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Abstract— We study the load balancing problem in a
dense multihop network, where a typical path consists
of large number of hops, i.e., the spatial scales of a
typical distance between source and destination, and mean
distance between the neighbouring nodes are strongly
sepatated. In this limit, we present a general framework
for analysing the traffic load resulting from a given set
of paths and traffic demands. We formulate the load
balancing problem as a minmax problem and give two
lower bounds for the achievable minimal maximum traffic
load. The framework is illustrated by an example of
uniformly distributed traffic demands in a unit disk with
a few families of paths given in advance. With these paths
we are able to decrease the maximum traffic load by factor
of 33− 40% depending on the assumptions. The obtained
traffic load level comes quite near the tightest lower bound.

Index Terms— multihop network, load balancing

I. INTRODUCTION

In a dense wireless multihop network a typical path
consists of several hops and intermediate nodes along a
path act as relays. In this paper we focus on studying the
traffic load in such a network. By traffic load we mean,
roughly speaking, the rate at which packets are transmit-
ted in the proximity of a given node, and the objective
of load balancing is to find such paths that minimise the
maximum traffic load in the network. In particular, we
assume a strong separation in spatial scales between the
macroscopic level, corresponding to a distance between
the source and destination nodes, and the microscopic
level, corresponding to a typical distance between the
neighbouring nodes. This assumption justifies modelling
the routes on the macroscopic scale as smooth geometric
curves as if the underlying network fabric formed a
homogeneous, continuous medium.

The microscopic scale corresponds to a single node
and its immediate neighbours. At this scale the above
assumptions imply that only the direction in which a
particular packet is traversing is significant. In particular,
considering one direction at a time there exists a certain
maximum flow of packets a given MAC protocol can

support (packets per unit time per unit length, “density of
progress”). Generally, this maximal sustainable directed
packet flow depends on the particular MAC protocol
defining the scheduling rules and possible coordination
between the nodes. Determining the value of this max-
imum is not a topic of this paper but is assumed to be
given (known characterstic constant of the medium). By
a simple time sharing mechanism this maximal value
can be shared between flows propagating in different
directions. As a result, the scalar or total flux (to be
defined in Section II) of packets is bounded by the given
maximum, and the load balancing task is to determine
the paths in such a way that the maximum flux in
minimised.

Under the assumption of a dense multihop network
the shortest paths (SP) are approximately straight line
segments [PP03]. Straight paths yield an optimal solution
in terms of mean delay when the traffic demands are
low and there are no queueing delays. However, they
typically concentrate significantly more traffic in the
center of network than elsewhere, and as the traffic load
increases the packets going through the center of the
network start to experience queueing delays and even-
tually the system becomes unstable when the maximal
sustainable scalar flux is exceeded. Hence, the use of
shortest paths limits the capacity of the multihop network
unnecessarily and our task is to minimise the maximum
packet flux in the network by a proper choice of paths
on the macroscopic scale.

Our main contribution is the formulation of the traffic
load and the corresponding load balancing problem in a
dense multihop network. For the load balancing problem
we provide two lower bounds. Further, we show how the
scalar flux can be calculated for a given set of curvilinear
paths. Even though the results are valid only in the limit
of a dense network (i.e., a large number of nodes and a
small transmission range), they give insight and can serve
as useful approximations for more realistic scenarios.

The rest of the paper is organised as follows. In
Section II we present the necessary mathematical frame-
work. In Section III two lower bounds for the achievable
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traffic load level are presented. In Section IV the general
expressions for the traffic load with curvilinear paths
are derived. In Section V we demonstrate the load
balancing in unit disk with three different path sets
yielding a better performance than the shortest paths in
terms of maximum traffic load. Section VI contains our
conclusions.

A. Related Work

In [PP03] Pham et al., and later in [GK04] Ganjali
et al., have studied the load balancing using multipath
routes instead of shortest paths. The analysis is done
assuming a disk area and a high node density so that
the shortest paths correspond to straight line segments.
In multipath situation the straight line segments are
replaced by rectangular areas where the width of the
rectangle is related to the number of multiple paths
between a given pair of nodes. In particular, multiple
paths are fixed on both sides of the shortest path.

In [DBT05] Dousse et al. study the impact of interfer-
ence on the connectivity of large ad hoc networks. They
assume an infinite area and the behaviour of each node to
be independent of the other nodes, which, together with
interference assumptions, define the stochastic properties
for the existance of links. With these assumptions the
authors study the existance of a gigantic component,
which is related to the network connectivity.

In [SMS05] Sirkeci-Mergen et al. study a dense wire-
less network with cooperative relaying, where several
nodes transmit the same packet simultaneously in order
to achieve a better signal-to-noise ratio. In the analysis
an infinitely long strip is studied and the authors are
able to identify a so-called critical decoding treshold
for the decoder above which the message is practically
transmitted to any distance (along the strip). The analysis
assumes a dense network similarly as in this paper.

In a dense network with shortest path routing the
transmission of each packet corresponds to a line seg-
ment in the area of the network. A line segment pro-
cess with uniformly distributed end points is similar to
the so-called random waypoint (RWP) mobility model
commonly used in studies of wireless ad hoc networks
[JM96], [BW02], [BRS03], [NC04]. In the RWP model
the nodes move along straight line segments from one
waypoint to the next and the waypoints are assumed
to be uniformly distributed in some convex domain.
The similarity between the RWP process and the packet
transfers with the shortest path routes is striking and we
can utilise the readily available results from [HLV05] in
this case. For curvilinear paths the situation, however,
is more complicated and the new results derived in the

present paper allow us to compute the resulting scalar
packet flux (i.e., traffic load).

II. PRELIMINARIES

In this section we introduce the necessary notation
and definitions for analysing the transport of the packets
and the resulting traffic load in the network. LetA
denote the region where the network is located. The
packet generation rate corresponding to traffic demands
is defined as follows.

Definition 1 (traffic demands) The rate of flow of
packets from a differential area elementdA aboutr1 to
a differential area elementdA aboutr2 is λ(r1, r2) ·dA2

(“traffic matrix”).

Remark 2 The total packet generation rate is given by

Λ =
∫
A

d2r1

∫
A

d2r2 λ(r1, r2).

Each generated packet is transferred along a certain
multihop path. More formally,

Definition 3 Set of paths denoted byP defines for all
source destination pairs(r1, r2) a unique pathp ∈ P.
Furthermore, lets(p, r1, r2) denote the distance fromr1

to r2 along the pathp.

Remark 4 The mean path length, i.e., the mean distance
a packet travels, is given by

` =
1
Λ

∫
A

d2r1

∫
A

d2r2 λ(r1, r2) · s(p, r1, r2)

Example 5 For the shortest paths we have

`sp =
1
Λ

∫
A

d2r1

∫
A

d2r2 λ(r1, r2) · ||r2 − r1||.

Probably the most important quantity for our purposes
is the packet arrival rate into the proximity of a given
node. This is described by notion of scalar flux, which in
turn is defined in terms of angular flux. These are similar
to corresponding concepts of particle fluxes in physics,
e.g., in neutron transport theory [BG70]. In our case, the
packet fluxes depend on the traffic demandsλ(r1, r2)
and the chosen pathsP, and are defined as follows:

Definition 6 Angular flux of packets at pointr in di-
rection θ, denoted byΦ(r, θ) = Φ(P, r, θ), is equal
to the rate at which packets flow in the angle interval
(θ, θ + dθ) across a small line segment of the lengthds
perpendicular to directionθ at pointr divided bydx ·dθ
in the limit dx→ 0 and dθ → 0.
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Φ(r,
θ)

∆x

∆x

Fig. 1. Angular flux from directionθ multiplied by ∆x gives a
specific packet arrival rate to a box with side length∆x.

Definition 7 Scalar flux of packets at pointr is

Φ(r) = Φ(P, r) =

2π∫
0

Φ(P, r, θ) dθ.

Remark 8 Scalar flux of packets is equal to the rate at
which packets enter a disk with diameterd at point r
divided byd in the limit whend→ 0.

The proof follows trivially from the definitions. Also, in
analogy with particle flux in physics the following holds.

Remark 9 For scalar fluxΦ(r), packet densityn(r) and
constant (local) velocityv(r) it holds that

Φ(r) = n(r) · v(r). (1)

Proof: Packet arrival rate from a direction interval
(θ, θ + dθ) across a line segment perpendicular toθ at r
with length∆x is equal toΦ(r, θ) ·∆x · dθ (cf., Fig. 1
and Def. 6). Each packet spends time∆x/v(r) inside the
box, and, according to Little’s result, the mean number
of packets in the box arriving from direction(θ, θ + dθ)
is Φ(r, θ) · ∆x2/v(r) · dθ contributing an amount of
Φ(r, θ)/v(r) · dθ to the packet density. Integrating over
θ givesn(r) = Φ(r)/v(r).

Example 10 With uniform traffic demands and shortest
path routing the resulting system is closely related to the
random waypoint model (RWP). In the basic RWP model
a node moves from one waypoint to another along the
straight line segment and the waypoints are uniformly
distributed in some convex domain with areaA. The
stationary node distribution is given by [HLV05]

fRWP(r) =
1

2`A2

2π∫
0

dθ a1a2(a1 + a2), (2)

where ` is the mean leg length,a2 = a2(r, θ) is the
distance to the boundary in the directionθ and a1 in
the opposite direction (see Fig. 2). Withv = 1 the leg
generation rate is equal to1/`, and hence the stationary
node pdf of the RWP model is identical to the packet
densityn(r) with an appropriate scaling,

n(r) = ` · fRWP(r) · Λ.

A
r a1

a2 θ

Fig. 2. Notation for node pdf (2) of the RWP model.

With v = 1 we haveΦ(r) = n(r) and the flux with
uniform traffic demands and shortest paths is given by,

Φ(r) =
Λ

2A2

2π∫
0

dθ a1a2(a1 + a2).

With this notation we can finally give a formal defi-
nition for the optimisation problem.

Definition 11 (load balancing problem) Find the set
of paths,Popt, minimising the maximum scalar flux,

Popt = arg min
P

max
r

Φ(P, r).

Remark 12 (optimal maximum traffic load) With the
load balanced paths the maximum load is

Φopt = max
r

Φ(Popt, r) = min
P

max
r

Φ(P, r).

In the above defintion, Def. 11, one needs the scalar
flux Φ(P, r). We will show in Section IV how this can be
calculated for a given set of pathsP. Finding the optimal
paths is a difficult problem of calculus of variation. In
this paper, we do not search for a general solution but
rather study three heuristically chosen families of paths
and compare their performance with that of the shortest
paths and with the bounds introduced in the next section.

III. L OWER BOUNDS FOR PACKET FLUX

Our next goal is to derive two lower bounds for
achievable load balancing, i.e., for a given traffic pattern
λ(r1, r2) we want to find bounds for the minimum of
the maximal traffic load that can be obtained by a proper
choice of paths. Let us start by an illustrative example.

Example 13 Consider anh×w rectangle where packets
are generated at rateΛ at the bottom of the area
(uniformly) as illustrated in Fig. 3. All packets travel
directly up to the top of the area, i.e., we have shortest
paths with mean path length of` = h. The arrival rate
of packets across any horizontal line segment of length
t is equal toΛ · t/w. Hence, the flux at any point is
constant,Φ = Λ/w = Λ`/A, and we have a perfect
load balancing (cf. Def. 11).
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sources

destinations

w

h = `

Fig. 3. Packets moving uniformly from the bottom to top of the
area yield a uniform scalar flux ofΦ = Λ/w = Λ · `/A.

Note that the quantityΛ · ` · ∆t corresponds to the
cumulative distance the packets arriving during a time
interval of∆t have to travel on average in order to reach
their respective destinations. Consequently, the previous
example suggests the following proposition.

Proposition 14 (distance bound)

max
r

Φ(P, r) ≥ Λ · `
A

. (3)

Proof: Without loss of generality we can setv = 1
whenceΦ(r) = n(r). Let A be the area ofA and n
the mean density of packets,n = N/A, where N is
the mean number of packets in the system. Withv = 1,
Little’s result impliesN = Λ · `. Hence

max
r

Φ(r) ≥ n =
N

A
=

Λ · `
A

.

Remark 15 For Psp consisting of straight line segments
between the source destination pairs, we obtain the
lowest possible value for̀ = `sp. Consequently,

Φopt ≥ Λ · `sp

A
. (4)

Alternatively, we can only consider traffic flows crossing
an arbitrary boundary (cf., cut bound in wired networks).

Proposition 16 (cut bound) For any curve C which
separates the domainA into two disjoint domainsA1

andA2 it holds that

Φopt ≥ 1
L

∫
A1

d2r1

∫
A2

d2r2 (λ(r1, r2) + λ(r2, r1)) ,

whereL is the length of the curveC.
Proof: Consider first a short line segmentds at r at

some point along the curveC. Let γ denote a direction
perpendicular to the curve atr such that the packets
arriving from the angles(γ − π/2, γ + π/2) crossds
from outside to inside, and packets arriving from(γ +
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θθ

θ′ θ′
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Fig. 4. Derivation of expression for the scalar flux.

π/2, γ +3π/2) crossds from inside to outside. The rate
at which packets move acrossds is clearly given by

λ(r) ds =

π/2∫
−π/2

cos α (Φ(r, γ+α)+Φ(r, γ+α+π)) dα ds.

As 0 ≤ cos α ≤ 1 for −π/2 ≤ α ≤ π/2 we get

λ(ds) ≤
π/2∫

−π/2

Φ(r, γ + α) + Φ(r, γ + α + π) dα ds

= Φ(r) ds ≤ max
x∈A

Φ(x) ds.

Integrating over the curveC completes the proof.

IV. PACKET FLUX WITH CURVILINEAR PATHS

In this section, unless stated otherwise, we assume
uniform traffic demands and a single pathp(r1, r2)
between source and destination locationsr1 and r2.
Moreover, we assume the paths inP satisfy the so-called
path continuity constraint:

Definition 17 (path continuity)

If r ∈ p(r1, r2), thenp(r1, r2) = p(r1, r) + p(r, r2).

The above definition lets us characterise the paths
according to the direction at some pointx. In particular,
the routing decision made in each point depends only
on the destination of the packet, not the source. Let
p(x, θ) denote a path going through pointx and having
a directionθ at that point. The points along the curve
(assumed to be smooth) are denoted by

p(x, θ, s), wheres ∈ [−a1, a2], anda1, a2 > 0,

so that p(x, θ, 0) = x. Thus, a1 and a2 denote the
distance to the boundary along the path in opposite
directions. Note that this means that we limit ourselves
to paths that start and end at the boundary of the domain
(no closed paths within the domain allowed).
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Definition 18 (path divergence)Let h(x, θ, s) denote
the rate with respect to the angleθ at which paths
diverge at the distance ofs,

h(x, θ, s) = lim
dθ→0

||p(x, θ + dθ, s)− p(x, θ, s)||
dθ

=
∣∣∣∣
∣∣∣∣ ∂

∂θ
p(x, θ, s)

∣∣∣∣
∣∣∣∣.

Proposition 19 (angular flux with curvilinear paths)
For a uniform traffic demands,λ(r1, r2) = Λ/A2, the
angular flux at pointx in direction θ is given by

Φ(x, θ) =
Λ
A2

a1∫
0

h(x, θ,−s′)
h(x′, θ′, s′)

a2∫
0

h(x′, θ′, s+s′) ds ds′.

(5)

Proof: Without loss of generality we may assume
Λ = 1. Our aim is to determine the angular flux in
directionθ denoted byΦ(x, θ). To this end assume that a
particular source is located in a differential area element
about pointx′ (see Fig. 4 left)

x′ = p(x, θ, s′), s′ ≤ 0,

for which it clearly holds that

p(x′, θ′, s− s′) = p(x, θ, s).

Let dθ denote a differential angle at pointx so that the
differential source area aboutx′ is given by (see Fig. 4
left)

As = h(x, θ, s′) · dθ · ds′.

Similarly, let dθ′ denote a small angle at pointx′, which
yields a destination area of

Ad =

a2∫
0

h(x′, θ′, s− s′) ds dθ′,

as illustrated in Fig. 4 (right). The height of the “target
line segment” perpendicular to the path at pointx is

hx = h(x′, θ′,−s′) · dθ′.

Hence, the contribution to the angular flux from the
differential source area is

dΦ =
As ·Ad

A2 · dθ · hx

=
1

A2
· 1
dθ
·
(

1
h(x′, θ′,−s′) · dθ′

)
·

(
h(x, θ, s′) · dθ · ds′

)
·

a2∫
0

h(x′, θ′, s − s′) ds dθ′

=
1

A2
· h(x, θ, s′)
h(x′, θ′,−s′)

·
a2∫
0

h(x′, θ′, s− s′) ds ds′.

Hence, the angular flux atx in directionθ is given by

Φ(x, θ) =
1

A2

0∫
−a1

h(x, θ, s′)
h(x1, θ′,−s′)

a2∫
0

h(x′, θ′, s−s′) ds ds′.

The proposition follows upon substitions′ ← −s′.

Remark 20 (angular flux with non-uniform λ(r1, r2))
It is straightforward to generalise(5) to the case of
non-uniform traffic demandsλ(r1, r2). In this case, the
angular flux at pointx in direction θ is given by

Φ(x, θ) =

a1∫
0

h(x, θ,−s′)
h(x′, θ′, s′)

·
a2∫
0

λ(x′,p(x′, θ′, s+s′)) · h(x′, θ′, s+s′) ds ds′.

Example 21 For the shortest paths we have

h(x, θ, s) = ||s||,
and consequently, for uniform traffic demands, the an-
gular flux is given by

Φ(x, θ) =
Λ
A2

a1∫
0

a2∫
0

(s + s′) ds ds′

=
Λ
A2

a1∫
0

a2
2/2 + a2s

′ ds′ =
Λ

2A2
a1a2(a1 + a2),

in accordance with [HLV05] as presented in Ex. 10.

V. EXAMPLE: UNIT DISK WITH UNIFORM DEMANDS

In this section we will demonstrate how the proposed
framework can be applied. To this end, we consider a
special case of a unit disk with uniform load,

A = {r ∈ R
2 : |r| < 1}, and, λ(r1, r2) = Λ/π2.

We study the performance of three simple families of
paths: outer and inner radial ring paths and circular paths.
The performance of these path sets is compared with
that of the shortest paths, and with the appropriate lower
bounds for the minimal maximum traffic load.

Example 22 (unit disk with shortest paths) For
transport according to the straight line segments we
can rely on the results for the RWP model (see Ex. 10
and [HV05]). At distanced, the scalar flux is given by

Φsp(d) =
2(1 − d2) · Λ

π2

π∫
0

√
1− d2 cos2 φ dφ.
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In particular, the maximum flux is obtained at the center,

Φsp(0) =
2
π
· Λ ≈ 0.6366 · Λ. (6)

Example 23 (distance bound for unit disk) The dis-
tance bound gives us a relationship between the ob-
tainable maximum load and the mean path length. With
shortest paths we havèsp = 128/45π which upon
substitution in(4) yields

Φopt ≥ Λ · 128
45π2

≈ 0.2882 · Λ.

Example 24 (upper bound for mean path length)
The known traffic load when shortest paths are used
can be combined with the distance bound. According to
(6)

Φsp =
2Λ
π

=
Λ · 2
A

.

On the other hand, according to(3) we have

max
r

Φ(P, r) ≥ Λ · `
A

= Φsp · `2 .

Hence, if with the given pathsP the mean path length
` > 2, then the resulting maximum traffic load is greater
than the one obtained with the shortest paths.

Example 25 (cut bound) Let the separating curveC be
a concentric circle with radiusd, 0 < d < 1. For the
packet rate across the boundary it holds that

λ(d) ≥ 2d2(1− d2) · Λ,

which corresponds to radial flux (per unit length)

Φr(d) =
2d2(1− d2)

2πd
· Λ =

d− d3

π
· Λ ≤ Φopt.

As this is a lower bound for the scalar flux we want to
maximise it. The tightest lower bound is obtained with
d = 1/

√
3,

Φopt ≥ 2
3
√

3 · π · Λ ≈ 0.1225 · Λ.

Hence, in this case, if comparing to the shortest paths,
the cut bound gives a lower bound which says that no
more than80% improvement in the maximum load is
possible, while according to the distance bound at most
a 55% improvement is possible.

A. Radial Ring Paths

Let us next consider three actual path sets as illustrated
in Fig. 5. The shortest paths (SP) are equivalent to RWP
model as has been already mentioned. The two radial
path sets are similar in that each path consists of two
sections. One section is a radial path towards (or away
from) the origin, and the other section is an angular path
along a ring with a given radius. The difference between
the two sets is in the order of components, “Rout” uses
the outer angular rings and “Rin” the inner ones, as
the names suggest. Note that locally, at any point, the
packets are transmitted only in4 possible directions (2
radial and 2 angular), which may simplify the possible
implementation of the time division multiplexing.

When studying the arrival rate into a small area at the
distance ofd from the origin one needs to consider both
radial and angular ring movement. The radial component
of the flux is the same for both path sets, i.e.,

Φr(d) =
d− d3

π
· Λ. (7)

1) Outer radial ring paths:Let us next consider outer
radial ring paths. We want to determine the flux along
the ring at the distance ofd. To this end, consider a small
line segment from(−d, 0) to (−d−∆, 0) as “target area”
as illustrated in Fig. 6. Packets originating from a small
“source” area at the distance ofd in direction θ travel
through the target line segment if their destination is in
“destination” area. The size of the source area is

d ·∆ · dθ,

while the possible destination area is

θ · πd2

2π
=

d2

2
· θ.

Combining these with (7) yields the angular flux at the
distance ofd,

Φθ(d) =
4Λ

∆π2

π∫
0

d2

2
θ∆ dθ = d3 · Λ.

Hence, the total flux at the distance ofd for outer path
set is given by

ΦRout(d) = Φr(d) + Φθ(d) =
(π − 1)d3 + d

π
· Λ.

The maximum flux is obtained at pointd = 1,

ΦRout(1) = Λ.



7

source

destination

Rin

Rout

SP

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

SP

SP+Rout

Rin
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Fig. 5. Left figure illustrates the three path sets considered: straight line segments (SP), radial paths with outer (Rout) and inner (Rin)
angular ring transitions. In right figure the resulting flux is plotted for for the three path sets (SP, Rout and Rin) and for a randomised
combination of SP and Rout (dashed curve) as a function of distanced from the center.

target
source

destinations

θ

dθ
d

Fig. 6. Derivation of the angular ring flux at the distance ofd for
outer radial ring paths.

2) Inner radial ring paths:For inner paths the possi-
ble destination area of packets is

1− d2

2
· θ,

and

Φθ(d) =
4Λ

∆π2

π∫
0

1− d2

2
θ · d∆ dθ

=
2(d − d3) · Λ

π2

π∫
0

θ dθ = (d− d3) · Λ.

Consequently, combining the above with (7) gives

ΦRin(d) = (1 + 1/π)(d − d3) · Λ.

The maximum is obtained at pointd = 1/
√

3,

ΦRin(1/
√

3) ≈ 0.507 · Λ.

Hence, the outer version leads to a higher maximum
load than the shortest paths while the inner version yields
a slightly better solution. The resulting packet fluxes are
illustrated in Fig. 5 (right) as a function of the distance
d from the center.

Fig. 8. Circular paths illustrated for different destination (or source)
points.

B. Circular paths

As the last path set we consider curvilinear paths,
referred to as circular paths, which consist of such
sections of circumference of circles that cross the unit
disk at the opposite points as illustrated in Fig. 7. Some
example paths are illustrated in Fig. 8 for different
destination (or source) locations. From the figure it can
be seen that these paths smoothly move some portion of
the traffic away from the center of the area.

The angular flux can be calculated using Proposition
19, and the scalar flux is obtained by integration (cd.
Definition 7). The resulting scalar flux is depicted in
Fig. 7 (right). It can be seen that the traffic load is
fairly well distributed in the area. The maximum flux
is obtained at the center of the disk, where the flux is
0.4244. In fact, it is possible to determine the packet flux
at the center analytically. For this we have

Φ(0) =
4
3π
· Λ, (≈ 0.4244 · Λ)

which is exactly2/3 of the flux with the shortest paths
consisting of straight line segments (cf. Ex. 22).

C. Randomised path selection approach

One option to achieve a lower maximum load is to
allow the use of several paths for each pair of nodes
(similarly as in [PP03], [GK04]). In particular, let us
relax our assumptions a bit and assume a finite number
of path sets{Pi}, wherei = 1, . . . , n. Upon transmission
of a packet the source node chooses a path from path set
i with probability of i, i = 1, . . . , n.
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Fig. 7. Circular paths are paths formed by the circumferences of circles which cross the unit disk at the opposite points. The figure on
right illustrates the resulting flux as a function of distance from the center.

Proposition 26 (packet flux with randomised paths)
A randomised path selection from path sets{Pi},
i = 1, . . . , n, upon transmission with probabilitiespi,
i = 1, . . . , n yields a total scalar flux of

Φ(r) =
∑

i

pi · Φ(Pi, r).

Example 27 Consider uniform traffic demands in unit
disk and two path sets, 1) shortest paths, and 2) the
outer radial paths. Weightsp1 = 0.6 and p2 = 0.4 give
a packet flux of

Φ(d) = 0.61 · Φsp(d) + 0.39 · ΦRout(d).

The resulting flux is almost constant as illustrated by the
dashed line in Fig. 5. The maximum is0.397 · Λ, which
is about37% lower than with the shortest paths.

Example 28 The same technique can be taken further,
e.g., by combining all three path sets as follows

Φ(d) = 0.52 ·Φsp(d) + 0.37 ·ΦRout(d) + 0.11 ·ΦRin(d),

which gives a maximum flux of0.379 · Λ, i.e., about
40% lowering in the maximum flux when compared to
the shortest paths.

VI. CONCLUSIONS

In this paper we have presented a general framework
for analysing traffic load and routing in a large dense
multihop network. The approach relies on strong sep-
aration of spatial scales between the microscopic level,
corresponding to the node and its immediate neighbours,
and the macroscopic level, corresponding to the path
from the source to the destination. In a dense wireless
network with this property the local traffic load can be
assimilated with the so-called scalar packet flux. The
packet flux is bounded by a maximal value that the net-
work with a given MAC and packet forwarding protocol
can sustain. The packet flux depends on traffic pattern
λ(r1, r2) and the chosen set of routing pathsP. The load
balancing problem thus comprises of determining the set
of routing paths such that the maximal value of the flux

in the network is minimised. While the general solution
of this difficult problem remains for future work, our
main contribution in this paper consists of giving bounds
for the packet flux and giving a general expression for
determining the packet flux at a given point when a given
set of curvilinear paths is used. The results are illustrated
by numerical examples with three different sets of paths
in unit disk. Future work includes investigating how
to find nearly optimal load balancing in a distributed
fashion.
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