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Abstract We study the maximum weight independent

sets of links between nodes distributed randomly in an
infinite plane. Different definitions of the weight of a

link are considered, leading to slight variations of what

is essentially a spatial reuse problem in wireless multi-

hop networks. A simple interference model is assumed

with the interference radius equaling the transmission
radius. In addition to unidirectional interference from

a transmitter to the receivers of other links, also an

RTS/CTS-type bidirectional handshake is considered.

We study both the case where the transmission radius
is fixed and tunable through power control. With a

fixed transmission radius, we derive asymptotic results

for the low and high density regimes. The main con-

tribution is in the numerical results for the maximum

weight, establishing some previously unknown parame-
ters of stochastic geometry. The results are obtained by

the Moving Window Algorithm that is able to find the

maximum weight independent set in a strip of limited

height but unlimited length. By studying the results
as a function of the height of the strip, we are able to

extrapolate to the infinite plane.
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1 Introduction

Consider the following fundamental problem: given a

network in an infinite plane with nodes placed accord-
ing to a planar Poisson process and connected to each

other via wireless links with given weights and a given

transmission range, what is the total weight (per unit

area or per node) of the maximum weight set of non-

interfering links under two Boolean-type interference
models, the interference range being assumed to equal

the transmission range? In the terminology of graph

theory, the set of non-interfering links maps to what

is called an independent set; we use these terms in-
terchangeably. The problem is purely one of stochastic

geometry, but it has a close connection to modeling the

capacity of large-scale wireless multihop networks, and

this paper is written with that viewpoint in mind.

In this paper1, we study the above problem with
three different kinds of weights: A) unweighted, i.e.,

each link has the weight one, B) weighted by the length

of the projection of the link in a given direction, e.g., on

the x-axis, and C) weighted by the length of the link.
In case A, only the number of links in an independent

set, i.e., the size of the set is counted. The problem is

then just the maximum independent set problem. Case

B corresponds to the concept of forwarding capacity,

as the x-progress tells us how much traffic the network
can instantaneously forward in a given direction. Case

C is similar but without sense of direction.

Each of these three cases defines a challenging prob-

lem in stochastic geometry. Finding the maximum in-
dependent set for a given finite graph is known to be

an NP-complete problem, and in our case the graph

is even infinite. However, in the present problem the

1 A short version of the paper [16] has been published at ITC 21
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graphs are not arbitrary but the interference is local-

ized; links separated far enough do not interfere with

each other. In our approach, we will efficiently exploit

this special structure of the graph.

The results are obtained by applying the Moving
Window Algorithm, originally developed in a different

context in [19], but fine-tuned for the present applica-

tion. The algorithm is able to find the maximum weight

of an independent set for any network realization in a
strip of limited height but unlimited length by moving

a window along the strip. The window is high enough to

cover the strip in the vertical direction and wide enough

so that no two links on different sides of the window

interfere with each other. The algorithm maintains the
cumulative weight of the maximum weight independent

set so far conditioned on the choice of the conflict-free

set in the window. By studying the results as a function

of the height of the strip, we are able to extrapolate to
the infinite plane.

We study the problem with two different assump-

tions on the interference model. In the Boolean inter-

ference model, a transmission on a link is successful

if there are no other active transmitters whose trans-
mission range reaches the receiver. In the bidirectional

Boolean interference model, a successful transmission

requires that both the sender and the receiver are out-

side the range of competing transmissions. This models,
e.g., the effect of RTS/CTS handshaking in 802.11 net-

works during which the transmitter and receiver both

need to be able to hear each other. In the basic case the

transmission range is assumed to be fixed. Also the im-

pact of power control is studied where the transmission
range can be adjusted up to a given maximum radius.

The idea is that not every sending node uses the maxi-

mum radius but a radius just large enough to reach the

receiving node, thereby minimizing the interference.

Our analytical contribution comprises of asymptotic
analyses of the different cases A, B, and C with a fixed

transmission radius. The asymptotics are analyzed both

when the mean number of neighbors tends to zero and

to infinity (loosely speaking, the low and high density
asymptotics). In the previous case, the analysis is sim-

ple and the results are exact. In the high density limit,

the problem is more intricate, and we present only a

rudimentary analysis, which however, we believe, cap-

tures the essential dependency. The asymptotic behav-
iors at both ends yield insight on the behavior also in

the intermediate range.

The main contribution of this paper is in the numer-

ical results representing the total weight of the maxi-
mum independent sets of the studied systems as a func-

tion of the mean neighborhood size. In the case of a

fixed transmission radius, these curves have a maxi-

mum, which is of special interest in defining the best

that can be obtained, as well as the optimal value of

the transmission radius in relation to the mean distance

between the nodes. In the case of an adjustable trans-

mission range (up to a given maximum), no maximum
exists, since all the independent sets that are feasible

with a given maximum range are feasible when the max-

imum range is made larger. Similarly, we see that the

results with an adjustable range are always as good as
or better than when only the maximum range can be

used since anything that can be done with a fixed range

can be done with an adjustable range.

The algorithm is computationally demanding, espe-

cially for large windows and high mean neighborhood
sizes. The results are presented for as large a parameter

range as it has been possible to proceed. For cases A and

B the explored range covers the points where the curves

with fixed transmission range reach their maxima; for
case C this is only attainable with the bidirectional in-

terference model.

The rest of this paper is organized as follows. Sec-

tion 2 presents the related work. In Section 3, we intro-

duce the notation and present scaling considerations to
reduce the unknowns to the minimum. The asymptotic

results are derived in Section 4. In Section 5, we de-

scribe the Moving Window Algorithm. The numerical

results are presented in Section 6, and we conclude in
Section 7.

2 Related work

The graph theoretic correspondence of our problem to
the well-known maximum weight independent set prob-

lem results from the following mapping between the

graph model of the wireless network and the so-called

interference graph. An independent set of links in a

wireless network is an independent set (of vertices) in
the network’s interference graph, where each link corre-

sponds to a vertex, and two vertices are adjacent if the

links interfere with each other. Determining the maxi-

mum weight of an independent set of links is equivalent
with finding the maximum weight independent set in

the interference graph. The maximum weight indepen-

dent set problem is one of the most studied problems in

combinatorial optimization and is known to be NP-hard

for a general graph [7]. The exact solutions of NP-hard
problems can typically be found only for moderate in-

put sizes. For recent results on exact algorithms, see [5]

and its references.

In wireless networking, the question of maximum
weight independent sets of links arises, e.g., in the con-

text of analyzing the local forwarding capacity of mas-

sively dense networks [2,9,10,12] motivated by the fu-
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ture applications of large scale sensor networks. From a

single node’s perspective the surrounding network ap-

pears as an infinite network of randomly placed wire-

less nodes. The solution to the maximum weight prob-

lem (B) gives the maximum instantaneous forwarding
capacity in the neighborhood of the considered node,

which in turn sets an upper bound for the local sus-

tainable mean forwarding capacity, i.e., the average rate

at which traffic can be “moved” in a given direction
[14,15]. (Note that the maximum weight independent

set cannot be used repeatedly for forwarding traffic be-

cause it consists of independent, isolated links that do

not form a connected network.) The concept is similar

to density of progress, see [1,17].
Results like these yield useful information about the

achievable gains from utilizing optimal global coordina-

tion in multihop communications, and thus complement

the well-known scaling results for the capacity of mul-
tihop networks, see [6,8]. The maximum weight inde-

pendent set problem is also related to the challenging

global optimization phase of maximum weight schedul-

ing [18]. To relax the need for any global optimization,

there has been an effort to solve this using distributed
scheduling [11,13].

A spatial reuse problem similar to the one of this

paper has been further studied from the MAC point

of view in [3]. The approaches provided by stochastic
optimization in its various incarnations, like simulated

annealing or the “packing approach” of [4], can also be

used to find the maximum weight independent set. We

believe, however, that the ability of the Moving Window

Algorithm to give exact results in a stripe gives it an
advantage that is hard to beat.

The present paper extends the work of [16] to cover

the much used and in practice relevant bidirectional

interference of IEEE 802.11. For this case, we provide
the asymptotic analysis and the numerical results ob-

tained with the Moving Window Algorithm. Previously,

we have applied the algorithm for case B (weighted with

x-progress) in [15] with unidirectional interference.

3 Preliminaries

As discussed in the Introduction, we consider a system

where the locations of nodes are assumed to obey a

planar Poisson process. The intensity of this process is
denoted by λ. In the basic case, the transmission ra-

dius is fixed to the maximum that is denoted by R. In

the case of power control, the transmission range can

be chosen freely up to this maximum. Thus, the topol-
ogy of the network can be modeled as a directed graph

G = (V, E) where there exists an edge e = (u, v) ∈ E,

between nodes u, v ∈ V if d(u, v) ≤ R, where d(u, v) is

the Euclidean distance between the nodes. If (u, v) ∈ E,

node u is called a neighbor of node v and vice versa.

3.1 Interference

Interference is modeled using two Boolean-type inter-

ference models with the interference radius equaling the

(used) transmission radius. In the first one, the basic
Boolean interference model, a transmission of a unidi-

rectional link interferes with all the receptions inside

its range, implying that a link is only possible if the re-

ceiver hears exactly one transmission (excluding simul-

taneous transmission and reception). Using the above
notations, we see that links a and e interfere with each

other if

d(t(a), r(e)) ≤ R(a) ∨ d(r(a), t(e)) ≤ R(e), (1)

where t(e) is the transmitting node of link e ∈ E, r(e)
the receiving node, and R(e) ≤ R the actual transmis-

sion radius of t(e) that in the fixed case equals the maxi-

mum, R. The Boolean interference model is a rough ap-

proximation of a SINR model with a critical threshold
for reception. It unrealistically allows multiple trans-

missions just outside the range from a receiver, though

these situations are not particularly common in random

node deployments.

In the bidirectional Boolean interference model, both

the origin and destination node transmit during a ses-

sion, and the communication is successful only if neither

of them hears a competing transmission. Thus, the links
a and e interfere with each other if

d(t(a), r(e)) ≤ R∗ ∨ d(r(a), t(e)) ≤ R∗ ∨ (2)

d(t(a), t(e)) ≤ R∗ ∨ d(r(a), r(e)) ≤ R∗,

where R∗ = max{R(a), R(e)}. Bidirectional commu-
nication occurs, e.g., when the transmitter and the re-

ceiver exchange control messages before the actual data

transmission. This is characteristic to the RTS/CTS

handshake of IEEE 802.11.

3.2 Scaling considerations

The beauty of the system with the used interference
models is that there are only two parameters in the

model, λ and R, and there is only one (independent)

dimensionless parameter that can be formed from these

two system parameters. We use the most natural one,
viz. the mean number of neighbors within the transmis-

sion range, denoted by ν,

ν(λ, R) = πλR2. (3)
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In the case of an adjustable transmission range, this

corresponds to the mean number of neighbors with the

maximum transmission radius. With proper scaling con-

siderations, as detailed below, all unknown functions of

the two system parameters can be reduced to functions
of this single variable.

Our goal is to find the maximum weight (or size) of

an independent set of links per unit area in the following

cases:

A. Unweighted,

B. Weighted by the x-progress of the links,
C. Weighted by the length of the links.

In the first case (A), we aim to calculate the maxi-
mum number of links per unit area, denoted by U(λ, R).

By dimensional analysis, we can write

U(λ, R) = λu(ν(λ, R)), (4)

where u(ν) is a dimensionless function of a single vari-

able to be determined. In fact, u(ν(λ, R)) represents the

number of links per node.

The second case (B) differs from the previous as

we are interested in the maximum density of progress,
Ux(λ, R), that is the maximum x-progress (the progress

of the link in a fixed direction, see [1,17]) per unit area,

and by dimensional analysis we get

Ux(λ, R) =
√

λux(ν(λ, R)), (5)

where ux(ν) is another unknown dimensionless func-

tion.

In the last case (C) we are interested in the total

length of the links per unit area, Ul, that can be ex-

pressed with the help of a yet another dimensionless
function ul, exactly as in (B),

Ul(λ, R) =
√

λul(ν(λ, R)). (6)

In short, our task is to find the dimensionless func-

tions u(ν), ux(ν), and ul(ν). In the sequel, speaking
generally we use u∗(ν) to represent any of these func-

tions. The notation U∗(λ, R) is used similarly.

4 Low and high density asymptotics

In this section we consider the asymptotic behavior of

the dimensionless functions u∗(ν) when the mean node

degree approaches zero or infinity. The analysis when ν

approaches infinity is rudimentary but believed to cap-
ture the essential dependency. The obtained theoretical

limits provide useful insight and will be compared to

simulations in Section 6.3.

4.1 Asymptotics in the limit ν → 0

When the mean degree of a node approaches zero, the

same consideration is valid for both interference models.

Basically, it is more about being able to form links than

it is about the links interfering with each other.

In the unweighted case (A), a general upper bound
for the function U , the maximum number of links per

unit are, is given by

U(λ, R) ≤ 1

2
λ(1 − e−ν). (7)

The reasoning with the above inequality is that there

are on the average λ nodes per unit area, and that one
obviously gets an upper bound for U(λ, R) if each node

can freely choose the neighbor to form a link with, with-

out any restrictions imposed by other links. The factor
1
2 accounts for the fact that it takes two nodes to form

a link. The parenthetical expression is the probability
that a node has a neighbor. Written in terms of u(ν)

the upper bound takes the form

u(ν) ≤ 1

2
(1 − e−ν). (8)

It is also obvious that asymptotically when ν → 0 the

upper bound becomes tight, since in the rare cases when
a node has a neighbor within its transmission radius,

they can indeed form a link with a high probability

without any other link interfering. In this asymptotic

regime the probability (1− exp{−ν}) ≈ ν, and we have

u(ν) ∼ 1

2
ν, when ν → 0. (9)

For the case weighted by the x-progress (B), the
same reasoning otherwise applies but instead of the

probability of having a neighbor, we have the mean x-

progress of the link to the furthest neighbor. Hence, the

general upper bound for the function Ux becomes

Ux(λ, R) ≤ 1

2
λR X(ν), (10)

where X(ν) is the mean distance (in units of R) from

a randomly chosen node to its most distant neighbor

node in the x-direction, i.e., absolute value of the x-
distance (if there is none, the distance is taken to be

zero). For u(ν), we have

ux(ν) ≤ 1

2

√

ν

π
X(ν). (11)

When ν is small, X(ν) ≈ 4ν/(3π), where 4/(3π) is the

mean x-distance to a neighbor, and ν is the approxi-

mate probability of having a neighbor. Thus, we have

ux(ν) ∼ 2

3

(ν

π

)3/2

, when ν → 0. (12)
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The third case (C) is similar to the second case, but

we have to replace the x-distance between the nodes by

the actual distance, L(ν). Hence, L(ν) ≈ 2ν/3, and

ul(ν) ∼ 1

3
√

π
ν3/2, when ν → 0. (13)

4.2 Asymptotics in the limit ν → ∞

We now turn our attention to how U(λ, R) behaves for
large λ when R is considered to be fixed and present

a plausible reasoning for the asymptotics. The analy-

sis is different for the unidirectional and bidirectional

interference models.

Unidirectional interference leads to the starting ob-
servation that if the end points of a link can be arbitrar-

ily placed on a continuous plane, then the most efficient

way of packing links is to form vertical columns. The

claim is most obvious in the case with x-progress (B).
There has to be a distance larger than R between two

consecutive links, as illustrated in Figure 1, but the ver-

tical distance between the links can be small. In fact,

the Boolean interference model (unrealistically) sets no

limit on how densely the links can be vertically packed:
two parallel links of maximal length R, however close,

never interfere with each other. This suggests that for a

very high λ, when there are nodes almost everywhere,

the maximum weight independent sets consist of links
forming vertical columns.

In cases A and C, that are undirected, the packing

can be done even more efficiently by changing the direc-

tion of every other column. This way a small distance

ε is enough between the columns as the endpoints near
each other are all either transmitters or receivers.

R R+Ε R R+Ε R R+Ε R

Fig. 1: On a continuous plane links can be efficiently stacked
in vertical columns (case B). In cases A and C, links can be
packed even tighter since ε margin is enough between columns

transmitting in alternating directions.

The next step is to estimate the expected vertical

distance between the links. Based on the above obser-

vation we consider a naive model where, starting from

a vertical link of length R, the end points of the next
link above are determined independently by proceeding

in the vertical direction in the shown areas of Figure 2

until next node (from the Poisson process) is found.

HX,YL

A

Fig. 2: The simplified model for estimating the vertical distance
between the stacked links.

The width x of the area between the vertical line and

the circle is for small heights y approximately parabolic,

x ≈ y2/(2R). Denote the coordinates (random vari-
ables) of the node by (X, Y ). Since A ∼ Exp (λ) and

A ≈ Y 3/(6R), we have the complementary distribution

function of Y ,

P{Y > y} = P{A > y3/(6R)} = e−λy3/(6R),

i.e., P{Y n > y} = P{Y > y1/n} = e−λy3/n/(6R), from
which

E[Y n] =

∫

∞

0

e−λy3/n/(6R)dy

=

(

6R

λ

)n/3
n

3

∫

∞

0

tn/3−1e−tdt

=

(

6R

λ

)n/3
n

3
Γ
(n

3

)

=

(

6R

λ

)n/3

Γ
(

1 +
n

3

)

,

where, in the second step, a new variable t = λy3/n/(6R)

has been introduced. In particular we have

E[Y ] = Γ

(

4

3

)(

6R

λ

)1/3

, E[Y n] =
Γ (1 + n

3 )

Γ (4
3 )n

E[Y ]n,

whence the variance is

V[Y ] =

(

Γ (5
3 )

Γ (4
3 )2

− 1

)

E[Y ]2 ≈ 0.132E[Y ]2.

The distribution of X is determined by that of Y , X ∼
Uniform(0, Y 2/(2R)), from which

E[X ] = E[E [X |Y ]] = E[
Y 2

4R
] =

Γ (5
3 )

4RΓ (4
3 )2

E[Y ]2

and

V[X ] = E[E
[

X2 |Y
]

] − E[X ]2 = E[
1

3
(
Y 2

2R
)] − E[

Y 2

4R
]2

=
1
3Γ (7

3 ) − 1
4Γ (5

3 )2

4Γ (4
3 )4R2

E[Y ]4 ≈ 0.0759

R2
E[Y ]4.
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Now, consider the random walk Xn =
∑n

i=1(Xi, Yi),

n = 1, 2, . . .. When λ → ∞ this random walk tends

to a deterministic motion along the vertical line with

constant rate. This is because both E[X ] and V[Y ] go

to zero quadratically in E[Y ]. Thus over a finite inter-
val y, which takes on the average n = y/E[Y ] steps,

the expected total displacement in the x-direction is

nE[X ] ∼ yE[Y ], which goes to zero with E[Y ] as λ →
∞. Similarly the total variance of the displacement in
the y-direction after n steps is nV[Y ] ∼ yE[Y ] and

goes to zero as λ → ∞ (the total variance of the x-

displacement goes to zero even faster as the one step

variance V[X ] ∼ E[Y ]4).

The fact that the independent random walks of both
the end points tend to constant deterministic motion

along the vertical lines, in the hindsight justifies consid-

ering each step starting from a vertical link of maximal

length R; the wiggle and contraction of the added links
tend to zero.

Finally, we are able to calculate the asymptotic be-

havior in the three cases starting from the unweighted

one (A). From the above it follows that E[Y ] defines the

vertical packing distance. As there is one vertical link
in every rectangle of height E[Y ] and width (1 + ε)R,

cf. Figure 1, the reward per unit area is asymptotically

U(λ, R) ≈ 1/(R E[Y ]),

U(λ, R) ≈ 1

Γ (4
3 )

(

λ

6R4

)1/3

, (14)

u(ν) =
1

Γ (4
3 )

(√
6

π
ν

)

−2/3

. (15)

Similarly in the weighted case (B), as there is one

vertical link of length R in every rectangle of height

E[Y ] and width (2 + ε)R, the weight per unit area is

asymptotically Ux(λ, R) ≈ 1/(2E[Y ]),

Ux(λ, R) ≈ 1

2 Γ (4
3 )

(

λ

6R

)1/3

, (16)

ux(ν) =
1

2 Γ (4
3 )

(

36

π
ν

)

−1/6

. (17)

Finally in the third case (C), Ul(λ, R) = 2 Ux(λ, R),

and ul(ν) = 2 ux(ν) as the number of links compared

to the packing in Figure 1 can be doubled. Hence,

Ul(λ, R) ≈ 1

Γ (4
3 )

(

λ

6R

)1/3

, (18)

ul(ν) =
1

Γ (4
3 )

(

36

π
ν

)

−1/6

. (19)

For more realistic interference models, one can con-

jecture that the asymptotic tail of u∗(ν) comes down

Fig. 3: When the end points of the links from a triangular lattice
(with bidirectional interference in cases B and C), the number
of transmitting nodes at the minimum distance from a node is
maximized.

more rapidly than for the unidirectional interference

model due to the fact that this model unrealistically

allows multiple transmissions just outside the interfer-

ence range of a receiving node.

Bidirectional interference prevents the links from

packing very close to each other. In the unweighted case

(A), short links are preferred because then the interfer-

ence ranges of the origin and destination overlap, and

the exclusion area of the link is minimized. In the limit,
the length of the links tends to zero, and the link con-

stellation approaches equilateral triangular lattice with

one transmission range between the links. Hence,

U(λ, R) ≈ 2√
3R2

, (20)

u(ν) =
2π√

3
ν−1. (21)

In the weighted cases (B) and (C), the end points of

the links form the same lattice as depicted in Figure 3.
Hence, we have the reward R per area of

√
3R2, and

Ux,l(λ, R) ≈ 1√
3R

, (22)

ux,l(ν) =

√

π

3
ν−1/2. (23)

The presented asymptotic behavior of u∗(ν) pre-

sumably gives everywhere an upper bound to the true

curve. We return to the comparison with the numerical
values later in Section 6.3. Note also that the ν →∞
asymptotics do not apply when adjusting the transmis-

sion radius is allowed. Though the number of potential

neighbors increases with a greater R, it is always possi-

ble to use the previous link configuration unless a better
one becomes available. Thus in these cases, u∗(ν) ap-

proaches some limit.

5 Moving Window Algorithm

In this section we derive an algorithm similar to Retro-

spective optimization introduced in a study of reserva-

tion systems [19]. The algorithm is presented using an
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illustrative example. A pseudocode of a reference im-

plementation and a note on complexity can be found

from Appendix A.

The algorithm considers a small portion of the net-

work at a time, a rectangular window that moves, and
regarding the strip that the moving window covers dur-

ing a simulation, the result is exact. The algorithm uses

a binary tree to enumerate all the possible link combi-

nations in the window area to find the maximum size

or weight of an independent set of links per unit area
so far conditioned on the choice of the combination of

conflict-free links. The length of the simulation is not

limited, and the covered strip can be of any desired

length. We repeat the simulation for windows of dif-
ferent height to extrapolate the value of the maximum

weight per area for an infinitely large network.

Because the height of the window in practice is lim-

ited, the top and the bottom of the strip can be con-

nected to diminish the border effect and represent an
infinite dimension, see Figure 4. The perimeter of the

formed cylinder needs to be large enough for the results

to be meaningful. The other direction can be handled

by moving the window along the cylindrical network.

The width of the window (i.e., the length of the cylin-
drical window) needs to be large enough for the window

to contain all the links that can possibly interfere with

the links that are going to enter the window in the fu-

ture (that is, 3R which is the maximum length of two
links and a R+ε margin). The possible combinations of

these links are maintained in the binary tree. The links

that have already left the window do not affect the pos-

sible on/off-state of the links entering the window and

can thus be removed by a procedure explained next.

Fig. 4: The top and the bottom of the window are connected
together to diminish the border effect. The formed cylinder is
moved in the direction of its axis.

A rooted binary tree represents all the possible link

combinations in the window area. Every edge of the

tree describes whether the link corresponding to that

level is active or not, and the value assigned to each

leaf shows the maximum size or weight of the indepen-
dent set thus far (starting from the initial position of

the window) conditioned on the combination of active

links in the window represented by the leaf. This is il-

lustrated in Figure 5. The figure represents an example
of a situation where the simulation of the unweighted

case (A) (the values in the vertices represent the size of

the independent set of links) with unidirectional inter-

ference has just started, and the first four nodes have

entered the window making it possible to form six links.
The maximum size of an independent set of links is 2

corresponding to activation set {uv, xw} or {vu, wx}.

y
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w
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u
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1
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b

vw

1

vw

b

wv

1

wv
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wx

1

wx

2

xw

1

xw

0

uv

1

vu

b

vw

1

vw

b

wv

1

wv

2

wx

b

xw
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xw

1

wx

b

xw

1
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1
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b

wv

1
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b
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1
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b
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1
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0
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1

wv

b
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1
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b

xw

1

xw

0

wv

1

wx

b

xw

1

xw

0

wx

1

xw

0

xw

Fig. 5: A window containing 4 links and the corresponding binary
tree with 6 levels representing the links (in alphabetical order) in
the window.

When the window of Figure 5 is being moved to the

right, the first event is the node u leaving the window.

Since the entering and exiting links are independent,

we can combine the on- and off-branches correspond-

ing to a link whose endpoint has been dropped out of
the window and choose the greater values for the new

tree. That is, we compare leaves2 that only differ in the

dropped link and choose the maximum of those to be

the value of the same node in the new tree where the
level corresponding to the dropped link has been elim-

inated in this way. For example, when the first link to

leave the window, uv, is being eliminated from the tree,

2 Besides the leaves also the other vertices can be updated, but
they hold no significance to the final result since the leaves cover
all the possible link combinations.
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the leaf with value 2 corresponding to the activation set

{uv, xw} (first from the left in Figure 5) is compared

to the leaf with value 1 corresponding to the activation

set {xw} (second from the right), and the value of leaf

{xw} in the new tree in Figure 6 (second from the right)
is thus 2. Also the link vu has to be removed from the

tree when the node u leaves the window.

1

1

vu

b

vw

1

vw

b

wv

1

wv

2

wx

b

xw

2

xw

1

wx

b

xw

1

xw

1
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1
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b

wv

1

wv

b

wx

1

wx

b

xw

1

xw

1

vw

1

wv

b

wx

1

wx

b

xw

1

xw

1

wv

1

wx

b

xw

1

xw

1

wx

2

xw

1

xw

Fig. 6: The binary tree of Figure 5 after the first link to leave the
window uv has been removed. In addition to the leaves, also the
other vertices have been updated.

The next event, when moving the window, happens

when node y enters and makes two new links possible.

These new links are then added to the binary tree, after

which the shape of the tree is the same as in Figure 5,
but the value assigned to each leaf, except for those

with vw or wv, is one higher since in these cases it is

possible to use either the link uv or vu that have already

exited the window. At this point, it is not explicitly

visible which dropped links can be activated. Thus, the
maximum value in the tree is the maximum size of the

independent set of links so far given the set of active

links in the window area. In this way we can generate

the network realizations on the fly and progressively
find the maximum size or weight of the independent

set of links.

We do not maintain information about the links be-
longing to the maximum weight set, although, this in-

formation could be extracted from the algorithm with

the cost of used memory. To further minimize the mem-

ory requirements the links are removed from the win-

dow as soon as they stop interfering with links that
are going to enter the window in the future. When a

link does not interfere with future links anymore, the

information whether the link belongs to the maximum

weight independent set is no longer required in the cal-
culations, but the link can be removed from the binary

tree maintaining the on/off status of the relevant links.

This way the size of the binary tree, that is the bot-

tleneck limiting the usefulness of the algorithm, can be

kept as small as possible.

The algorithm limits in no way the length of the

simulation in the direction in which the window moves,
and when the execution is continued, the result con-

verges without bias towards the true value. When the

simulation is ended, the maximum size or weight of the

independent set of links is the maximum of the values

assigned to the leaves of the binary tree. The simulation
is repeated to produce confidence intervals for the value.

In the other direction, we have to rely on extrapolation

and estimate the maximum value for an infinitely wide

cylinder, as discussed in the next section.

5.1 Extrapolation

This section concentrates on extrapolating the maxi-

mum weight per area for the infinite plane from the

measurements considering only strips of the network
with limited height.

The simulations with the Moving Window Algo-

rithm produce values u∗(ν, p), where p (in units of R) is

the perimeter of the cylinder. For a given ν, a range of
p are needed to extrapolate u∗(ν) to an infinitely wide

cylinder. Figure 7 represents u(p) of case A with unidi-

rectional interference and fixed R for different values of

ν. As seen from the figure, the narrowest cylinders do
not give a reliable estimate for larger values of ν. The

exact number of values of p required for the extrapola-

tion depends heavily on the case studied as discussed

next related to the x-progress case.

2 3 4 5 6
0.22

0.24

0.26

0.28

0.3

0.32

0.34

p

u

 

 

ν = 1
ν = 2
ν = 3
ν = 4
ν = 5
ν = 6
ν = 7
ν = 8

Fig. 7: Function u(p) with unidirectional interference and fixed
R for different values of ν, and the 95 % confidence intervals.

The second unidirectional case (B) with x-progress

differs from the other unidirectional cases as it is the
only directed case. The working principle of the algo-

rithm does not depend on the direction of the traffic,

i.e., the direction in which the progress of the maximal
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independent set is calculated, but it has to be fixed.

We have two extremes: the direction is parallel with

the direction in which the cylinder moves (along the

cylinder) or the progress is calculated perpendicular to

the movement of the cylinder (around the cylinder). In
the latter case u(p) depends heavily on the number of

link columns that we are able to fit around the cylin-

der. The maxima appear when the perimeter is approx-

imately a multiple of 2R, meaning that we are able to fit
full-length links and the margins R + ε between them.

When the direction of the progress is turned by a right

angle, we get more stable results as the vertical dis-

tance between the links in a column is more stochastic.

This effect is illustrated in Figure 8. The observation
supports the assumption made in Section 4.2 about the

most efficient way of packing the links, that is, to form

vertical columns.

2 3 4 5 6

0.18

0.19

0.2

0.21

0.22

p

u

 

 

ν = 5
ν = 6
ν = 7
ν = 8
ν = 5
ν = 6
ν = 7
ν = 8

Fig. 8: Function ux(p) with unidirectional interference and fixed
R for different values of ν when direction of progress is around
the cylinder (dashed lines) and along the cylinder (solid lines).

With bidirectional interference and fixed transmis-

sion radius, the active links start to form patterns when

the network gets denser (recall Fig. 3). The difference to
the towers formed in the unidirectional case is that the

distance between the links is more deterministic, and

u∗(ν, p) is thus more sensitive to the perimeter of the

cylinder. The undulation is the heaviest in the weighted
cases and with large values of ν, and the interesting

parameter region of case B is thus the most difficult

to reach. When the transmission range is adjustable,

u∗(ν, p) is more stable as the effective number of neigh-

bors is smaller.

6 Numerical results

In this section we present the numerical results ob-
tained by the Moving Window Algorithm and extrap-

olation techniques of Section 5 for the three cases: un-

weighted (A), weighted by x-progress (B), and weighted

by length (C) with both unidirectional and bidirectional

interference. In addition to fixed transmission radius R,

we consider transmission radii freely adjustable up to

this maximum value. In this case the parameter ν is

defined to correspond to the mean number of neighbors
within the maximum range.

6.1 Unidirectional interference

We begin with the unidirectional interference model.
Figure 9a shows u(ν) for the unweighted case (A) with

both fixed and adjustable transmission radius. With

a fixed transmission radius the maximum occurs at

ν∗ = 2.7 and equals 0.32. The curve with power control

is an increasing one as all configurations that are feasi-
ble with a given maximum radius are also possible with

a greater maximum, and being upper bounded by the

theoretical maximum of 1
2 , i.e., one link per two nodes,

it tends to a limit when ν → ∞. As can be seen, the
limit is relatively close to the theoretical maximum, im-

plying that the maximum gain from a freely adjustable

transmission radius is approximately 50 % (30 % at ν∗).

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

ν

u

 

 

fixed R
adjustable R

(a) unweighted case (A)

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ν

u

 

 

x−progress
X: adjustable R
length
L: adjustable R

(b) weighted cases (B) and (C)

Fig. 9: Function u∗(ν) for unidirectional interference with and
without power control. The values for case A with fixed R are
those extrapolated from Figure 7.
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Table 1: Numerical results

unidirectional bidirectional
fixed adjustable fixed adjustable

ν∗ u(ν∗) u(∞) ν∗ u(ν∗) u(∞)

A 2.7 0.322 > 0.46 2.1 0.270 > 0.33
B 10 0.200 > 0.29 7.0 0.170 > 0.20
C > 7 > 0.33 > 0.38 5.5 0.210 > 0.24

Figure 9b represents u∗(ν) for the weighted cases

(B and C) with fixed transmission radius and with the

possibility to reduce the transmission power to the min-

imum required. Even though the computational com-
plexity grows with the number of links, it is possible

to simulate x-progress with fixed transmission radius

up to the optimal size of the neighborhood. The maxi-

mum occurs at ν∗ ≈ 10 and equals 0.20. In the case of

a length-weighted set (C), the number of links in the
window is doubled compared to the second case, since

we have to consider both directions separately. Thus we

are not able to find the optimal neighborhood size. As

with the unweighted case, the curves corresponding to
cases with power control do not have a maximum but

are increasing functions of ν tending to a limit when

ν → ∞. Again, the maximum gain from an adjustable

transmission radius is close to 50 % in case B.

6.2 Bidirectional interference

The unweighted case (A) with the bidirectional inter-

ference model is presented in Figure 10a. The maxi-
mum with fixed transmission radius equals 0.27 and is

achieved with ν∗ = 2. The maximum gain from a freely

adjustable transmission radius is approximately 25 %

(15 % at ν∗).

Figure 10b shows how ux(ν) and ul(ν) behave with

bidirectional interference. The maxima are ux(7) = 0.17

and ul(5.5) = 0.21. The corresponding approximate

gains from an adjustable transmission radius are 20 %

and 15 % at ν∗.

6.3 Discussion

For reference, the most important numerical results from
all cases have been gathered to Table 1. Since the curves

are flat near the maximum, it is harder to determine the

optimum neighborhood size than the maximum value

itself (given with the accuracy of ±0.001). The values of
ν∗ are results of parabolic fits near the maximum and

given with the accuracy of two significant figures. The

lower bounds for the cases with adjustable transmission

0 1 2 3 4 5 6 7
0
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0.2
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0.3

0.35
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u

 

 

fixed R
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(a) unweighted case (A)
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0

0.05

0.1

0.15

0.2

0.25

ν

u

 

 

x−progress
X: adjustable R
length
L: adjustable R

(b) weighted cases (B) and (C)

Fig. 10: Function u∗(ν) for bidirectional interference with and
without power control.

radius (and for unidirectional case C with fixed trans-

mission radius) are based on the obtained maximum
values.

As mentioned, the size of the binary tree places lim-

itations on the feasible simulation parameters (ν and
p). Since the process is stochastic, the number of links

in the window may temporarily grow very large, and

the size of the tree may exceed the available mem-

ory. Thus, we are only able to simulate cylinders wide
enough until a certain value of ν in each case. An ad-

justable transmission radius is always computationally

more complex than a fixed one since it increases the

number of conflict-free link combinations and the size

of the tree.

In the unidirectional case weighted by the x-progress

(B) and in the bidirectional cases, we do not have to

consider both links between two nodes. In case B, we
never activate a link with a negative weight, and with

bidirectional interference, both the links are equal and

only one of them can be active. In these cases, it is pos-

sible to run simulations with higher values of ν, but the
number of links in the window stays continuously on a

high level, and the simulations are slow. The results are

presented as far as it has been possible to proceed in
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Fig. 11: Numerically evaluated curve for the functions u∗(ν) along with the low- and high-ν asymptotic curves.

reasonable time using a computer with at most 16 GB
memory.

Finally, we compare the numerical results with the
asymptotic results of Section 4. Figure 11a presents

these for u(ν) and Figure 11b for ux(ν) with unidi-

rectional interference. Figures 11c and 11d present the

corresponding curves with bidirectional interference. As

can be seen from these figures, even the rudimentary
analysis seems to yield a plausible asymptotic behavior

for large ν. However, the figures also show that asymp-

totes alone do not characterize the curves accurately in

the most interesting parameter area.

7 Conclusions

We studied the maximum weight independent sets in
an infinite plane. This is a problem of stochastic geom-

etry that relates to the question of the largest possible

number of simultaneous successful transmissions, i.e.,

the spatial reuse in wireless multihop networks. The

obtained results offer a point of comparison for prac-
tical MAC protocol implementations. The used simu-

lation methods are also applicable for point processes

other than the Poissonian one as well as for interference

models, e.g., asymmetric ones, as long as the range of
interference is limited.

We illustrated the working principles of the Mov-
ing Window Algorithm that allowed us to study the

problem numerically. The algorithm produces exact re-

sults (weight per area) for any network realization in

an arbitrarily long strip or, to reduce boundary effects,

a cylinder obtained from the strip by joining its upper
and lower ends. The network realization can be gen-

erated on-the-fly as the window moves, thus enabling

unlimited simulations and accurate unbiased estimates.

The height of the strip (perimeter of the cylinder) is,
however, limited and to obtain results for an infinite

plane an extrapolation technique was used.

Three different cases were studied. The first consid-

ered the number of simultaneous transmissions per unit

area, the second the number of transmissions weighted

by the progress of the transmissions in a given direction,
and the third the number of transmissions weighted by

their lengths. The cases were covered both when only

one of the end points transmits (unidirectional interfer-

ence) and when both end points transmit (bidirectional

interference). In addition, the effect of power control
was studied.

As expected, the problem turned out to be compu-

tationally demanding. However, we were able to pro-

duce previously unknown numerical results for all the
cases. Only in the third unidirectional case, with links

weighted by their lengths, were we unable to reach the

most interesting parameter region, leaving room for more

computational science oriented work in the future.

We presented also asymptotic analyses of the sys-
tems. The high-density asymptotics are a challenging

problem, and our analysis is to be considered as a first

attempt. Though capturing the essence of the problem,

the analysis can be made more refined and improved in
rigor.
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Appendix

A Moving Window Algorithm

Table 2 represents a pseudo code for a reference version of the
Moving Window Algorithm of Section 5. The algorithm takes
as a parameter the length of the simulation, M . The algorithm
first introduces the used variables: the current step, i, the set of
nodes in the window, W , the set of links between the nodes in
the window, L, the binary tree used to enumerate the possible
link combinations in the window, T . At the beginning of the
simulation, the binary tree is just a root node r. x(w) and y(w)
refer to the coordinates of a particular node w, while t(l) and
r(l) are the transmitting and receiving node of a link l, as in
Section 3. Variables with a hat (e.g., ŵ) are temporary variables
used to introduce new instances.

The main loop of the algorithm consists of the following
phases. 1) The algorithm determines the exponential distance to
the next node and moves the window forward. 2) The algorithm
removes the nodes that are no longer in the window from W and
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Table 3: Binary tree procedures

(a) ADD(n,l,b)

1. if INTERF(link(n),l)
∨ b = false do

2. if rc(n) = NULL do

3. w(n̂) := w(n)

4. rc(n) := n̂

5. else

6. if lc(n) 6= NULL do

7. ADD(lc(n),l,false)
8. end if

9. ADD(rc(n),l,false)
10. else

11. if rc(n) = NULL do

12. w(n̂) := w(n) + w(l)
13. lc(n) := n̂

14. w(n̂) := w(n)
15. rc(n) := n̂

16. else

17. if lc(n) 6= NULL do

18. ADD(lc(n),l,true)
19. end if

20. ADD(rc(n),l,true)
21. end if

22. end if

(b) RMV(n,l)

1. if rc(n) 6= NULL do

2. if link(rc(n)) = l do

3. if lc(n) 6= NULL do

4. lc(n) :=

CMP(lc(lc(n)),lc(rc(n)))
5. rc(n) :=

CMP(rc(lc(n)),rc(rc(n)))
6. else

7. lc(n) := lc(rc(n))
8. rc(n) := rc(rc(n))
9. end if

10. else

11. if lc(n) 6= NULL do

12. RMV(lc(n),l)
13. end if

14. RMV(rc(n),l)
15. end if

16. end if

(c) CMP(n,m)

1. if n = NULL do

2. return m
3. else if m = NULL do

4. return n

5. else

6. if w(n) > w(m) do

7. lc(n) := CMP(lc(n),lc(m))
8. rc(n) := CMP(rc(n),rc(m))
9. return n

10. else

11. lc(m) := CMP(lc(n),lc(m))
12. rc(m) := CMP(rc(n),rc(m))
13. return m
14. end if

15. end if

Table 2: MWA(M)

0. i := 0, W := ∅, L := ∅, T := r, y(ŵ) := 0
1. while y(ŵ) < M do

2. i := i + 1
3. Si ∼ Exp(λp)
4. x(ŵ) ∼ Uni(p), y(ŵ) := y(ŵ) + Si

5. forall w ∈ W do

6. if y(ŵ) − y(w) > 3R do

7. W := W \ {w}
8. forall l ∈ L do

9. if t(l) = w ∨ r(l) = w do

10. L := L \ {l}
11. RMV(r,l)
12. end if

13. end for

14. end if

15. end for

16. forall w ∈ W do

17. if d(w, ŵ) ≤ R

18. t(l̂) := ŵ, r(l̂) := w

19. L := L ∪ {l̂}
20. ADD(r,l̂,true)

21. t(l̂) := w, r(l̂) := ŵ

22. L := L ∪ {l̂}
23. ADD(r,l̂,true)
22. end if

23. end for

24. W := W ∪ {ŵ}
25. end while

the related links from L and updates the tree (RMV). 3) The
algorithm determines the new links that can be formed and adds
them to L and updates the tree (ADD). Finally, it adds the new
node to W .

Maintaining the binary tree is done with the recursive pro-
cedures ADD of Table 3a and RMV of Table 3b. They both take
as a variable the current node of the tree, n, and the link l to be
added or removed. In addition, ADD needs a Boolean variable, b,
that tells whether or not it is possible to have the new link acti-
vated in the current branch of the tree. Additionally, RMV uses
procedure CMP of Table 3c to recursively compare two nodes (n
and m) of the tree. In the procedures, w(·) denotes the weight of
either a node of the tree or a link. The left (link on) and right (link
off) child of a node n are denoted by lc(n) and rc(n) respectively.

For large window sizes and dense networks, the running time
of the algorithm is dominated by the time required to update the
binary tree. In the worst case, the nodes communicate in pairs,
i.e., the links do not interfere with each other (except for the
two links between the same two nodes in the undirected cases),
and the size of the binary tree is of the order of O(2|L|) (i.e.,

O(
√

2
|W |

)) in case B and O(
√

3
|L|

) (i.e., O(
√

3
|W |

)) in cases A
and C. As in our case the underlying network is random, there
is usually heavy interference between the links. If all the links in
the window interfere with each other, the size of the tree behaves
as O(|L|2), i.e., O(|W |4).
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