheduling policies we consider are
work-conserving.

In this paper, we consider the system in the limit when the
length of the time slot goes to zero, similarly as in [6], [8],
[14], and analyze the stability of different rate-based (channel-
aware) priority scheduling policies.

ITI. DIFFERENT POLICIES
Here we present the different schedulers that are analyzed
in the paper.
A. Rate-based priority policies

The rate-based schedulers defined below only use informa-
tion related to the channel state R;(t) to define the priority
P;(t) of any flow i at time ¢. A priority class consists of flows
with the same priority. Ties within a priority class are broken,

e.g., randomly or using information of the remaining flow
sizes Y;(t) (if available). Park et al. [11] call these schedulers
memoryless, since they just utilize the instantaneous values of
the rate processes (but not the history).

Definition 1: A scheduling policy 7 is said to be a rate-
based priority policy if, for each user class k, there is a
strictly increasing real-valued function hy(r) such that P;(t) =
hi(R;(t)), for all flows i in class k and all ¢. Time slot ¢ (with
N (t) # () is allocated to such a flow i* € A(¢) for which

0= 25 PO

Let Py denote the set of possible priorities of user class k,
Pr = {hi(r) : r € Ry}
Denote the highest priority related to user class k by
Dy = hi(ry) = max Py,
and the second highest priority by
pr° = hi(ry") = max(Py \ {py}).

Let P = P; U...U Pgk denote the finite set of all possible
priorities. In addition, let p* = max P.

Known examples of rate-based priority policies are given
below. Before that, we note that if the ties within any priority
class are broken at random, the priorities P;(¢) within any
user class k are independently and identically distributed for
all 7 € Ng(t) so that each flow of that class gets an equal time
share of service.

Borst [6] considered weight-based priority policies, for
which the priority functions hg(r) = wyr are linear with
weights wy > 0. Time slot ¢ is thus allocated to a flow ¢*
for which

W) Ri= (t) = i?ﬁé wy) Ri(t),

where k(i) refers to the user class of flow i. The weight-
based policies that break ties within any user class at random
are called S®-strategies in [6]. Borst assumed that sets Py, are
pairwise disjoint, i.e., all priorities are class-specific, which
precludes all ties across the user classes. However, we do not
make such a restriction in this paper but allow the same priority
to appear in any number of sets Py.

With suitably chosen weights, the highest priority may be
given, e.g., for the flow with the highest instantaneous rate,
or the flow with the highest instantaneous relative rate (with
respect to the mean rate of that class), or the flow with the
highest instantaneous proportional rate (with respect to the
maximum rate of that class). Next we consider some important
special cases for selecting the weights.

The absolute rate priority policies are greedy policies max-
imizing the instantaneous transmission rate. They are weight-
based policies with weights wy = 1 for all £ so that time slot
t is allocated to a flow ¢* for which

Ri* (t) = max RL(t)

1
1EN(t) M

The absolute rate priority policy that breaks ties within any
priority class at random is called the MR (Maximum Rate)
policy.

The relative rate priority policies, instead, are based on the
relative user rates. They are weight-based policies with weights
wy, = 1/7 so that time slot ¢ is allocated to a flow ¢* for which

R (1) Ri(t)

— = max ——. ()
Th(i*) 1EN (L) Th(s)

The idea is to select a user which has good channel quality
relative to its expected quality. The RB (Relatively Best)
policy introduced in [5] breaks ties within any priority class
at random.

Another class of weight-based policies, which we call the
proportional rate priority policies apply weights wy, = 1/r}
so that time slot ¢ is allocated to a flow ¢* for which

Lj* ® _ nax R—(t) 3)
rk(i*) €N (t) rk(i)
The idea here is to select a user whose channel quality is
good relative to its own best quality. Note that the priority
of the maximum rate of user class k is the same for all
classes, ie., p; = hi(r;) = 1 = p* for all k. Thus, all the
flows with their own maximum rate are in the same highest
priority class for sure. The proportional rate priority policy
that breaks ties within any priority class at random is called
the PB (Proportionally Best) policy.

An example of a rate-based priority policy for which the
priority functions hy(r) are non-linear in general is provided
by Park et al. [11], who introduce the cumulative distribution
function based priority policies for which hy,(r) = Fy(r)Y/%x
with weights wy, > 0. Thus, time slot ¢ is allocated to a flow
1* for which

Fiiny (Ri= (1)) = max Figy (Ri(t)/ .

4
ieEN(t) @

They have the property that the priority of the maximum rate
is the same for all user classes, p; = hi(rf) = 1 = p* for
all k, just like for the proportional rate priority policies. The
cumulative distribution function based priority policy that has
constant weights w, = 1 for all k£ and breaks ties within
any priority class at random is called the CS (CDF-based
Scheduler) policy. It is easy to see that, for the CS policy, the
priorities P;(t) are independently and identically distributed
for all i € N (t) so that each flow gets an equal time share
(in the limit where the time slot length goes to 0). We also
note that the CS policy is closely related to the score-based
scheduler defined in [15]. In the score-based approach, the user
to be scheduled depends on the rank of the instantaneous rate
among the rate values of the recent history. The CS policy
corresponds to the score-based scheduler with an infinitely
long memory.

B. Utility-based policies

At the flow level a natural abstraction of the wireless chan-
nel is offered by the throughput experienced by the flows. The
scheduler can use, e.g., exponential smoothing to estimate the

throughput of different flows. Let T;(¢) denote the throughput
of flow ¢ up to time ¢, and let U () be a strictly concave utility
function of throughput 6. It has been shown in [4] that, for a
fixed set of flows, the total sum of the utilities,), U(7;(t))
is maximized (in a certain asymptotic sense with the time
constant of exponential smoothing approaching infinity) by a
simple gradient-based rule. Based on this, we formulate the
following definition for the utility-based scheduling policies
(in our wireless context).

Definition 2: A scheduling policy 7 is said to be a utility-
based policy if there is a strictly concave and differentiable
(utility) function U () and the decisions are made according to
the following gradient-based rule. Time slot ¢ (with N (t) # ()
is allocated to such a flow i* € N/(¢) for which

i = arg max Ri(t) U'(Ti(t)).

Note that the utility-based policies essentially do not have
any ties to be broken since the throughput 7;(t) is a continuous
quantity (unlike the service rate R;(t) in our model).

A reasonable general form for the utility function is given
by the notion of a-fairness, see [10], for which

v | logé, ifa=1,
U(6;0) = { (1 —a)~ 9=, otherwise,
where 6 denotes the throughput and o > 0 is a fairness

parameter.

In particular, if a = 1, the utility function corresponds to the
well-known proportionally fair allocation that asymptotically
maximizes Y, log T;(t) for a fixed set of flows [16]. In this
case, the scheduler selects flow ¢* for which

o R;(t)
PTEEE T
The above scheduler is referred to as the PF policy.
Another useful choice is a = 2, in which case the utility
optimization is equivalent with minimizing asymptotically
>-; 1/T;(t) for a fixed set of flows, which is known as mini-
mizing the sum of potential delays [12]. Note that the physical
unit of the above is equal to s/bit, i.e., a unit somehow related
to the flow-level delay. Thus, we define the PD (Potential
Delay minimization) policy as a scheduler that selects flow
1* for which Ri(t)
£ T ©

IV. STABILITY RESULTS

(&)

Here we present the stability results for the model. The
results are established using intuitive arguments to give the
reader the insight behind the results.

We refer to as channel-aware schedulers all schedulers that
utilize instantaneous rate information, as in all the schedulers
of Section III. If the base station does not know the instanta-
neous rates and performs, e.g., simple round robin scheduling
(RR), the scheduler is referred to as non-channel aware. Note
that using knowledge of remaining flow sizes could still be
exploited, cf. use of Shortest Remaining Processing Time
(SRPT) as studied in [13].

A. Stability under necessary condition

If there is only one traffic class, i.e., K = 1, the situation
corresponds to the symmetric setting in [6], and the result
states that p* < 1 is a sufficient stability condition for linear
weight-based strategies. It is easy to see that the same applies
in fact to any rate-based priority policy.

Next consider the case when K > 2. From the classic
queueing theory, we know that for any scheduling policy that is
not channel-aware, such as RR or SRPT, the necessary stability
condition is as follows:

*TT * T}
1 K
Borst and Jonckheere [8] showed that for channel-aware
policies the necessary stability condition reads as

pr=pi Atk <1, ®)

which is clearly less stringent than (7), since 7} /7, > 1 for
all k. In addition, Borst and Jonckheere showed that all utility
based a-fair policies are stable under condition

pt <1)

Below we argue when this condition is sufficient for the
stability of rate-based priority policies. As a consequence we
find that (9) is a sufficient stability condition, e.g., for the PB
and CS policies.

Result 1: Consider a rate-based priority policy 7. If pj, >
p;* for all k # [, then 7 is stable under condition (9).

Proof: We consider the claim in the case K = 2. The
generalization to the case K > 2 is straightforward (but
tedious to write out). The argumentation is based on showing
that p* > 1 whenever the system is unstable.

1° Assume first that p] = p3. Thus, p] = p5 = p* implying
that R;(t) = ry ;) for any flow i with P;(t) = p*, where k(i)
refers to the user class of flow 7. Consider now what happens
if the system is unstable. Consequently, the number of users
grows without limits (as a function of time ¢), implying that
the probability that there is at least one user with the highest
priority p* approaches 1 (as a function of time ¢). This implies
that, in the long run, class-1 traffic is served with rate] and
class-2 traffic with rate 75. Since the system is unstable (and
the scheduling policy work-conserving), the proportion of idle
slots goes to zero in the long run, which is now equivalent
with the requirement that

« MT AT

™ Ty

2° Assume now that p > p5 > p7*. Consider what happens
if user class 1 is unstable. Consequently, the number of class-1
users grows without limits (as a function of time t), implying
that the probability that there is at least one class-1 user with
the highest priority p* = p] approaches 1 (as a function
of time t). Since pj > p5, this implies that, in the long
run, class-1 traffic is served with rate r while class-2 traffic
remains without service. Since the system is unstable (and
the scheduling policy work-conserving), the proportion of idle

slots goes to zero in the long run, which is now equivalent
with the requirement that \yz/r; > 1. Consequently,
p*>pi= M > 1.
1

Consider now what happens if user class 1 is stable but
class 2 is unstable. Consequently, the number of class-2 users
grows without limits (as a function of time t), implying that
the probability that there is at least one class-2 user with the
highest class-wise priority p3 approaches one (as a function
of time t). Since p5 > p7*, this implies that, in the long run,
class-1 traffic is served with rate 7] and class-2 traffic with
rate 5. Since the system is unstable, the proportion of idle
slots goes to zero in the long run, which is now equivalent
with the requirement that

T
3° By symmetry, the claim is also valid in the remaining
case p5 > pi > p5*.]
In particular, if p; = p* for all k, then policy 7 is stable
under condition (9), which gives two corollaries below. Note
further that the argumentation of Result 1 does not make any
assumptions how the possible ties are broken within priority
classes. Thus, the stability condition (9) is independent of the
tie-breaking rule (as long as it is work-conserving).

Corollary 1: Any proportional rate priority policy (includ-
ing PB) is stable under condition (9).

Corollary 2: Any cumulative distribution function based
priority policy (including CS) is stable under condition (9).

Corollary 3: If rj, = r; for all user classes k, then any
absolute rate priority policy (including MR) is stable under
condition (9).

Corollary 4: If v}/, > r*/F for all k # [, then any
relative rate priority policy (including RB) is stable under
condition (9).

If we make an additional assumption that ties within a
priority class are broken at random, the inequality in Result 1
does not have to be strict, i.e., we get a slightly looser
sufficient condition. We state the result here but the detailed
argumentation is omitted due to lack of space.

Result 2: Consider a rate-based priority policy 7 that breaks
ties within any priority class at random. If p; > p;* for all
k # 1, then 7 is stable under condition (9).

The argumentation is very similar to the one in Result 1.
The intuitive reasoning for the result is that at the stability limit
some class k& becomes unstable and the number of customers
in that class goes to infinity and with high probability there
is at least one user with the highest index p;. Then, even
though according to Result 2 class-/ users may compete with
class-k users, the fact that class £ is unstable implies that the
number of class-k customers goes to infinity and hence the
scheduler when making a random selection selects with high
probability a user from class-k (remember that class [stays
stable and hence the number of class-I users remains finite).
This guarantees that at the stability limit class k is served at
its own highest achievable rate 7.

B. Further stability conditions for two classes

Here we make a further restriction to derive a sufficient
stability condition for the policies that do not satisfy the
requirement presented in Result 2. From this on, assume that
K = 2, ties are broken randomly, and consider the two
remaining cases, p; < p5* and p5 < pi*. Since the two cases
are symmetric, it is, in fact, sufficient to consider just one of
them. Thus, we may assume that p5 < p7™*.

Let Ny(t) denote the number of flows in a “restricted”
system consisting of modified class-1 type flows that arrive
with original rate A\; and original flow size distribution with
mean Z, but the rate processes Rz(t) are restricted from the
original processes R;(t) as follows:

Ri(t) = Ri()1{na (ri(0))>03)-

Note that the modified rate processes are still IID stationary
and ergodic processes but the stationary distribution is differ-
ent:

r < 7Ty,
otherwise.

Fl(fl)a

Fl(r) = P{Rl <r}= { Fur),

where 7y = max{r € Ry : hi(r) < p3}. In addition, let
M, (t) = max; R;(t). Thus,

P{M,(t) <7 | Ni(t) =n} = Fy(r)".

Note that the conditional probability above is independent of
t. In particular, we get

P{hy(My(t)) < p3 | Ni(t) =n} = Fi (7)™

We assume that the modified system is operated with the same
scheduling policy as the original one. Since there are no class-2
flows in this modified system and ties within any priority class
are broken at random, the resulting system is a generalized
M/G/1-PS queue [17] with state dependent service rates

Gi(n) = ZBIL (1) | Ny(1) =]

Since G (n) — r}/Z, a sufficient condition for the stability of
this modified system is p] < 1. In such a case, the stationary
distribution (which is insensitive to the flow size distribution as
long as the mean flow size = remains the same) is as follows:

-1
A7 = A
[0, C~T'1(”) (,nz—:o [0, él(m)) '

Applying now the results presented in [6, Sect. V] to our
case p5 < pi*, it can be deduced that a sufficient stability
condition for S%-strategies (which are weight-based priority
policies) is as follows:

P{h (M) > ps} +p5 <1,

where P{hl(M1> > p;} = ZZO:O P{Nl = n}(l — Fl(fl)n).
The result can be generalized to any rate-based priority

policy that breaks ties within any priority class at random by

using similar intuitive arguments as for Results 1 and 2.

P{len}:

(10)

Result 3: Assume that X = 2, and consider a rate-based
priority policy 7 that breaks ties within any priority class at
random.

(1) If p5 < p7*, then 7 is stable under condition

P{hi(My) > p3} + p5 < 1. (11)
(i1) If p] < p3*, then 7 is stable under condition
pi + P{ha(My) > pi} < 1. (12)

C. Impact of a continuous rate distribution

Now consider the case where the rate processes R;(t) take
values in a continuous but bounded interval (instead of a
finite set). From Corollaries 1 and 2, it can be deduced that
the proportional rate and CDF-based priority policies are still
stable under condition (9). If it is further assumed that the
support of the stationary distribution is the same for all user
classes k, also absolute rate priority policies are stable under
condition (9), as deduced from Corollary 3. However, for the
relative rate priority policies a sufficient condition for the
stability is more stringent than condition (9).

V. NUMERICAL RESULTS

Here we illustrate the properties of the different schedulers
in an asymmetric scenario with two user classes, K = 2,
where we have J = 11 possible rates as in the 1XEV-DO
system with the rates varying between 38 kbit/s to 2.4 Mbit/s.
The following rate-based priority policies are studied: MR,
RB, PB, and CS, defined by (1), (2), (3), and (4), respectively.
From the utility-based schedulers, we consider the PF and PD
policies, defined by (5) and (6), respectively.

For the two user classes, the sets of achievable rates are
given by R1(t) = {r1,...,7;, } and Ra(t) = {r1,...,7rs},
i.e., class-2 flows can achieve all J = 11 possible rates, while
the maximum rate of class-1 flows is limited to r;, < r;. We
assume that the stationary rate distributions of class 1 and 2
flows are truncated geometric distribution with parameters ¢;
and ¢, allowing a straightforward parametrization of the rates.
Thus, the rate distributions for the two classes are given by

J J

q1 ')
P{Ri=rj} = —"1— P{Ry=r;} = —2—.
g S

In the following, we use ¢; = 1, g2 = 0.5 and j; = 7. In this
setting, both the MR policy and the RB policy suffer from
instability, compared with the necessary condition (9).

A. Simulation implementation

The simulation has been implemented in discrete time and
the instantaneous rate of each flow in the system is drawn
independently from the given rate distributions for each class.
Flows arrive according to a Poisson process with \; = Ay =
1/2, and the flow sizes are exponentially distributed. Thus, in
the results E[N| = E[D], where D denotes the flow delay.
To see the performance, we simulate the system as a function
of the load p* = pi + p5 = (A\1/rj, + A2/rs)E[X]. Note that
to vary the load, since \;’s are fixed, we vary the mean size
of the flows F[X].

The idea is to simulate the system so that the time-scale
separation is approximately realized, and hence we used a
time slot duration of 0.01 time units, ensuring that a flow
completion typically requires many time slots. To verify that
the estimates correspond to the stationary behavior of the
system even at loads close to the stability limits, the mean
delay is estimated directly from the realized delays of the
flows that leave the system and also from the time integral
of the number of users in the system. We have verified that
these two statistics are very close to each other for all loads.
In each simulation run, there were at least 3 - 10° arrivals (up
to 10 for the highest loads) with the initial transient handled
by discarding the statistics related to first 10° arrivals, and the
final results are an average of 10 runs.

In the implementation of the utility-based policies (i.e., PF
and PD) we have not used exponential smoothing of the rates
to estimate the throughput. Instead, in the simulation at time ¢
we utilize knowledge of the time flow ¢ has been in the system
D;(t) and the amount of bits served from flow 7, denoted by
A;(t). Then the throughput of flow ¢ at time ¢, T;(t), is directly
given by T;(t) = A;(t)/D;(t).

B. Performance of randomized policies

First we consider the overall mean flow delay performance
of the basic policies that use randomization to break the ties.
The results are shown in Figure 1. In the figure, the left panel
gives, as a function of the load p*, the mean flow delay
E[D] for the MR, RB and PF policies. The vertical lines
(approximately) at p* = 0.84, p* = 0.65, and p* = 0.12
correspond to the stability limits of the MR and RB policies
from (12), and that of the non-channel-aware M/G/1 system,
respectively. The MR and RB policies both achieve good
performance up to a relatively high load as compared with the
M/G/1 limit. However, close to the stability limit the delays
start rising rapidly. In this case, the MR policy is actually better
than PF until the load is close to the MR stability limit. The
center panel gives the overall mean delay of the stable policies
(PF, PD, CS, and PB) as a function of the load. Clearly, it can
be observed that, while the policies are stable up to a very high
load, the delay (and the number of customers) is very large.
In the center panel, the relative performance of the policies
can not be easily seen, and thus in the right panel we have
plotted the ratio of the mean delay of PB, CS, and PD to the
mean delay of the PF scheduler. It can be observed that, while
the PF scheduler is performing best for lower loads, at high
loads the PD scheduler is the best (recall that the PD policy
minimizes the potential delay, i.e., the mean delay per bit).

Next we study the fairness of the policies. The results are
shown in Figure 2, where the ratio of the mean class-2 flow
delay to the mean class-1 flow delay is given as a function of
the load p* for the MR and RB policies (left panel), the PF and
PD policies (center panel), and the PB and CS policies (right
panel). The results for MR and RB (left panel) demonstrate
that in the beginning the mean class-2 flow delay is greater
than for class 1, but, as the stability limit is approached, class-1
delay grows because instability in this case is caused by class

250 800
PB
[20r PD
200 PF 600l 2
o
_. 1501 _ Q CS
) 8 400} g Lor
00t u £
5ol RB 200/ 810
MR //
0 L L L L O L L L L L
0.0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1.0
I}* p* [)*
Fig. 1. The mean flow delay E[D] as a function of p* for unstable MR and RB policies (left panel), stable policies (center panel) and the performance

ratio of the stable policies relative to PF policy (right panel).

6 50
s 251
PF 401
'DT_J 4F =] 2.0¢ ’DT_;
a
iy o MR g PD o 30t
m =15 = PB
o, o o, 20¢
w RB 10 w
1 10f cs
0.5¢
O L L L L L L O L L L
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10
p* p* p*
Fig. 2. The ratio of the mean class-2 flow delay to the mean class-2 flow delay E[D2]/E[D1] as a function of p* for unstable MR and RB policies (left

panel), utility-based policies (center panel), and the PB and CS policies (right panel).

1 becoming unstable. Note that the ratio of the delays stays
quite moderate as long as load is not too close to the stability
limit. For the utility-based policies, PF and PD (center panel),
the delay ratio behaves in a very controlled manner. The delay
ratio under the PF policy varies more as the load changes than
under the PD policy. Also, both policies are equally fair (ratio
equals one) at the same value of the load. Finally, by looking
at the results of the PB and CS policies (right panel), it can
be observed that, although the policies are stable in the same
sense as the PD and PF policies, they are very unfair.

To minimize the flow delays, we also experimented with
policies where, instead of random tie breaking, ties are broken
using SRPT-like information about the remaining amount of
bits left, similarly as in [14]. The results are shown in Figure 3.
In the figure, the dashed lines correspond to the randomized
basic policies MR and RB, and the corresponding SRPT
variant is depicted with a solid line. Also, the straight vertical
lines give the stability limits of the M/G/1 queue, RB policy
and MR policy, cf. Figure 1. Note that the limits do not hold
for the SRPT variants. The results indicate that, even though
SRPT is known to be optimal in the M/G/1 queue, in this
context it does not necessarily give any benefit (cf., MR and
SRPT-MR), leading to the conclusion that utilization of size
information at the time slot level is not meaningful.

C. Optimizing the a-fair policy

Recall that the utility-based policies can realize bandwidth
sharing according to the notion of a-fairness. In the class of

10

Fig. 3. The performance of SRPT-like tie-breaking heuristics as a function
of the load p* for randomized MR and RB policies (dashed line) and their
SRPT-like variants (solid lines).

a-fair policies, o = 0 corresponds to the MR policy', o = 1 to
the PF policy, a = 2 to the PD policy, and o = oo is the max-
min fair policy. Thus, the smaller o is the more aggressively
the policy favors users with a high instantaneous rates.

As seen in Figure 1, the PD policy can outperform the PF
policy at high loads. The natural question then arises, what
is the optimal value of a in the general utility-based policy
for a given value of the load? To get some insight to this,
simulations were performed with the utility-based scheduler
for different values of o and load p*. The results are shown in
Figure 4 where for each value of the load we have computed
the mean flow delay at a given value of « relative to the

"Note that the stability of utility-based policies assumes a strictly concave
utility function and oo = O does not satisfy that, see [8].

g
IS

Performance ratio
e o
= N w

[y
o
T

o
©
o

Fig. 4. The performance ratio of a-fair policies as a function of parameter
« for three different values of the load p*.

minimum mean delay over the simulated values of o (with the
same load). Thus, for each load the performance ratio equals
one for the value of « that achieved the smallest delay. From
the figure it can be seen that the optimized value of o depends
on the load so that for smaller values of load the policy should
be more aggressive (minimum is achieved with o = 0.1 or
o = 0.5), while at higher loads there appears to be a minimum
at a = 2 (the PD policy). The PF policy (o« = 1) seems to
offer an excellent compromise so that it performs well both
under low and high loads.

VI. CONCLUSIONS

We have analyzed the stability properties of channel-aware
priority-based policies. These policies represent a generaliza-
tion of many well known channel-aware policies, including the
weight-based strategies in [6]. The general prerequisites when
the policies are stable under the necessary condition have been
derived, which holds for arbitrary tie-breaking policies within
a class and is independent of the flow-size distribution. Also,
when the requirements of the necessary condition are not met,
a more stringent sufficient condition has been derived for the
case with two user classes.

We also made simulations of certain priority-based policies
with randomized tie breaking (MR, RB, PB and CS) and
two utility-based policies (PF and PD) to investigate their
performance. The results showed that MR and RB perform
quite well but become unstable well before the limit corre-
sponding to the necessary condition. While, the PB and CS
policies are stable up to the necessary limit, their overall
performance is quite poor and unfairness is a major issue.
The PF and PD policies are both stable policies up to the
necessary limit. For a wide range of loads, the PF policy
performs better. Only at very high loads the PD scheduler gives
slightly better performance than PF. Our conclusion is that the
PF policy is a robust policy which provides very good fairness
properties and overall performance across all values of the
load. Experiments with SRPT-like heuristics for tie breaking
revealed that applying size information at the time slot level
does not necessarily improve performance.

As an on-going work, we are strengthening the intuitive
arguments used to prove the results in this paper by a more
formal mathematical treatment. A further fundamental open

problem is how to minimize the flow level delay by using
size information. We believe that the proper approach for using
flow-level information on sizes is to use it to parameterize the
packet-level scheduler (cf., results in Section V-C) so as to
minimize a given performance criterion in a similar manner as
a-fair policies optimize a certain utility function. Obviously
the objective function should be then directly related to the
flow-level delay.

ACKNOWLEDGEMENT

This research has been partially supported by the AWA
(Advances in Wireless Access) project, funded by Ericsson,
Nokia-Siemens Networks and TEKES. Also, fruitful discus-
sions with Prof. Sem Borst are gratefully acknowledged.

REFERENCES

[1] P. Viswanath, D. Tse, and R. Laroia, “Opportunistic beamforming using
dumb antennas,” IEEE Transactions on Information Theory, vol. 48,
no. 6, pp. 1277-1294, jun 2002.

[2] A. Stolyar, “Maxweight scheduling in a generalized switch: state space
collapse and equivalent workload minimization in heavy traffic,” Annals
of Applied Probability, vol. 14, no. 1, pp. 1-53, 2004.

[3] P. Liu, R. Berry, and M. Honig, “A fluid analysis of a utility-based
wireless scheduling policy,” IEEE Transactions on Information Theory,
vol. 52, no. 7, pp. 2872-2889, July 2006.

[4] A. Stolyar, “On the asymptotic optimality of the gradient scheduling
algorithm for multiuser throughput allocation,” Operations Research,
vol. 53, no. 1, pp. 12-25, 2005.

[5] F. Berggren and R. Jantti, “Asymptotically fair transmission scheduling
over fading channels,” IEEE Transactions on Wireless Communications,
vol. 3, no. 1, pp. 326-336, Jan. 2004.

[6] S. Borst, “User-level performance of channel-aware scheduling algo-
rithms in wireless data networks,” IEEE/ACM Transactions on Network-
ing, vol. 13, no. 3, pp. 636-647, 2005.

[71 M. Andrews, K. Kumaran, K. R. A. Stolyar, R. Vijayakumar, and
P. Whiting, “Scheduling in a queuing system with asynchronously
varying service rates,” Probability in the Engineering and Informational
Sciences, vol. 18, no. 2, pp. 191-217, 2004.

[8] S. Borst and M. Jonckheere, “Flow-level stability of channel-aware
scheduling algorithms,” in Proc. of WiOpt, April 2006, pp. 1-6.

[9] S. Borst, “Flow-level performance and user mobility in wireless data
networks,” Philosophical Transactions of the Royal Society, vol. 366,
pp. 2047-2058, 2008.

[10] J. Mo and J. Walrand, “Fair end-to-end window-based congestion

control,” IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp. 556—

567, 2000.

D. Park, H. Seo, H. Kwon, and B. Lee, “Wireless packet scheduling

based on the cumulative distribution function of user transmission rates,”

IEEE Transactions on Communications, vol. 53, no. 11, pp. 1919-1929,

nov 2005.

L. Massoulié and J. Roberts, “Bandwidth sharing: objectives and al-

gorithms,” IEEE/ACM Transactions on Networking, vol. 10, no. 3, pp.

320-328, 2002.

S. Aalto and P. Lassila, “Impact of size-based scheduling on flow-level

performance in wireless downlink data channels,” in Proc. of ITC-20,

Jun. 2007, pp. 1096-1107.

P. Lassila and S. Aalto, “Combining opportunistic and size-based

scheduling in wireless systems,” in Proc. of ACM MSWiM, 2008, pp.

323-332.

[15] T. Bonald, “A score-based opportunistic scheduler for fading radio

channels,” in Proc. of European Wireless, Feb. 2004, pp. 283-292.

F. P. Kelly, A. Maulloo, and D. Tan, “Rate control in communication

networks: shadow prices, proportional fairness and stability,” Journal of

the Operational Research Society, vol. 49, pp. 237-252, 1998.

[17] J. Cohen, “The multitype phase service network with generalized
processor sharing,” Acta Informatica, vol. 12, pp. 245-284, 1979.

(11]

[12]

[13]

[14]

[16]

