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Abstract. Balanced fairness is a new resource sharing concept recently
introduced by Bonald and Proutière. We extend the use of this notion to
wireless networks where the link capacities at the flow level are not fixed
but depend on the scheduling of transmission rights to interfering nodes
on a faster time scale. The balance requirement together with the require-
ment of maximal use of the network’s resources jointly determine both a
unique state-dependent scheduling and bandwidth sharing between the
contending flows. The flow level performance under the resulting scheme
is insensitive to detailed traffic characteristics, e.g., flow size distribu-
tion. The theoretical and computational framework is formulated and
illustrated by two examples for which the performance in terms of aver-
age flow throughputs in a dynamic system is explicitly worked out.
Keywords: bandwidth sharing, ad hoc networks, scheduling, balanced
fairness, flow throughput.

1 Introduction

As in fixed networks, also in wireless ad hoc networks the performance perceived
by the users sending elastic traffic mainly manifests itself on the flow level. A
flow of elastic traffic typically comprises a transfer of a document, file or message
such that the transmission can use all the bandwidth that is available but can
also adapt the transmission speed to the congestion and share the bandwidth
with other concurrent flows. The performance, such as the average duration of
transfer of a document of a given size, clearly depends on dynamic behavior of
the system and on how the bandwidth is shared between different flows. Thus
it is necessary to study the system in a dynamic setting where new flows arrive
at the network, are transferred across the network, and upon completion depart
from the system. As far as we are aware, no analysis of this type has been done
for ad hoc networks previously.

In order to facilitate the analysis, a certain degree of abstraction is necessary.
In particular, we ignore the detailed packet level behavior although the actual
communication in an ad hoc network consists of a sequence of packet level op-
erations of channel access and data forwarding over a multihop route. From a
conceptual point of view we distinguish two layers of operations. On the lowest
level, which we call scheduling, one basically determines which transmitters are
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allowed to send data at any given time (of course, because of the interference not
all transmitters are allowed to operate simultaneously). As the set of permissions
is switched on a fast time scale, the resulting network appears at flow level as a
virtual network with links with capacities that depend on the schedule. So the
schedule determines the capacity to send data on different links. On the upper
level of operation, which is referred to as bandwidth sharing or bandwidth alloca-
tion one determines how the capacity of the virtual network is shared between
the flows, i.e. viewed from a lower level, what data is sent when a sender has a
permission to send.

The main difference of the analysis of flow level performance of ad hoc net-
works from that in fixed networks stems indeed from the fact that by scheduling
one can, in certain limits, shift capacity of the network from one link to an-
other, and that this degree of freedom can and should be used to improve the
performance.

In the flow level abstraction we assume that the flow durations are long
compared with the time scale of the operation of a schedule as well as with the
time it takes for whatever protocol or flow control mechanism is used for the
bandwidth sharing to find a steady state. Thus we assume that as soon as a
flow arrives or departs, a new steady state, with a new virtual network and its
resource sharing, is reached instantaneously.

Fairness of the bandwidth sharing has been recognized an important consid-
eration for fixed networks and different fairness concepts have been introduced,
cf. [14]. In ad hoc networks this issue has received attention only recently. In
particular the application of the notion of max-min fairness in a static setting
has been studied in [6, 12, 13]. The problem is again more complex than in fixed
networks because it is entangled with the lower layer scheduling. Using closely
related network models and scheduling constraints to those in the present paper,
the authors of the mentioned papers have presented centralized and distributed
methods that achieve max-min fair rates for given set of flows. However, the fact
that an allocation is optimal in the sense of an utility function does not nec-
essarily guarantee that the system converges to a steady state that is optimal
[3]. Also, an analysis of the performance of max-min fair resource sharing in a
dynamic setting would be prohibitively difficult.

A new concept of balanced fairness (BF) has recently been introduced by
Bonald and Proutière [1, 2]. This is a very interesting notion on two accounts.
First and foremost, it leads to a network performance which does not depend
on the traffic characteristics except the traffic intensity on the different paths, in
other words, the performance under BF is insensitive. Secondly, BF often allows
an explicit analysis of the performance of simple systems in the dynamic setting.

It should be noted that BF does not represent a solution to an utility opti-
mization problem. Neither does it guarantee Pareto efficient use of the resources.
However, studies of fixed networks have shown that in many cases the perfor-
mance of a network under BF is similar to that under max-min fairness. BF
provides therefore a useful approximation tool for evaluating network perfor-
mance.
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In this paper we introduce a natural extension of the notion of balanced
fairness to take into account the fact that the capacities of the virtual network
can be changed by the schedule. The resulting BF resource sharing problem is a
joint problem of determining both the state-dependent schedule and bandwidth
allocation to maximize the use of the network resources while at the same time
retaining the balance and the related insensitivity properties. We demonstrate
the analysis of the performance under BF by two examples illuminating different
computational approaches. Furthermore, the paper contributes to general wire-
less network optimization problems by establishing a condition under which so
called clique constraints provide sufficient conditions for the feasibility of a given
set of link capacities of the virtual network.

The paper is organized as follows. Section 2 gives a formal description of the
balanced fairness concept with an extension to variable link capacities. It also
illustrates the main principles involved in this paper by carefully examining a
simple example. These principles are then extended to general ad hoc networks
in Section 3, while Section 4 brings forward an alternative approach to allow
performance analysis without the need to explicitly solve the scheduling. Section
5 concludes the paper.

2 Extension of balanced fairness

Consider a network consisting of J unidirectional links and carrying N classes
of flows using pre-defined routes. Let Fj denote the set of flows using link j.
The network state is represented by a vector x = (x1, . . . , xN ) in which xi is
the number of class-i flows in progress. Let φi(x) be the bandwidth allocation
to class i in state x. This bandwidth is equally shared by all flows of class i. An
allocation is said to be balanced if it holds that

φi(x − ej)
φi(x)

=
φj(x − ei)

φj(x)
∀i, j, xi > 0, xj > 0

where ei is an N -vector with 1 in the ith component and 0 elsewhere. It can
be shown [1] that an allocation is balanced if and only if the allocations can be
expressed in terms of a so-called balance function Φ(x) as

φi(x) = k Φ(x − ei), (1)

where the proportionality constant is k = 1/Φ(x). Conversely, any positive func-
tion Φ(x) defines a balanced allocation by (1).

Balanced fairness as defined by Bonald and Proutière [1, 2] refers to the most
efficient balanced allocation in a fixed network in the sense that in each state of
the system at least one of the links is saturated. This leads to a unique allocation:
the balance function is uniquely defined by the recursion,

Φ(x) = max
j

1
Cj

∑
i∈Fj

Φ(x − ei). (2)
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The seed of the recursion can be arbitrarily set, e.g. Φ(0) = 1. The extended
balanced fairness principle just says that, in each state x, the proportionality
constant k = 1/Φ(x) is chosen as large as allowed by whatever constraints the
system is subject to. In the case of fixed routes and fixed link capacities this
leads to (2).

Now assume that we have fixed routes but the link capacities Cj(p) depend
on the schedule p, i.e. the capacities are related to a virtual network defined by
schedule p. Then the constraints are

∑
i∈Fj

φi(x) ≤ Cj(p), ∀j, ⇒ k ≤ min
j

Cj(p)∑
i∈Fj

Φ(x − ei)
,

and the maximizing k is

k = max
p

min
j

Cj(p)∑
i∈Fj

Φ(x − ei)
,

that is, one finds the most constraining link for any schedule p and then makes
this constraint as loose as possible by changing p. Accordingly, the balance func-
tion Φ(x) = 1/k of the balanced fairness is now uniquely determined by the
recursion

Φ(x) = min
p

max
j

1
Cj(p)

∑
i∈Fj

Φ(x − ei). (3)

For each state x, this recursion defines both the balance function Φ(x) and the
schedule p = p(x). Recursion (2) is, of course, a special case of this, when the
capacities are fixed and no scheduling alternatives are available.

Assume that the flows are generated by sessions, each session being composed
of a random number of flows separated by think times. Flow sizes and think
time durations can be arbitrarily distributed and need not to be independent. If
balanced resource allocation is used and the sessions arrive as a Poisson process
then, as shown in [2, 3], the steady state distribution of the network state is given
by

π(x1, . . . , xN ) =
1

G(ρ)
Φ(x1, . . . , xN )ρx1

1 . . . ρxN

N , (4)

and depends on the traffic characteristics only through the traffic loads ρi of
different routes. Load ρi is the product of the flow arrival rate and mean flow
size on route i.

In equation (4), G(ρ) is the normalization constant

G(ρ) =
∞∑

x1=0

· · ·
∞∑

xN=0

Φ(x1, . . . , xN )ρx1
1 . . . ρxN

N , (5)

which depends on the traffic load vector ρ = (ρ1 . . . ρN ). The normalization con-
stant G(ρ) is an important quantity as the performance measures can be derived
from it. Under a specific condition detailed in [4] the constant can be calculated
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recursively directly without even solving Φ(x). In the examples presented in this
paper the condition is satisfied and the normalization constant can indeed be
obtained in a simple way.

A key performance measure for class-i flows is the throughput γi, defined as
the ratio of the mean flow size to the mean flow duration. By Little’s result this
is equal to ρi/E[xi]. The denominator can be obtained by derivation yielding

γi =
G(ρ)

∂
∂ρi

G(ρ)
. (6)

Balanced fairness has the very desirable property that the performance of
the network is insensitive to traffic details. Moreover, it allows us to evaluate
the performance by (3), (5) and (6). Next we illustrate the concept of extended
balanced fairness by a very simple example, where the scheduling problem is triv-
ial. A more detailed discussion of the scheduling under interference constraints
is deferred to Section 3.

2.1 Example 1

The system consists of three nodes (A,B,C) and two radio links (1,2), each of
nominal capacity 1. Node A cannot reach node C directly. There are two flow
classes: class-1 flows from B to C utilize link 1 only while class-2 flows from A
to C use both link 1 and link 2. Figure 1 illustrates the system.

Link 2 Link 1
A B C

CLASS 2

CLASS 1

A B C

Fig. 1. Example 1

Assume that the two links interfere and cannot be used at the same time.
The schedule is now defined by a single parameter p defining which portion of
time is scheduled for link 1. The effective link capacities are thus,

C1(p) = p, C2(p) = 1 − p,

and the recursion (3) reads

Φ(x) = min
p

max{Φ(x − e1) + Φ(x − e2)
p

,
Φ(x − e2)

1 − p
}.

The minimum with respect to p is obtained when the two expressions are equal,
implying

p =
Φ(x − e1) + Φ(x − e2)
Φ(x − e1) + 2Φ(x − e2)

, 1 − p =
Φ(x − e2)

Φ(x − e1) + 2Φ(x − e2)
, (7)
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and we have the recursion

Φ(x) = Φ(x − e1) + 2 Φ(x − e2).

This recursion is solved by the balance function

Φ(x) =
(

x1 + x2

x1

)
2x2 . (8)

The normalization constant can be easily calculated,

G(ρ) =
1

1 − ρ1 − 2ρ2
.

This is recognized to be the same as the normalization constant of a single fixed
link of unit capacity shared by three flow classes with loads ρ1, ρ2 and ρ2 (or two
flow classes with loads ρ1 and 2ρ2). Indeed, we have a single resource, the time
slot, contended by three transmissions (a class-1 transmission from B to C and
class-2 transmissions from A to B and from B to C). From the normalization
constant one readily obtains the throughputs using (6),

γ1 = 1 − ρ1 − 2ρ2, γ2 =
1
2
(1 − ρ1 − 2ρ2). (9)

The throughputs are greater than those resulting from the basic BF using any
fixed scheduling. Note that for negligible loads the throughputs are 1 and 1

2 , as
they should, and also that for any loads the class-2 throughput is always half of
that of class 1.

Finally, note that from the balance function (8) the explicit expressions for
the state-dependent allocations and schedules can be obtained by (1) and (7),
respectively, yielding




φ1(x) =
x1

x1 + x2
,

φ2(x) =
1
2x2

x1 + x2
,




p(x) =
x1 + 1

2x2

x1 + x2
,

1 − p(x) =
1
2x2

x1 + x2
.

These equations can be interpreted at the scheduling level as follows. The time
slots are equally shared by all active flows, e.g. on a rotational basis. A class 2
flow needs two time slots for an end-to-end transmission; every second time slot
assigned to it is used for transmission from A to B and every second time slot
for transmission from B to C.

We reiterate that when the network is operated under this scheme, the perfor-
mance (9) is insensitive to any detailed traffic characteristics. In this example,
the scheme is also Pareto efficient in the sense that no resources are wasted;
p(x) = φ1(x) + φ2(x) and 1 − p(x) = φ2(x).
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3 Scheduling under interference constraints

In the previous example, the two links interfered with each other and could not
be used at the same time, resulting in effective capacities of the links that depend
on scheduling.

The same principle extends to general wireless networks as follows. One can
define a set of permissible simultaneous transmissions, a transmission mode,
consisting of the directed links that can be used at the same time. It suffices to
consider only the links used by some flow class and the maximal transmission
modes, i.e. those which are not contained in another mode. Denote the set of
directed links in a maximal transmission mode by τ and the set of all maximal
transmission modes by T .

In this general setting, we define a schedule as the vector p = {pτ , τ ∈ T },
with the meaning that in each time slot one of the τ ’s is used in some order such
that, on average, transmission mode τ is used the portion of time pτ .

As in Example 1, the effective capacities of links can be defined. We assume
that the flow and scheduling time scales are well separated, i.e. the duration of
a typical flow is much longer than the time slot. Then, given the schedule p, we
have on the flow level a virtual network with ‘fixed pipes’. Link j of this fixed
network has the effective capacity

Cj(p) = Cj

∑
τ∈T :j∈τ

pτ , (10)

where Cj is the nominal capacity (bandwidth) of the radio channel on link
j. With these capacities one can solve the recursion (3) numerically or, as in
Example 1, analytically. In general, we call a set of link capacities dj , j =
1, . . . , J , feasible if a schedule p exists such that dj ≤ Cj(p) for all j.

3.1 Modeling the interference

Interference determines which links can transmit simultaneously. Here we go
briefly through different alternatives for modeling interference in ad hoc networks
and define the concept of link graph.

Elementary interference models set the following constraints to the links in
the network. A node may not transmit and receive simultaneously and it cannot
transmit or receive more than one packet at a time. In other words, all the links
connected to a given node belong to different transmission modes. Such models
are often justified by the assumption that other transmissions in the vicinity of
the node can be in progress without conflict using locally distinct frequencies
[5–7].

A more detailed model would entail that no two links can be simultaneously
active if either of the receiving ends is interfered by the other transmission.
In the model presented in [8] a transmission can prevent reception everywhere
within the transmission range, whereas in the widely applied protocol model [9]
the interference depends on the locations of the transmitting node so that the
closest (with a selected margin) transmission can be successfully received.
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Note that the above models define interference as a pairwise property of the
links. Generally, the successful reception depends on the signal to interference
ratio calculated at each receiver, where the interference depends on all other
links in use. This, however, complicates the search of transmission modes and in
this paper we restrict ourselves to the pairwise models. No further restrictions
are made on model selection.

Pairwise interference can be described using a link graph. Given a network
and a set of flows with their routes, the corresponding link graph is constructed
as follows: each active directed link in the network is mapped to a vertex and an
edge connects two link graph vertices if the corresponding links interfere with
each other. By definition, each τ corresponds to a maximal independent set in
the link graph, i.e. a maximal subset of the vertices such that no two vertices in
the subset represent an edge of the link graph. Therefore, in principle, one can
find T by enumerating all independent sets of the link graph.

3.2 LP-formulation for the recursion step

In some simple cases, such as the one in Example 1, one can find the optimal
schedule p and bandwidth allocation analytically. In general, however, one has
to resort to numerical analysis. In this case it is useful to formulate the recursion
step and the corresponding schedule optimization as an LP-problem. We outline
the approach, though it is not utilized in this paper.

Let y = (p, k)T be the decision vector and let a = (0, ..., 0, 1). If the Φ(x− ei)
are known for all i, we obtain Φ(x) = 1/k and the corresponding schedule p(x)
from y by finding the maximum in the LP-problem:

max ay

subject to
My ≤ (0̄, 1)T , y ≥ 0,

where 0̄ is a J-vector of zeros. M is the constraint matrix given by

M =

(
−A B(x)

1̄ 0

)
,

where 1̄ is a |T |-vector of ones, A is the J × |T | matrix Aj,τ = 1j∈τ and B(x) is
the column vector Bj(x) =

∑
j∈Fj

Φ(x − ei). Note that only the element B(x)
in the matrix M needs to be updated in the recursion.

4 Maximal clique constraints

In Example 1, the bandwidth shares after schedule optimization could be inter-
preted to be limited solely by the fact that the three transmissions contend for
the same time slot.
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In a general scheduling and bandwidth sharing problem we can similarly
identify one or several sets of transmissions such that transmissions in a given
set contend for a common time slot. Such transmissions constitute a clique in
the corresponding link graph. Each clique q imposes a necessary condition on the
bandwidth allocation. The most stringent set of conditions is set by the maximal
cliques, i.e. cliques that are not a subset of another clique. Thus, we have the
necessary conditions for a feasible bandwidth allocation∑

j∈q

1
Cj

∑
i∈Fj

φi(x) ≤ 1, ∀q ∈ Q, (11)

where Q denotes the set of all maximal cliques. The maximal cliques can be
enumerated, e.g. by an algorithm from [11].

An interesting question is whether the maximal clique constraints (11) also
give sufficient conditions for a feasible bandwidth allocation, i.e. whether there
exists a schedule that allows attaining the link capacities required by an allo-
cation. By counter examples one can easily see that this is not generally true.
In Appendix A, however, we prove a lemma stating that the maximal clique
constraints do provide necessary and sufficient conditions for the feasibility of
an allocation if the link graph is a perfect graph1.

When this is the case the bandwidth allocation is only limited by conditions
(11) which are of the same type as the link capacity constraints in a fixed net-
work. Note, however, that now there is one constraint for each clique as opposed
to one constraint for each link in a fixed network, and also that a bandwidth
allocation φi can appear in a condition several times as the flows in class i
can traverse several links in the same clique. The balance function can then be
calculated using the recursion

Φ(x) = max
q∈Q

∑
j∈q

1
Cj

∑
i∈Fj

Φ(x − ei). (12)

While this greatly simplifies the task of evaluating the flow level performance
as there is no need to explicitly consider the scheduling, it indeed leaves the
schedule indetermined. Therefore, when needed, the scheduling must be worked
out separately.

4.1 Example 2

Consider now a slightly more complicated example consisting of six nodes, three
flow classes and five active unidirectional links of unit capacity, as shown in
Figure 2. The interferences shown in the link graph result from the protocol
model (see Section 3.1) and the link graph has four maximal independent sets
and two maximal cliques. Note that the link graph is triangulated (i.e. it contains
1 A graph G is called perfect if the chromatic number χ(H) every induced subgraph

H ⊆ G equals the maximum clique size ω(H) of the subgraph. A conjecture by
Berge says that a graph G is perfect if and only if neither G nor its complement Ḡ
contains an odd cycle of length at least 5 as an induced subgraph [10].
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CLASS 2
CLASS 1

CLASS 3

Fig. 2. Flows, link graph, maximal independent sets and cliques of Example 3.

no induced cycles other than triangles) and thus a perfect graph (cf. [10]) and
the maximal clique constraints apply. These can be written as{

3φ1(x) + 2φ2(x) ≤ 1,

2φ1(x) + φ2(x) + φ3(x) ≤ 1,

which results in the recursion

Φ(x) = max{3Φ(x − e1) + 2Φ(x − e2), 2Φ(x − e1) + Φ(x − e2) + Φ(x − e3)}

= 2Φ(x − e1) + Φ(x − e2) + max{Φ(x − e1) + Φ(x − e2), Φ(x − e3)}.

It can be shown by induction that when x3 > 0 the latter expression realizes the
maximum. Thus,

Φ(x) =

{
3Φ(x − e1) + 2Φ(x − e2), x3 = 0,

2Φ(x − e1) + Φ(x − e2) + Φ(x − e3), x3 > 0.

As the recursion has a given form throughout a coordinate plane as well as
in a positive part of the state space, the method of [4] can be applied to the
calculation of the normalization constant in parts. For brevity we omit the details
and only give the result

G(ρ) =
1 − 2ρ1 − ρ2

(1 − 3ρ1 − 2ρ2)(1 − 2ρ1 − ρ2 − ρ3)
.

In the same way as in the first example, throughputs of different classes can be
calculated by (6). The results are shown in Figure 3 for two different scenarios.
In the first, ρ2 and ρ3 are kept fixed while ρ1 is varied. In the second, ρ3 is varied
while the two others are fixed.

5 Conclusions

This paper studied flow-level dynamics of ad hoc networks and illustrated how
the concept of balanced fairness can be extended to allow the derivation of
performance measures of a wireless multihop network. The resource allocation
is defined by a balance function which can be computed recursively using, e.g.
one of the three methods presented in this paper: One can either explicitly write
down the capacities of the links as a function of schedule or solve the integrated
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Fig. 3. Throughputs of the flow classes in Example 3. Left; ρ2 = 0.2, ρ3 = 0.2. Right;
ρ1 = 0.1, ρ2 = 0.2

recursion step and scheduling as an LP-problem. The third approach, applicable
under special circumstances, is to use the maximal clique constraints that often
yield a simple recursion for the balance function. When the link graph is perfect
this approach is feasible and especially suitable for performance analysis since
the actual schedule need not be worked out.

A noteworthy feature of the scheme is that the performance is insensitive to
traffic details. This potentially allows one to develop simple and robust provi-
sioning rules that depend only on traffic intensities.

A Necessity and sufficiency of maximal clique constraints

Denote the set of maximal cliques of a link graph G by Q. Let dj denote the
capacity of link j in the virtual network. As discussed in Section 3, the capacities
{dj} are feasible if there exists a conflict-free schedule such that each link j is
scheduled for transmission the fraction of time dj/Cj.
Lemma: If the link graph G of an ad hoc network is perfect then both a necessary
and a sufficient condition for the feasibility of capacities {dj} is

∑
j∈q

dj

Cj
≤ 1, ∀q ∈ Q, (13)

Proof: The condition is necessary since dj/Cj is the fraction of the time that
has to be scheduled for transmission on link j and for all j ∈ q the transmissions
must be non-simultaneous.

To prove sufficiency, we assume that the dj/Cj can be written in the form

dj

Cj
=

nj

N
, ∀j,

where the nj and N are integers (by choosing N large enough these relations
can be satisfied to any desired accuracy). Our task now is to show that if∑

j∈q

nj ≤ N, ∀q ∈ Q, (14)
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then there exists a conflict-free schedule in which each link j is given the fraction
of time nj/N . To this end, consider a frame of arbitrary duration and divide it
into N time slots. Now, in order to realize the capacities {dj}, one should be
able to assign nj time slots in the frame to each link j so that no conflicts occur.

If nj = 1 for all j then finding a conflict free schedule is equivalent to the
graph coloring problem on G in the following way. Let each vertex j represent
a one-slot transmission on link j, which has to be scheduled to one of the N
time slots in the frame, the position of which we refer to as the “color” of the
one-slot transmission. That no two interfering transmissions can use the same
time slot translates to that two vertices of G cannot have the same color if they
are connected with an edge. As we assumed G to be perfect, the number of colors
required equals the maximum clique size, which by (14), with nj = 1 for all j,
is no greater than N the number of available colors. So a conflict-free schedule
for the case where each link has one one-slot transmission does exist.

We can extend this consideration to any numbers nj satisfying (14). Make nj

copies of each vertex j ∈ G, each representing one of the nj one-slot transmissions
on link j. All replicas of vertex j have to be connected by an edge to each other
and to all other nodes and their replicas in the same clique, as the corresponding
transmissions interfere with each other. Such a graph can be constructed by
expanding vertices one-by-one until each link j is represented by nj vertices.
A result of graph theory (Lemma 5.5.4 in [10]) states that a graph obtained
from a perfect graph by expanding a vertex is again perfect. Thus, the final
graph G∗, resulting from the (nj − 1)-fold expansion of each link j, is perfect.
Consequently, the number of colors needed for coloring G∗ equals its maximum
clique size, maxq∈Q

∑
j∈q nj, which again by (14) is no greater than the number

of available colors N . �

Corollary: A flow allocation {φi(x)} satisfying

∑
j∈q

1
Cj

∑
i∈Fj

φi(x) ≤ 1 ∀q ∈ Q, (15)

is feasible if the corresponding link graph G is perfect.

Proof: Setting dj =
∑

i∈Fj
φi(x) the result follows directly from the lemma.
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