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ABSTRACT
We consider service systems where new jobs not only in-
crease the load but also improve the service ability of such
a system, cf. opportunistic scheduling gain in wireless sys-
tems. We study the optimal trade-off between the SRPT
(Shortest Remaining Processing Time) discipline and oppor-
tunistic scheduling in the systems characterized by compact
and symmetric capacity regions. The objective is to min-
imize the mean delay in a transient setting where all jobs
are available at time 0 and no new jobs arrive thereafter.
Our main result gives conditions under which the optimal
rate vector does not depend on the sizes of the jobs as long
as their order (in size) remains the same. In addition, it
shows that in this case the optimal policy applies the SRPT
principle serving the shortest job with the highest rate of
the optimal rate vector, the second shortest with the sec-
ond highest rate etc. We also give a recursive algorithm to
determine both the optimal rate vector and the minimum
mean delay. In some special cases, the rate vector, as well
as the minimum mean delay, have even explicit expressions
as demonstrated in the paper. For the general case, we de-
rive both an upper bound and a lower bound of the minimum
mean delay.

1. INTRODUCTION
Modern wireless cellular systems allow highly sophisti-

cated scheduling algorithms to be used for sharing the radio
resources among the users. These systems operate in slot-
ted time with a very short time slot duration (at millisecond
time scale). The base station also has access to information
about the instantaneous transmission reception conditions of
every user, essentially the instantaneous transmission rates,
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which are randomly varying over time due to various fading
phenomena. This has given rise to opportunistic scheduling,
where the idea is to favor those users with instantaneously
high transmission rates. It is clear that the more users there
are in the system, the more likely it is to have some user in
a good state. Thus, the overall service rate of the system
increases with the number of users, i.e., there is opportunis-
tic scheduling gain (also sometimes referred to as multiuser
diversity gain).

A well-known example of opportunistic scheduling is the
PF (Proportionally Fair) scheduler [16], which combines in-
formation about the instantaneous rates with the through-
put. PF belongs to a more general class of utilility-based
α-fair schedulers [14, 6]. Other examples of opportunistic
schedulers include maxweight schedulers that combine the
channel information with the queue lengths or delays [13],
or rate-based schedulers that only use information about
the channel-statistics [2, 3, 8]. Max-weight and utility-based
schedulers have been analyzed at the time-slot level (or packet
level) by assuming a fixed population of users and they have
been shown to exhibit certain optimality properties, see [13,
14].

In reality the number of active users varies in the system.
Models that take this into account are called flow-level mod-
els. Flows roughly represent file transfers controlled by TCP
(elastic data) and the performance at flow-level character-
izes, e.g., the mean delay of file transfers. An important
feature in the model is the assumption of time scale sep-
aration between the flow-level dynamics and the time-slot
level channel dynamics, see also [5, 4, 11]. This implies
that, at the flow-level, the flows observe the time-average
throughput provided by the time-slot level scheduler. For a
given number of flows in the system, the set of achievable
rate vectors that the time-slot level scheduler can support is
characterized by the notion of the capacity region, see [5, 4,
11]. The general scheduling problem at the flow-level is then
to determine the rate vector to be used within the capacity
region given the current state at the flow-level so that, e.g.,
the mean flow delay is minimized.

In the dynamic setting the system at the flow level con-
sists of random flow arrivals and departures. In this setting
the existing provable properties of opportunistic scheduling
policies are limited to results on their stability properties,



see [5, 6, 4, 1]. Utility-based policies of the throughput have
been shown to achieve the maximal stability region [6], while
rate-based policies may suffer from instability [5, 1].
Size-based scheduling is known to be a good choice for

the systems without any opportunistic gain. For example,
for classical single-server queues, it is well-known that the
SRPT (Shortest-Remaining-Processing-Time) discipline is
optimal minimizing the mean delay [12]. The idea of SRPT
is to minimize the delay by getting rid of flows as soon as
possible. However, with fewer flows part of the opportunis-
tic gain is lost. As a result, combining the advantages of
size-based scheduling with opportunistic scheduling gain has
proven very challenging. Results on the optimal policy to
minimize the mean flow-level delay in the dynamic setting
for the systems with opportunistic scheduling gain are not
available, owing to the difficulty of the problem. Only some
heuristic algorithms have been proposed and experimented
with that try to combine opportunistic scheduling gain with
size-based scheduling [7, 11].
All optimality results concerning the minimization of the

mean flow-level delay under opportunistic scheduling gain
are related to the transient system, where there are initially
n flows with given sizes but no new arrivals. It has been
shown that in this case the optimal scheduling problem can
be formulated as a dynamic program [15]. However, the
dynamic program does not allow to extract any structural
properties of the optimal policy. The only structural opti-
mality result (that we know) appeared recently in [11], where
the authors show that when the capacity regions are nested
polymatroids and the opportunistic gain γn is increasing and
concave in the number n of flows, the optimal policy is an
SRPT-type discipline such that the shortest flow is served
with the highest possible rate γ1, the second shortest with
the second highest rate γ2 − γ1, etc. Importantly, the op-
timal rate vector does not depend on the sizes of the flows
as long as their order (in size) remains the same. In their
proof, the authors of [11] utilize the known optimality result
of the SRPT-FM (SRPT-Fastest-Machine) discipline for the
heterogeneous multiserver queues [9].
As in [15, 11], we consider the optimal scheduling problem

under opportunistic scheduling gain in the transient setting.
We focus on the situation, where the capacity regions are
compact and symmetric (including, e.g., all nested polyma-
troids). From the wireless channel point of view, the sym-
metry assumption implies that the random variations at the
time slot level experienced by the flows are statistically iden-
tical, see [5]. Our aim is to minimize the mean flow-level de-
lay by determining the optimal trade-off between between
SRPT and opportunistic scheduling.
Our main result gives conditions under which the optimal

rate vector does not depend on the sizes of the flows as long
as their order (in size) remains the same. In addition, it
shows that in this case the optimal policy applies the SRPT
principle serving the shortest flow with the highest rate of
the optimal rate vector, the second shortest with the sec-
ond highest rate etc. We also give a recursive algorithm
to determine both the optimal rate vector and the mini-
mum mean delay. In addition to the theoretic value, the
presented approach provides a vast improvement over any
general optimization method for numerical evaluation of the
optimal scheduling problem. Since we specify the conditions
for any family of compact and symmetric capacity regions,
the result is also essentially more general than the result

given in [11] (concerning only nested polymatroids). In some
special cases, the rate vector, as well as the minimum flow
time, have even explicit expressions as demonstrated in the
paper. In addition to the lower bound (i.e., an optimistic
estimate) given already in [11], we derive an upper bound
(i.e., a conservative estimate) of the minimum mean delay
in the general case. Numerically, the upper bound seems to
be closer to the optimum value.

The rest of the paper is organized as follows. The opti-
mal scheduling problem is formulated and some important
operating policies are introduced in Section 2. Section 3
includes the main theoretic results for compact and sym-
metric capacity regions. In Section 4, we demonstrate that
the optimality result for nested polymatroids given in [11]
is essentially a special case of our main result. Nested poly-
matroids are also used to determine an optimistic estimate
for the minimum mean delay. Section 4 considers another
family of polytopes for which the optimality result is a spe-
cial case of our main result. These polytopes can be utilized
to determine a conservative estimate for the minimum mean
delay. In Section 6, we consider a parametric family of ca-
pacity regions (so-called α-balls) for which the optimal rate
vector and the minimum flow time have explicit expressions.
We also work out some numerical examples for illustrative
purposes. Section 7 concludes the paper and also discusses
some future research directions.

2. PROBLEM FORMULATION
Consider a service system where the service capacity is

adjustably depending on the current number of jobs.1 More
precisely said, when there are k jobs in the system (indexed
with i = 1, . . . , k), the operator (of the system) chooses a
rate vector c = (c1, . . . , ck) from the capacity region Ck ⊂
Rk

+. From that on, each job i is served with rate ci until
the number of jobs again changes, and a new rate vector is
chosen. We assume that when choosing the rate vector the
operator is aware of the (remaining) sizes of the jobs.

Assume now that, at time 0, there are n jobs in the system
with sizes

s1 ≥ . . . ≥ sn.

We consider the transient system so that we do not allow
any further arrivals.

An operating policy π is defined by a sequence of vectors
ck = (ck1, . . . , ckk) ∈ Ck for all k = 1, . . . , n, where ck refers
to the rate vector that the operator applies when there are
k jobs in the system (called hereafter as phase k). It is
assumed that when a job completes, the remaining k − 1
jobs are re-indexed in such a way that the remaining sizes
sk−1,i again satisfy

sk−1,1 ≥ . . . ≥ sk−1,k−1.

Thus, in the next step, the longest job is served with rate
ck−1,1, the second longest with rate ck−1,2, etc. Let Πn

denote the family of all operating policies,

Πn = {π = (c1, . . . , cn) : ck ∈ Ck for all k}.

Let then tπi denote the time when the job with original
index i completes under policy π. As usual in scheduling

1Since the concept job is often used in scheduling literature
rather than flow, we will subsequently use the words job/flow
interchangeably.



literature, the flow time Tπ (a.k.a. total completion time) is
defined as

Tπ =

n∑
i=1

tπi .

Note that the mean delay of a job is now given by Tπ/n.
In this paper, we consider the scheduling problem in which

the optimal operating policy minimizes the flow time (or the
mean delay, as well). Let π∗ denote such an optimal policy.
Thus,

Tπ∗
= min

π∈Πn

Tπ,

where the minimization is taken over all operating policies
defined by the n fixed capacity regions C1, . . . , Cn.
Finally we define an important category of operating poli-

cies. Policy π belongs to the class of SRPT-HPR policies if
the corresponding rate vectors (c1, . . . , cn) satisfy the fol-
lowing condition, for all k and j,

ck,j ≤ ck,j+1.

An example is given by the ordinary SRPT discipline that
serves only the shortest job so that the rate vectors ck take
the form

ck = (0, . . . , 0, γ1),

where γ1 > 0. Another example is given by the OPS (Op-
portunistic Processor Sharing) discipline, which takes the
most out of the opportunistic gain in a fair way and which
has been used to model the behaviour of the PF scheduler
at the flow level under certain circumstances, see [5, 11]. For
the OPS discipline the rate vectors ck are of form

ck = (
γk
k
, . . . ,

γk
k
),

where γk is an increasing positive sequence referring to the
opportunistic gain. An intermediate version of the two (ex-
treme) policies, called SRPT-OPS, was introduced in [11].
For the SRPT-OPS discipline the rate vectors ck read as

ck = (0, . . . , 0,
γjk
jk

, . . . ,
γjk
jk

)

with jk non-zero elements, where γk is an increasing positive
sequence referring to the opportunistic gain and jk indicates
the number of jobs (out of k) that share the service capacity
available.

3. SYMMETRIC CAPACITY REGIONS
In this section we assume that the capacity regions Ck

have the following two properties for all k = 1, . . . , n:

(i) Ck is compact region of Rk
+, i.e., Ck is closed and bounded;

(ii) Ck is symmetric, i.e., if c ∈ Ck, then any permutation
c̃ of its components also lies in Ck.

If there is only one job, n = 1, then the optimal policy π∗

is clearly defined by the maximal service capacity

c∗1 = max{c ∈ C1},

the existence of which is guaranteed by the compactness
property (i) above. We note that the optimal policy π∗ is
independent of the size s1 of the job.
Now we consider the general case where there is any num-

ber of jobs, n ≥ 1. An operating policy π is defined by a

sequence of vectors ck = (ck1, . . . , ckk) ∈ Ck for k = 1, . . . , n.
The flow time of π reads as

Tπ =

n∑
k=1

k Tπ
k ,

where Tπ
k refers to the length of phase k for policy π.

Let g1, . . . , gn be a sequence of functions with gk(ck) de-
fined on Ck for all k, G∗

1, . . . , G
∗
n a sequence of positive real

numbers, and c∗1, . . . , c
∗
n a sequence of vectors with c∗k ∈ Ck

for all k. These sequences are defined recursively as follows:

g1(c1) =
1
c1
,

G∗
1 = g1(c

∗
1) = minc1∈C1 g1(c1),

gk(ck) =
1

ckk

(
k −

∑k−1
j=1 ckjG

∗
j

)
,

G∗
k = gk(c

∗
k) = minck∈Ck gk(ck), k = 2, . . . , n.

(1)

Note that the existence of the minimum values G∗
k is guar-

anteed by the compactness of capacity regions Ck (Property
(i)). Note also that function gk(ck) do not depend on the
sizes s1, . . . , sn of the jobs.

Proposition 1. If the capacity regions C1, . . . , Cn are such
that

G∗
1 < . . . < G∗

n,

then c∗k,j+1 ≥ c∗k,j for all k = 2, . . . , n and j = 1, . . . , k − 1.

Proof. 1◦ Let k ∈ {2, . . . , n} and j ∈ {1, . . . , k − 2}.
Suppose (contrary to our claim) that c∗k,j+1 < c∗k,j . We will
show below that this results in a conflict with our assump-
tions.

Let c̃∗k denote the modification of c∗k where the service
rates c∗k,j and c∗k,j+1 have changed their places,

c̃∗k = (c∗k,1, . . . , c
∗
k,j−1, c

∗
k,j+1, c

∗
k,j , c

∗
k,j+2, . . . , c

∗
k,k).

Note that c̃∗k ∈ Ck since Ck is symmetric (Property (ii)).
Now

gk(c
∗
k)− gk(c̃

∗
k)

= G∗
j c

∗
k,j +G∗

j+1c
∗
k,j+1 −G∗

j c
∗
k,j+1 −G∗

j+1c
∗
k,j

= (G∗
j −G∗

j+1)c
∗
k,j − (G∗

j −G∗
j+1)c

∗
k,j+1

= (G∗
j −G∗

j+1)(c
∗
k,j − c∗k,j+1)

< 0,

which contradicts the definition of c∗k as the minimum point
of function gk(ck).

2◦ Consider now the remaining case where k ∈ {2, . . . , n}
and j = k − 1. First we note that since

G∗
k−1 < G∗

k = gk(c̃
∗
k) =

1

c∗kk

(
k −

k−1∑
j=1

G∗
j c

∗
kj

)
,

we have

c∗k,k + c∗k,k−1 < 2a,

where constant a is defined as follows:

a =
1

2G∗
k−1

(
k −

k−2∑
j=1

G∗
j c

∗
kj

)
.

Suppose (again contrary to our claim) that c∗k,k < c∗k,k−1.
We will show below that also this results in a conflict with



our assumptions. Before that, we note that c∗k,k < a, since
c∗k,k + c∗k,k−1 < 2a and c∗k,k < c∗k,k−1.
Let c̃∗k denote the modification of c∗k where the service

rates c∗k,k−1 and c∗k,k have changed their places,

c̃∗k = (c∗k,1, . . . , c
∗
k,k−2, c

∗
k,k, c

∗
k,k−1).

Note that c̃∗k ∈ Ck since Ck is symmetric (Property (ii)). In
addition, let an auxiliary function f(x) be defined on R as
follows:

f(x) = 2ax− x2.

2.1◦ Assume that c∗k,k < c∗k,k−1 ≤ a. Since f(x) is strictly
increasing for all x ≤ a, we have

f(c∗k,k) < f(c∗k,k−1)

⇔ 2ac∗k,k − (c∗k,k)
2 < 2ac∗k,k−1 − (c∗k,k−1)

2

⇔ 1

c∗k,k−1

(
2−

c∗k,k
a

)
<

1

c∗k,k

(
2−

c∗k,k−1

a

)
⇔ gk(c̃

∗
k) < g(c∗k),

which contradicts the definition of c∗k as the minimum point
of function g(ck) in Ck.
2.2◦ Assume now that c∗k,k ≤ a < c∗k,k−1. We will show

that also in this case f(c∗k,k) < f(c∗k,k−1), which leads to a
contradiction as shown in 2.1◦. Since c∗k,k + c∗k,k−1 < 2a and
c∗k,k−1 > a, we have c∗k,k < 2a− c∗k,k−1 ≤ a, implying that

f(c∗k,k−1)− f(c∗k,k)

> f(c∗k,k−1)− f(2a− c∗k,k−1)

= 2ac∗k,k−1 − (c∗k,k−1)
2 − 2a(2a− c∗k,k−1) + (2a− c∗k,k−1)

2

= 0,

which completes the proof.

Theorem 1. If the capacity regions C1, . . . , Cn are such
that

G∗
1 < . . . < G∗

n,

then the optimal operating policy is π∗ = (c∗1, . . . , c
∗
n) for all

sizes s1 ≥ . . . ≥ sn, where the optimal rate vectors c∗1 are
defined recursively in (1). In this case, the minimum flow

time Tπ∗
satisfies

Tπ∗
=

n∑
k=1

skG
∗
k.

In addition, c∗k,j+1 ≥ c∗k,j for all k = 2, . . . , n and j =
1, . . . , k − 1 so that the optimal policy belongs to the SRPT-
HPR category.

Proof. The result is proved by induction. For n = 1,
the result is clearly true:

Tπ∗
=

s1
c∗1

= min
c1∈C1

s1
c1

= min
π

Tπ.

In addition, G∗
1 = 1

c∗1
so that Tπ∗

= s1G
∗
1 as claimed.

Assume now that n ≥ 2 and the result is true for all values
1, . . . , n− 1. We will show that it is also true for value n.
It follows from the induction assumption that the optimal

policy applies rate vectors c∗k for all k = 1, . . . , n− 1. Thus,
for any policy π = (c1, . . . , cn) ∈ Πn, the modified policy
π̃ = (c∗1, . . . , c

∗
n−1, cn) ∈ Πn results in a smaller flow time so

that

Tπ ≥ T π̃

= nT π̃
n +

n−1∑
k=1

k T π̃
k

= nT π̃
n +

n−1∑
k=1

(
si(k) − T π̃

n cn,i(k)

)
G∗

k

= n
si(n)

cn,i(n)

+

n−1∑
k=1

(
si(k) −

si(n)

cn,i(n)

cn,i(k)

)
G∗

k

=
si(n)

cn,i(n)

(
n−

n−1∑
k=1

cn,i(k)G
∗
k

)
+

n−1∑
k=1

si(k)G
∗
k

= si(n)g((cn,i(1), . . . , cn,i(n))) +

n−1∑
k=1

si(k)G
∗
k,

where i(k) refers to the original index of the job that com-
pletes at the end of phase k under policy π̃. Note that
(cn,i(1), . . . , cn,i(n)) ∈ Cn, since cn = (cn1, . . . , cnn) ∈ Cn and
Cn is symmetric (Property (ii)). Thus,

g((cn,i(1), . . . , cn,i(n))) ≥ G∗
n

implying that

Tπ ≥
n∑

k=1

si(k)G
∗
k ≥

n∑
k=1

skG
∗
k,

where the latter inequality follows from the facts that s1 ≥
. . . sn and G∗

1 < . . . < G∗
n.

Consider then policy π∗ = (c∗n, . . . , c
∗
1) and let i∗(k) de-

note the original index of the job that completes at the end
of phase k under this policy π∗. It follows from Proposition 1
that i∗(k) = k for all k. Thus,

Tπ∗
= nTπ∗

n +

n−1∑
k=1

k Tπ∗
k

= n
sn
c∗nn

+

n−1∑
k=1

(
sk − sn

c∗nn

c∗nk

)
G∗

k

=
sn
c∗nn

(
n−

n−1∑
k=1

c∗nkG
∗
k

)
+

n−1∑
k=1

skG
∗
k

= sng(c
∗
n) +

n−1∑
k=1

skG
∗
k

=

n∑
k=1

skG
∗
k

so that Tπ ≥ Tπ∗
for any π ∈ Πn.

We would emphasize that all the results in this section are
achieved with very general assumptions. Unlike in [11], no
convexity nor coordinate-convexity is required from the ca-
pacity regions. It is only assumed that the capacity regions
are compact and symmetric.

The capacity regions do not even need to be nested. An
easy example can be found for n = 2. If C1 = [0, 1] and
C2 ∈⊂ Rk

2 is a compact and symmetric region such that
c21 + c22 < 2, then G∗

1 = 1 and

G∗
2 =

1

c∗22
(2− c∗21) > 1 = G∗

1



so that Theorem 1 can be applied to determine the optimal
policy.
Note also that (1) gives a recursive algorithm to determine

both the optimal rate vector and the minimum mean de-
lay. The proposed approach vastly facilitates the numerical
evaluation of the optimal scheduling problem for any fam-
ily of capacity regions that meet the presented conditions.
The general optimization problem is difficult: (i) The num-
ber of possible service orders becomes quickly overwhelming
when the number of flows increases, (ii) optimization on a
high-dimensional capacity set may be computationally te-
dious, e.g., when the capacity region is a solution space of
some packet level scheduling problem, and (iii) the prob-
lem needs to be solved separately for each set of flow sizes.
The proposed approach avoids the combinatorial problems
altogether, minimizes the need for numerical optimization
on capacity sets and produces results that can be readily
recycled for different flow sizes.

4. SYMMETRIC POLYMATROIDS
Capacity regions Ck, k = 1, . . . , n, are nested and symmet-

ric polymatroids if there is an increasing sequence γk ∈ R+

(referring to the opportunistic gain) such that, for all k,

Ck = {ck ∈ Rk
+ :
∑
i∈I

cki ≤ γ|I| for all I ∈ {1, . . . , n}}.

Sadiq and de Veciana [11] proved that the optimal policy
belongs to the SRPT-HPR category when the capacity re-
gions are nested and symmetric polymatroids and the gain
function γk is increasing and concave, i.e., γk+1 − γk is de-
creasing. In this section, we demonstrate that (with a minor
additional assumption) their result is, in fact, a special case
of our Theorem 1.
Given an increasing sequence γk, let θ1, . . . , θn denote a

sequence of positive real numbers defined recursively as fol-
lows:

θ1 = 1
γ1

,

θk = 1
γ1

(
k −

∑k−1
j=1 (γk+1−j − γk−j)θj

)
, k = 2, . . . , n.

(2)
Sadiq [10, Proof of Theorem 5.1] has shown that the se-
quence θk is increasing when the sequence γk is concave,
i.e., γk+1 − γk is decreasing as a function of k. Below we
show that it is strictly increasing when the sequence γk is
strictly concave, i.e.,

γ1 > γ2 − γ1 > . . . > γn − γn−1.

Proposition 2. If the increasing sequence γk is strictly
concave, then

θ1 < . . . < θn.

Proof. The result is proved by induction. For n = 1,
the result is trivially true.
Assume now that n ≥ 2 and the result is true for all values

1, . . . , n− 1. We will show that it is also true for value n.
Let us denote γ0 = θ0 = 0. It follows from the definition

of θn that

n =

n−1∑
k=0

(γk+1 − γk)θn−k.

Correspondingly, by the definition of θn−1,

n− 1 =

n−2∑
k=0

(γk+1 − γk)θn−1−k.

The difference of these two equations gives thus

1 =

n−1∑
k=0

(γk+1 − γk)(θn−k − θn−1−k).

By substituting n with n− 1, we get

1 =

n−2∑
k=0

(γk+1 − γk)(θn−1−k − θn−2−k).

Since γk+2 − γk+1 < γk+1 − γk for all k, it follows that

1 =

n−1∑
k=0

(γk+1 − γk)(θn−k − θn−1−k)

= γ1(θn − θn−1) +

n−2∑
k=0

(γk+2 − γk+1)(θn−1−k − θn−2−k)

< γ1(θn − θn−1) +

n−2∑
k=0

(γk+1 − γk+1)(θn−1−k − θn−2−k)

= γ1(θn − θn−1) + 1.

Thus, γ1(θn − θn−1) > 0, implying that θn > θn−1, since
γ1 > 0.

To prove the main result of this section (given below in
Theorem 2) we need the following auxiliary result.

Proposition 3. If the increasing sequence γk is strictly
concave, then, for all k = 2, . . . , n and ck ∈ Ck,

k−2∑
j=1

ckjθj+(ck,k−1+ckk)θk−1 ≤
k−2∑
j=1

(γk−j+1−γk−j)θj+γ2θk−1.

Proof. The result follows easily from the facts that

0 < θ1 < . . . < θk−1

and

k∑
j=k−k′+1

cki ≤ γk′ =

k′∑
j=3

(γj − γj−1) + γ2

for all k′ = 2, . . . , k. The former is due to Proposition 2 and
the latter follows from the properties of polymatroid Ck.

Theorem 2. If the capacity regions Ck, k = 1, . . . , n, are
nested and symmetric polymatroids generated by an increas-
ing and strictly concave sequence γk, then the optimal oper-
ating policy, for all sizes s1 ≥ . . . ≥ sn, is π

∗ = (c∗1, . . . , c
∗
n),

where

c∗k = (γk − γk−1, . . . , γ2 − γ1, γ1)

for all k. In this case, the minimum flow time Tπ∗
satisfies

Tπ∗
=

n∑
k=1

skθk,

where θk’s are defined in (2). In addition, c∗k,j+1 > c∗k,j for
all k = 2, . . . , n and j = 1, . . . , k − 1 so that the optimal
policy belongs to the SRPT-HPR category.



Proof. By Theorem 1 and Proposition 2, it is sufficient
to prove that, for all k,

θk = min
ck∈Ck

gk(ck),

where functions gk are defined in (1).
The result is proved by induction. For k = 1, the result is

clearly true.
Assume now that k ≥ 2 and the result is true for all values

1, . . . , k − 1. We will show that it is also true for value k.
Note first that

θk − θk−1 =
1

γ1

(
k −

k−2∑
j=1

(γk−j+1 − γk−j)θj − γ2θk−1

)
> 0

by Proposition 2. In addition, by the induction assumption,
for any j = 1, . . . , k − 1,

θj = min
cj∈Cj

gj(cj) = G∗
j .

Thus, for any ck ∈ Ck,

gk(ck)− gk(c
∗
k)

=
1

ckk

(
k −

k−1∑
j=1

ckjθj

)

− 1

γ1

(
k −

k−1∑
j=1

(γk−j+1 − γk−j)θj

)

=
1

ckk

(
k −

k−2∑
j=1

ckjθj − (ck,k−1 + ckk)θk−1

)

− 1

γ1

(
k −

k−2∑
j=1

(γk−j+1 − γk−j)θj − γ2θk−1

)

≥ 1

ckk

(
k −

k−2∑
j=1

(γk−j+1 − γk−j)θj − γ2θk−1

)

− 1

γ1

(
k −

k−2∑
j=1

(γk−j+1 − γk−j)θj − γ2θk−1

)

=

(
1

ckk
− 1

γ1

)
γ1(θk − θk−1) ≥ 0,

where the inequality is justified by Proposition 3.

Note that the result given above is valid even for more
general capacity regions, which include the operating points
c∗k = (γk−γk−1, . . . , γ2−γ1, γ1) and which are subsets of the
corresponding polymatroids. Note also that such capacity
regions are not required to be symmetric.
As already shown in [11], symmetric polymatroids can

be utilized to determine a lower bound (i.e., an optimistic
estimate) for the flow time whenever the original capacity
regions are compact, convex and symmetric, cf. Figure 1 in
Section 6.

5. SYMMETRIC OPS-LIMITED POLYTOPES
Capacity regions Ck, k = 1, . . . , n, are nested and symmet-

ric OPS-limited polytopes if there is an increasing sequence
γk ∈ R+ (referring to the opportunistic gain) such that, Ck

is the covex hull of the points Vk ⊂ Rk
+ for all k, where

Vk =

k∪
j=0

Vkj

and Vkj consists of all permutations of the rate vector

(0, . . . , 0,
γj
j
, . . . ,

γj
j
)

with j non-zero elements. Note that these permutations
correspond to rate vectors for the OPS policy when applied
to j jobs (out of k). It follows that

Ck = {
|Vk|∑
i=1

αivki : vki ∈ Vk, αi ≥ 0,

|Vk|∑
i=1

αi = 1}.

It is also easy to see that |Vk| = 2k and |Vkj | = k!
j!(k−j!)

.

Given an increasing sequence γk, let η1, . . . , ηn denote a
sequence of positive real numbers defined recursively as fol-
lows:

η1 = 1
γ1

,

ηk = minj∈{1,...,k}

(
jk
γj

−
∑k−1

i=k+1−j ηi
)
, k = 2, . . . , n.

(3)

Proposition 4. If the increasing sequence γk is such that

η1 < . . . < ηn,

then, for all k = 1, . . . , n and vk = (vk1, . . . , vkk) ∈ Vk,

k∑
j=1

vkjηj ≤ k.

Proof. For vk = (0, . . . , 0) ∈ Vk the result is trivially
true. Let then vk ∈ Vk such that

vk = (0, . . . , 0,
γj
j
, . . . ,

γj
j
)

with j ∈ {1, . . . , k} non-zero elements. It follows from (3)
that

ηk ≤

 jk

γj
−

k−1∑
i=k+1−j

ηi

 ,

which is equivalent with

k∑
j=1

vkjηj ≤ k.

Consider then any permutation ṽk = (ṽk1, . . . , ṽkk) of vk.
The assumption

η1 < . . . < ηn

implies that

k∑
j=1

ṽkjηj ≤
k∑

j=1

vkjηj ≤ k,

which completes the proof.

Theorem 3. If the capacity regions Ck, k = 1, . . . , n, are
nested and symmetric OPS-limited polytopes generated by an
increasing sequence γk such that

η1 < . . . < ηn,



then the optimal operating policy, for all sizes s1 ≥ . . . ≥ sn,
is the SRPT-OPS policy π∗ = (c∗1, . . . , c

∗
n), where, for all k,

c∗k = (0, . . . , 0,
γj∗

k

j∗k
, . . . ,

γj∗
k

j∗k
)

with j∗k non-zero elements, where j∗k is the optimal index in

(3). In this case, the minimum flow time Tπ∗
satisfies

Tπ∗
=

n∑
k=1

skηk.

Proof. By Theorem 1, it is sufficient to prove that, for
all k,

ηk = min
ck∈Ck

gk(ck),

where functions gk are defined in (1).
The result is proved by induction. For k = 1, the result is

clearly true.
Assume now that k ≥ 2 and the result is true for all values

1, . . . , k − 1. We will show that it is also true for value k.
Let ck = (ck1, . . . , ckk) ∈ Ck. There are αi ≥ 0 such that

|Vk|∑
i=1

αi = 1 and ck =

|Vk|∑
i=1

αivki,

where vki = (vki1, . . . , vkik) ∈ Vk. By Proposition 4,

k∑
j=1

ckjηj =

k∑
j=1

|Vk|∑
i=1

αivkijηj =

|Vk|∑
i=1

αi

k∑
j=1

vkijηj ≤ k,

implying, by the induction assumption, that

gk(ck) =
1

ckk

(
k −

k−1∑
j=1

ckjG
∗
j

)
=

1

ckk

(
k −

k−1∑
j=1

ckjηj

)
≥ ηk.

On the other hand, by (3),

k∑
j=1

c∗kjηj =
γj∗(k)
j∗(k)

k∑
j=k+1−j∗(k)

ηj = k,

implying that

gk(c
∗
k) =

1

c∗kk

(
k −

k−1∑
j=1

c∗kjG
∗
j

)
=

1

c∗kk

(
k −

k−1∑
j=1

c∗kjηj

)
= ηk,

which completes the proof.

In fact, the result given above is valid for more general
capacity regions Ck that include the points in Vk and that
are bounded by the corresponding polytopes Tk, i.e., Vk ⊂
Ck ⊂ Tk. Note that such capacity regions are not required
to be symmetric.
It is also important to observe that symmetric OPS-limited

polytopes can easily be utilized to determine an upper bound
(i.e., a conservative estimate) for the flow time whenever the
original capacity regions are compact, convex and symmet-
ric, cf. Figure 1 in Section 6.
An interesting open question is to determine sufficient con-

ditions for the increasing sequence γk such that

η1 < . . . < ηn.

We believe that the concavity of the sequence γk would be
such a condition, but, until now, we have managed to prove
the claim only for n = 2 and n = 3.

Next we show that it is possible to find a nested family of
symmetric OPS-limited polytopes Tk guaranteeing that the
optimality of the ordinary SRPT discipline (serving always
just the shortest job with fixed rate γ1) whenever the (orig-
inal) capacity regions Ck are bounded by the corresponding
polytopes Tk. Note again that such capacity regions are not
required to be symmetric.

Theorem 4. Consider a sequence of compact capacity re-
gions Ck ⊂ Rk

+, k = 1, . . . , n. Denote

γ1 = max{c ∈ C1}.

Let Tk, k = 1, . . . , n, denote the symmetric OPS-limited
polytopes generated by the increasing sequence γk defined by

γk =
2n

2n+ 1− k
γ1.

If (0, . . . , 0, γ1) ∈ Ck and Ck ⊂ Tk for all k, then the optimal
operating policy, for all sizes s1 ≥ . . . ≥ sn, is the SRPT
policy π∗ = (c∗1, . . . , c

∗
n), where, for all k,

c∗k = (0, . . . , 0, γ1).

In this case, the minimum flow time Tπ∗
satisfies

Tπ∗
=

1

γ1

n∑
k=1

ksk.

Proof. 1◦ Assume first that Ck = Tk for all k. By The-
orem 3, it is sufficient to prove that, for all k,

ηk =
k

γ1
= min

j∈{1,...,k}

 jk

γj
−

k−1∑
i=k+1−j

ηi

 .

Note that in this case, we certainly have

η1 < . . . < ηn.

The result is proved by induction in k = 1, . . . , n. For k =
1, the result is trivially true since η1 = 1/γ1 by definition.

Assume now that k ≥ 2 and the result is true for j =
1, . . . , k − 1. We will show that the result is valid for j = k.

Since k ≤ n and 2x/(2x+ 1 − j) is a decreasing function
of x for j > 1, we have, for all j ∈ {2, . . . , k},

γj
γ1

=
2n

2n+ 1− j
≤ 2k

2k + 1− j
. (4)

On the other hand, by (3), ηk = k/γ1 if

k

γ1
≤ jk

γj
−

k−1∑
i=k+1−j

ηi.

By applying the induction assumption, the condition reads
as

k

γ1
≤ jk

γj
− 1

γ1
((k + 1− j) + . . .+ (k − 1)) ,

which is easily seen to be equivalent with condition

γj
γ1

≤ 2k

2k + 1− j
,

which is satisfied by (4). Thus, ηk = k/γ1.
2◦ Assume now that (0, . . . , 0, γ1) ∈ Ck ⊂ Tk for all k =

1, . . . , n. Since c∗k = (0, . . . , 0, γ1) is the optimal operating
point in Tk and c∗k ∈ Ck ⊂ Tk for all k, it must be the optimal
operating point in Ck, as well.

Note that if Cn ̸⊂ Tn, then applying the ordinary SRPT
discipline is no longer optimal.



6. EXAMPLES AND NUMERICAL RESULTS
In this section we study a particular parametric family of

capacity regions Ck, for which the optimal rate vector and
the minimum delay have explicit expressions. The minimum
delay is compared against the results given by bounding the
capacity region either by the tightest polymatroid (lower
bound for the mean delay) or OPS-limited polytope (upper
bound for the mean delay).

6.1 Optimum solutions
Let α > 1, and consider the symmetric capacity regions

Ck defined as follows:

Ck = {c ∈ Rk
+ :

k∑
j=1

cαj ≤ 1}.

In the special case when α = 2, the above regions represent
the k-dimensional balls (sphere), and thus we refer to the
above regions as α-balls, for short. The α-ball serves as
a suitable example of a capacity region where the degree
of scheduling gain can be easily parameterized between the
extreme cases of a linear capacity region (α = 1) and a
hypercube (α → ∞).

To obtain the minimum delay Tπ∗
under the α-ball capac-

ity region for n jobs, the optimizing values G∗
k, k = 1, . . . , n,

need to be determined recursively by applying (1). Thus,
at each stage k the following optimization problem is solved
to determine the optimal rate vector c∗ = (c∗1, . . . , c

∗
k) ∈ Ck

and the associated G∗
k,

G∗
k = minc gk(c) =

1
ck

(
k −

∑k−1
j=1 cjG

∗
j

)
s.t.
∑k

j=1 c
α
j ≤ 1.

Recall that the optimizing valuesG∗
1, . . . , G

∗
k−1 are fixed con-

stants that were determined already in the earlier stages.
The above nonlinear optimization problem can be solved ex-
plicitly by an appropriate geometrical interpretation of the
problem.
Let us denote x = G∗

k. The function g(c) = x represents
a hyperplane with respect to c,

xck +

k−1∑
j=1

cjG
∗
j = k. (5)

The solution to the optimization problem is given by deter-
mining the value of the unknown constant x such that the
hyperplane g(c) = x touches the boundary of the capacity
region Ck given by

k∑
j=1

cαj = 1. (6)

This means that at the optimal rate vector c = c∗, the
outer normal vectors to the capacity boundary (6) and the
hyperplane (5) must be equal up to a constant y, which gives
us componentwise the following equations,

y cα−1
j = G∗

j , j = 1, . . . , k − 1,

y cα−1
k = x.

(7)

Thus, we have k+2 unknowns and k+2 equations, i.e., (5),
(6) and (7). The solution for G∗

k, i.e., x, is readily obtained

in recursive form

G∗
α

α−1

k =

(
k

α
α−1 −

k−1∑
j=1

G∗
α

α−1

j

)
.

The above recursive formula can be solved by reapplying the
recursion to the (k−1)th term on the right hand side which
finally gives

G∗
k =

(
k

α
α−1 − (k − 1)

α
α−1

)α−1
α

. (8)

The associated optimal rate vector c∗ = (c∗1, . . . , c
∗
k) as given

by (7) satisfies, for all j = 1, . . . , k,

c∗j = k
−1
α−1

(
j

α
α−1 − (j − 1)

α
α−1

) 1
α
,

and the minimum flow time Tπ∗
for n jobs of sizes s1 ≥

. . . ≥ sn is given by

Tπ∗
=

n∑
k=1

sk
(
k

α
α−1 − (k − 1)

α
α−1

)α−1
α

.

For the polymatroid and the polytope bounds, the oppor-
tunistic gain γk is needed. The gain function corresponds in
the capacity region to the point where the sum of the rates
is maximized, i.e., one needs to solve

γk = maxc c1 + · · ·+ ck
s.t.
∑k

j=1 c
α
j = 1.

(9)

Due to the symmetry of the capacity region, the optimal
solution to (9) is clearly found to be cj = k−1/α for all
j = 1, . . . , k, so that the gain function is

γk = k
α−1
α .

Note that the sequence γk, k = 1, . . . , n, is easily verified to
be increasing and concave.

6.2 Numerical results
Next we give some numerical results on the delay perfor-

mance in the α-ball capacity regions. We study the SRPT-
HPR-type optimal policy in the actual α-ball capacity re-
gion and compare it against the lower bound given by the
SRPT-HPR-type optimal policy in the tightest polymatroid
capacity regions (covering the α-balls) and the upper bound
given by the optimal SRPT-OPS policy in the tightest OPS-
limited polytope capacity regions (inside the α-balls). These
capacity regions are illustrated in Figure 1 for n = 2 and
α = 2, where the solid line represents the actual capac-
ity region. The polymatroid capacity region is the outer
bounding dashed line (i.e., capacity region is larger than
original and hence it gives a lower bound for delay) and the
inner bounding dashed line corresponds to the OPS-limited
polytope capacity region (i.e., capacity region is smaller and
hence it gives an upper bound on the delay). In the figure,

we have also indicated (i) the rate vector (c∗1, c
∗
2) = ( 1

2
,
√
3

2
)

associated with the optimal policy in the α-ball, (ii) the rate
vector (γ2 − γ1, γ1) = (

√
2 − 1, 1) associated with the opti-

mal policy in the polymatroid capacity region, and (iii) the

rate vector ( γ2
2
, γ2

2
) = (

√
2

2
,
√

2
2
) associated with the optimal

policy in the OPS-limited polytope capacity region.
Note that the optimal policy in the OPS-limited polytope

capacity region, i.e., SRPT-OPS, considered in Section 5
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Figure 1: The capacity regions for n = 2 jobs with
α = 2. The actual α-ball capacity region is shown
with solid line and the polymatroid and the OPS-
limited polytope capacity regions are the outer and
inner bounding dashed lines, respectively.

represents the size-based optimal policy when the oppor-
tunistic scheduler is only able to achieve the gain given by
the PF scheduler. For this optimality, it was required that
the sequence ηk is strictly increasing. This is verified in Fig-
ure 2 for the α-ball capacity region, which depicts the dif-
ference ηk − ηk−1 as a function of the number of jobs k for
α = 2 (upper panel) and α = 1.2 (lower panel). The reason
for the somewhat irregular behavior is the minimum oper-
ation required in solving (3), which makes it also difficult
to analytically prove the increasing property. However, nu-
merically we can observe that the differences remain positive
(i.e., the sequence is increasing) and the figure also suggests
that the differences will remain positive for any value of k.
To study the performance of the different policies, we con-

sider the mean delay per job as a function of the number of
jobs in the system. We simulated the system with random
initial sizes of the jobs taken from an exponential distribu-
tion with unit mean, and the results were obtained as an
average over 105 such realizations. Note that in the simula-
tions there are no new arrivals and thus the only randomness
comes from the random initial sizes. In the results, we addi-
tionally show the mean delay of the OPS policy representing
a practical point of reference, which corresponds to the size-
oblivious fair policy that serves, given n jobs in the system,
all jobs in parallel at rate γn/n.
The results are given in Figure 3, where the upper panel

corresponds to the case with α = 2 and the lower panel
to the case with α = 1.2. The curves in each figure from
bottom up correspond to (i) the polymatroid lower bound,
(ii) the minimum mean delay in the α-ball capacity regions,
(iii) the polytope upper bound, and (iv) the mean delay
for the OPS policy. We can observe that the polymatroid
lower bound becomes more loose for smaller values of α,
while the polytope upper bound remains quite accurate and
seems to give a good approximation to the actual optimum
delay. Also, at small values of α there is less scheduling
gain and OPS gives significantly poorer performance than
the size-based optimum policy.
Finally, we consider the performance of the OPS policy

relative to the SRPT-HPR-type optimal policy in the α-
balls. Similarly as before, each simulation consisted of av-
eraging over 105 realizations of random initial sizes drawn
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Figure 2: The differences ηk − ηk−1 in OPS-limited
polytopes as a function of number of jobs for α =
2 (upper panel) and α = 1.2 (lower panel) remain
positive, i.e., the ηk are an increasing sequence.
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Figure 3: The mean delay as a function of number
of jobs for α = 2 (upper panel) and α = 1.2 (lower
panel). The curves from bottom up correspond to
the polymatroid lower bound, the minimum mean
delay for the α-balls, the polytope upper bound, and
the mean delay for OPS.

from an exponential distribution with unit mean. The re-
sults are shown in Figure 4, which gives the mean delay ratio
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Figure 4: The mean delay ratio of the OPS policy
relative to optimal policy as a function of number
of jobs. The curves from bottom up correspond to
α = {2, 1.3, 1.1}, respectively.

of the OPS policy relative to the optimal policy in the α-
balls as a function of the number of jobs. The curves from
the bottom up correspond to α = {2, 1.3, 1.1}, respectively.
As can be seen, the gain from the optimal policy increases
the smaller α is, e.g., for α = 2 the benefit is only marginal.
However, for smaller values of α the gain can be more than
40%.

7. CONCLUSIONS
We have considered the minimization of the mean flow-

level delay in a transient setting for service systems where
the service ability can improve as the number of jobs in-
creases. The situation reflects the opportunistic scheduling
gain observed, e.g. in modern wireless cellular networks. Our
key result is that under the given conditions the SRPT prin-
ciple is optimal in a sense that the shortest flow is served at
the highest rate of the optimal rate vector, the second short-
est at the second highest rate etc. Importantly, the optimal
rate vector does not depend on the sizes of the flows. We
provided a recursive algorithm to determine the optimal rate
vector as well as the minimum mean delay. Also upper and
lower bounds for the delay were derived by applying the
main result to systems with specific polytope capacity re-
gions. The results even allow solving the optimal scheduling
problem in closed form for certain special cases and vastly
facilitates numerical evaluation in the general case.
We restricted ourselves to the operating policies where the

rate vector is kept unchanged until the number of jobs is de-
creased. However, our results give strong indication that
the optimal operating policy would be the same even if we
allowed continuous control over the rate vector. This kind
of generalization might be approached by dynamic program-
ming techniques.
While we used modern wireless cellular systems as an ex-

ample of systems with opportunistic scheduling gain, where
the overall service rate of the system increases with the num-
ber of users, there are many more examples as well. A sim-
ilar phenomenon can be observed, e.g., in peer-to-peer file
sharing systems due to the double-role of leechers as be-
ing customers and servers at the same time. Or one may
consider a multi-server queue with m parallel servers and n
jobs, where the total service capacity is γn = min{n,m}. As
long as there are free servers, each new job activates a new
server increasing thus the whole service capacity of the sys-
tem. Queueing systems with opportunistic scheduling gain

may briefly be called scalable queues.
In the future we plan to study the optimal scheduling

problems related to various scalable queues in the dynamic
setting. Even for the multi-server queue this is an open
problem. It is only known that the SRPT-FM discipline
minimizes the mean delay in the transient system starting
with a fixed number of jobs but not allowing any (further)
arrivals [9].

Another promising research direction is to consider sys-
tems where the flow level capacity regions are not explicitly
defined but rather result from some adjustable packet level
scheduling schemes. Combining the optimization tasks of
the flow level and the packet level seems to allow solving op-
timal scheduling problems even in cases where determining
the capacity sets would be otherwise tedious or difficult, es-
pecially at higher dimensions. An example of such a system
is a weighted PF scheduler.
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