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ABSTRACT
The connectivity of wireless multihop networks has mostly
been studied neglecting interference, assuming that all net-
work nodes have a common transmission range within
which they can form direct links. Under this assumption,
the critical transmission range for connectivity of a given
network equals the greatest edge length in the Euclidean
minimum spanning tree of the network nodes. While the
impact of interferences on the percolation phenomena of
infinite networks has been studied [1], little is known about
the graph connectivity of finite networks under more re-
alistic network models. In this paper, we generalize the
critical range for connectivity to two network models pre-
sented earlier which are both based on a minimum required
signal-to-noise-and-interference ratio for successful com-
munication. As these models have more than one free pa-
rameters, the critical range generalizes into a boundary in
the space of these parameters; we show how to determine
this boundary for a given network. The connectivity bound-
ary implies tradeoffs between different parameters dictat-
ing network performance. Our results allow studying the
connectivity of interferences-limited networks by simula-
tion and give insight on the sensitivity of connectivity to
different network parameters.
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1 Introduction

The connectivity of wireless multihop networks has been a
topic of extensive research for which graph theory provides
a natural analytical framework. Applying graph theory to
these networks requires defining when a single link is con-
nected. This boils down to issues on the physical layer:
the quality of reception of a radio transmission depends on
the signal-to-noise-and-interference ratio (SINR) at the re-
ceiver. From an information-theoretic point of view, any
positive SINR enables successful communication; only the
achievable rate of communication depends on the SINR.

From this viewpoint, any link and hence any given network
can always be said to be connected.

To say that some link is not connected therefore re-
quires us to set a minimum value for the SINR correspond-
ing to a required minimum rate of communication. Such
a minimum value may also be well motivated by techni-
cal issues, such as the existence of proper coding schemes
within a given communication framework. This kind of
condition for successful communication was e.g. used un-
der the name Physical Model in studying the capacity of
wireless networks in [2].

Under a simple network model that neglects all inter-
ferences and instead of the SINR only considers the SNR,
the ratio of the received signal power to that of a constant-
level ambient noise, such a minimum value for the SNR
can easily be translated into a transmission range, i.e., the
maximum distance from a transmitter that, given the trans-
mission power, allows a reception exceeding the minimum
SNR. This simple range-based Boolean model has been the
most popular one in the research literature on connectivity.
In particular, under the common assumption that all net-
work nodes can achieve the same transmission range un-
der the Boolean model, it was pointed out in [3] that for
a given network, the critical range for connectivity, i.e.
the required minimum value for this transmission range to
make all node pairs connected in a multihop fashion, equals
the greatest edge length in the Euclidean minimum span-
ning tree for the nodes.

In this paper, we study the graph connectivity of wire-
less multihop network models that also take interferences
into account. More precisely, we generalize the notion of
the critical range for connectivity to two network models,
presented in [1] and [4], that are both based on the Physical
Model mentioned above and differ from each other essen-
tially by the assumed medium access method employed.
Like relied on by the definition of the critical range under
the Boolean model, we also assume that all network nodes
employ some common constant transmission power. As
these models have more than one free parameters, the crit-
ical range for connectivity generalizes into a boundary in
the space of those parameters; we present algorithms that,



for a network with given node locations, determine this
boundary. In the context of both models, we see that the
requirement of a connected network imposes a boundary
condition resulting in tradeoffs between different parame-
ters dictating network performance.

Thus far, in the context of network models that ac-
count for interference, little has been done to address con-
nectivity as defined in graph theory, namely, the require-
ment that all node pairs be connected through the network.
The aim in the paper [1] presenting the first model of in-
terest to us was to study the percolation properties, i.e.
the existence of infinite connected components in infinite
networks, of that model. As for the analysis of the sec-
ond model in [4], the authors defined connectivity as a dy-
namic property allowing the successful transfer of pack-
ets between all node pairs at some positive average rate.
This definition can be regarded as coincident with the om-
nipresent information-theoretic connectivity referred to in
the beginning of this section. Both of these studies differ
from the present paper in that they focused on infinite ran-
dom networks – which rules out studying graph connectiv-
ity based on one common link quality constraint – whereas
we only consider networks with a finite number of nodes.

This paper is comprised of the following parts. In the
next section we introduce the two network models that we
will study. The generalization of the critical range for the
first model motivated by CDMA is presented in Section 3.
The connectivity of the second model assuming a slotted-
Aloha medium access scheme is examined in Section 4. We
conclude in Section 5.

2 Network models

2.1 A CDMA network

We will first consider the conceptually simpler one of the
two network models which, as shown in the next section,
allows easy and unambiguous determination of the connec-
tivity boundary. This model was introduced and named the
Signal To Interference Ratio Graph (STIRG) in [1]. Ac-
cording to this model, node j located at point xj in the
plane can successfully receive the signal transmitted by
node i at xi with power Pi if and only if the SINR at the
reception exceeds some threshold T > 0:

PiL(xi − xj)

N0 + γ
∑

k 6=i,j PkL(xk − xj)
≥ T. (1)

Here, N0 is the power of the background noise on the fre-
quency channel utilized by the network and L(x) is the
attenuation function in the wireless medium. The factor
0 ≤ γ ≤ 1 weighting the interference power sum is moti-
vated by the partial orthogonality of CDMA codes and can
be interpreted as the inverse of the processing gain of the
system. As in [1], we neglect unidirectional links because
of their low utility and therefore define the connectivity of
a link as in an undirected graph where there is an edge be-

tween node i and j if and only if (1) also applies with i and
j interchanged.

As in [1], we also make the assumption that every
node transmits constantly at some common power: Pi ≡
P , which can be considered a rather unrealistic assumption.
Further, although not at all necessary, we will restrict our-
selves to the commonly used power-law attenuation func-
tion

L(xi − xj) = l(||xi − xj ||) = (C||xi − xj ||)
−α, (2)

to allow easy scaling of any configuration of network nodes
to arbitrary physical node densities. Here, C > 0 sets the
scale and α > 2.

2.2 A slotted-Aloha network

Next, we will examine the more realistic model which, as
discussed in [4], also has notable practical appeal in terms
of implementation. The medium access scheme used under
this model is slotted Aloha: time is slotted, and each node is
allowed to transmit in any slot with a fixed medium access
probability p. Keeping to the assumption of the power-law
attenuation function (2) as in [4], as well as one common
transmission power P , we suppose that node j at xj is able
to receive node i’s transmission successfully in any time
slot – producing what is chosen as the unit throughput from
i to j over this time slot – if

P (C||xi − xj ||)
−α

N0 +
∑

k 6=i,j ekP (C||xk − xj ||)−α
≥ T, (3)

where ek is the indicator variable of the event that node k
is allowed to transmit in that time slot. The individual per-
missions to transmit are independent among both nodes and
time slots, so that the variables {ek} in every time slot are
independent Bernoulli-distributed random variables with
parameter p.

Section 4 will show that this model has more dimen-
sions of free parameters than the previous one when defin-
ing graph connectivity, but it turns out that the connectiv-
ity requirement will constitute a boundary condition for a
tradeoff between the delay and throughput of the network
links and allows for an optimization between the two as
desired.

3 The connectivity boundary in the CDMA
network model

We will now derive the connectivity boundary in the space
of free parameters for a network with given node locations
xk and some fixed attenuation exponent α, under the first
network model. Applying the power-law attenuation func-
tion (2), we may write (1) in the form

||xi − xj ||
−α

Cα T
P/N0

+ Tγ
∑

k 6=i,j ||xk − xj ||−α
≥ 1, (4)



where we are now able to recognize the two free param-

eters Cα T
P/N0

def
= A and Tγ

def
= B. The above is then

equivalent to

A ≤ −B
∑

k 6=i,j

||xk − xj ||
−α + ||xi − xj ||

−α. (5)

Hence, in a given network, the condition for node j suc-
cessfully receiving node i’s transmission is satisfied on and
below the descending line in the B/A-plane with slope
−

∑

k 6=i,j ||xk − xj ||
−α and intercept ||xi − xj ||

−α, both
of which we may calculate. Since our attenuation function
is reciprocal, i.e. L(xi−xj) = L(xj −xi), which can also
be said to hold in reality on a fixed frequency, the result-
ing condition for an edge existing between nodes i and j
in the undirected STIRG is determined by this common in-
tercept and the steeper one of the two slopes calculated in
both directions (i.e., the receiver under more noise).

The domain in the B/A-plane in which the given net-
work is connected then lies below a connected curve con-
sisting of segments of descending lines, representing the
constraints of different links that are critical for network
connectivity at each point; this curve is the connectivity
boundary. It can be found as follows. First calculate the
slope and intercept of the line for each individual link. Start
at γ = 0 implying B = 0. This makes the model coin-
cide with the Boolean model, meaning that that the critical
link is found as the longest edge in the Euclidean mini-
mum spanning tree of the nodes. The descending line cor-
responding to this link determines the boundary of the con-
nectivity region in the plane as long as no line of the other
links is crossed. When this happens, we may determine the
new critical link using the following simple rule:

• When a line is crossed from above, i.e. the connectiv-
ity region of another link is entered when tracing the
current line, the corresponding appearing link is the
critical link from this point onwards if it connects the
two network partitions separated by the current criti-
cal link. Otherwise, the critical link does not change.

• When a line is crossed from below, i.e. the connectiv-
ity region of another link is left when tracing the cur-
rent line, the corresponding disappearing link is the
critical link from this point onwards if the remaining
links no longer form a single connected graph. Other-
wise, the critical link does not change.

As an example, Figure 1 shows the resulting connec-
tivity boundary of the network in a unit square shown in
Figure 2. Note how the interference experienced by node
6 at a central location affects the result. Note also that the
choice of any physical distance for the side of the square
domain can be incorporated into the attenuation scaling
factor C. The connectivity boundary defines the constraints
for the various parameters that must be satisfied to guaran-
tee a connected network topology.

In this model, we assumed that all other nodes trans-
mit constantly. It would of course be more reasonable to
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Figure 1. The connectivity domain of the network of Fig-
ure 2 when α = 3. The solid line indicates the border of
the domain. Taking A = 0 implies neglecting background
noise; the case γ = 0 ⇒ B = 0 implies neglecting inter-
ference.

assume that at least half of the nodes are receiving instead
of transmitting at any instant. In general, if we assume that
on average every kth node is transmitting, we should regard
γ as a general interference thinning factor γ = γ̃/k, where
γ̃ is the actual code orthogonality factor.
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Figure 2. An example network in the unit square. The
prevailing topology with the identified critical links have
been drawn at each of the vertices of the border in Figure
1. The dashing of the links corresponds to that used in
Figures 1 and 3.



4 Connectivity under the slotted-Aloha net-
work model

4.1 The connectivity boundary

We then extend the definition of the connectivity boundary
to the second network model. We assume, as in the previ-
ous section, that the network node locations are given and
the attenuation exponent α is fixed. In addition, we assume
that the medium access probability p of this model has also
been fixed.

Under this model, the equivalent of (4) is

||xi − xj ||
−α

Cα T
P/N0

+ T
∑

k 6=i,j ek||xk − xj ||−α
≥ 1, (6)

where the sum
∑

k 6=i,j ek||xk−xj ||
−α is a random variable

independent in every time slot, having a discrete probabil-
ity distribution with generally 2n−2 distinct possible val-
ues, with n denoting the number of all the network nodes.
Given the assumed information, we may calculate this dis-
tribution.

In addition to the free parameters A = Cα T
P/N0

and T , we then define a third parameter, the link confi-
dence q. For a given q, we may calculate the q-quantile
of the distribution of the above random sum for each di-
rected link i → j; this quantile gives the level below
which the random sum describing the scaled interference
remains with confidence (probability) q. The difference
from the previous section is that instead of the function
fij(γ) = γ

∑

k 6=i,j ||xk − xj ||
−α in (4), which is linear in

its argument 0 ≤ γ ≤ 1, we now have the nonlinear func-
tion F−1

ij (q) where Fij(·) is the cumulative distribution
function of the random sum

∑

k 6=i,j ek||xk−xj ||
−α. (To be

exact, we define the inverse function of this discrete-valued
cumulative distribution as F−1

ij (q) = min{t : Fij(t) ≥
q}.) Because of this nonlinearity, the parameter q can no
longer be incorporated into the second free parameter with
T but has to be treated as a separate, third parameter. Note
however that the two functions fij(γ) and F−1

ij (q) coincide
at argument value 1.

The connectivity boundary is a surface in the space of
the three free parameters A = Cα T

P/N0

, T , and q, a cross-
section of which with fixed q looks similar to Figure 1: the
equivalent of (5) is now

A ≤ −F−1

ij (q) · T + ||xi − xj ||
−α, (7)

which, with fixed q, is satisfied on and below the descend-
ing line in the T/A-plane with slope −F−1

ij (q) and inter-
cept ||xi − xj ||

−α. As with the previous model, we de-
fine the condition for nodes i and j being bidirectionally
connected to be determined by the steeper slope, i.e., the
greater interference with the given confidence q.

With any fixed q, the cross-section of the connectivity
boundary in the T/A-plane is found exactly as in the previ-
ous section, by tracing along the critical links. The reason

why the longest edge in the Euclidean minimum spanning
tree is again the critical link as T → 0 is that in this limit,
the above condition (7) for every link is dominated by the
intercept ||xi−xj ||

−α which is a monotonically decreasing
function of the link distance.

To demonstrate, we examine again the example net-
work of Figure 2. We assume that α = 3 and take p = 0.1,
the latter representing a magnitude found suitable for the
medium access probability in [4]. Figure 3 shows the con-
nectivity domain in the T/A-plane with q fixed to different
values; it is easy to see that q = 1 leads to the domain of
Figure 1 with T in the place of B. The connectivity sur-
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Figure 3. The connectivity domain of the network of Figure
2 when α = 3 and p = 0.1, with the boundary indicated
by a solid line where needed. Note that in this case, there
is no interference in an arbitrary time slot with probability
(1− 0.1)8 ≈ 0.43, hence the zero-slope with q = 0.40.
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Figure 4. The surface below which the network of Figure 2
is connected when α = 3 and p = 0.1. The cross-section
of the surface is as in Figure 3(d) for all q ≤ (1− 0.1)8 ≈
0.43.



face of the network in the space of all three parameters is
depicted in Figure 4.

4.2 Delay-throughput tradeoff

The link confidence q defines when we consider a pair of
nodes directly connected: we say that there is a link from
any node i to any other node j only if, with given parame-
ters A = Cα T

P/N0

and T , the probability q̃ that (3) holds in
a random time slot is at least q. If we assume that the con-
ditions for a completely successful transmission from i to j
are that (i): node i is allowed to transmit, (ii): node j does
not transmit in the same time slot, and finally that (iii): the
states of the remaining nodes are such that (3) holds, then
due to the nodes’ independent operation the number of time
slots needed for one successful transmission from i to j
obeys a Geometric distribution with parameter p(1 − p)q̃.
Furthermore, for the critical link in a network with many
nodes it is reasonable to assume that q̃ ≈ q. Hence, requir-
ing a higher link confidence means requiring a lower max-
imum average link delay in the network, whereas allowing
a lower link confidence means allowing a higher maximum
average link delay.

On the other hand, the probability p(1 − p)q̃ is also
the proportion of time slots with successful transmissions
from node i to j over time. The defined unit throughput of
each successful transmission in turn depends on the SINR
threshold T : if we take as a reference the Shannon capacity
of a channel with Gaussian noise and interference and a
given SINR, this is proportional to log(1 + SINR). Then
the minimum time-averaged link throughput in the network
is proportional to q log(1 + T ).

The two parameters q and T that together determine
the maximum average link delay and the minimum link
throughput are bound together by the connectivity con-
straint, which dictates that the greatest achievable T de-
pends on the required q: Tmax = Tmax(q). As an exam-
ple, assume that we require the link confidence q = 0.85
from the network of Figure 2. Then Tmax(q = 0.85) is
determined by the intersection of the boundary in Figure
3(a) and the straight line A = Cα

P/N0

T rising from the ori-

gin with slope Cα

P/N0

(assumed given). Thus, for a given
network, the required link confidence q can be increased
from zero to some positive value without sacrificing mini-
mum link throughput (with our example network, we know
that this value is at least q = (1 − 0.1)8). The maximum
of the minimum link throughput with respect to q marks
the beginning of Pareto-optimal combinations of maximum
link average delay and minimum link throughput, meaning
that neither quantity can be improved without making the
other quantity worse: beyond this maximizing value of q, a
delay-throughput tradeoff must then be made according to
design preferences.

Finally, we note that one might just as well define the
greatest achievable q given T , i.e. qmax(T ), but whether or
not this is defined with given T now depends on Cα

P/N0

: for

instance, in the case of our example network with Cα

P/N0

=

8 and T = 2, no value of q can satisfy the connectivity
constraint.

4.3 Example simulations

We now demonstrate the application of the above analysis
to studying the performance of random slotted-Aloha net-
works under the requirement of connectivity. We assume
that α = 3 and p = 0.1 as above, as well as a negligible
background noise, i.e. N0 = 0 ⇒ A = 0, which results
in independence of the scaling factor C and transmission
power P . Constraining the link delays so that the average
number of time slots needed for a successful transmission
on any valid link should be no more than 20, we wish to
determine a SINR threshold T as high as possible, under
the requirement that the valid links in a network with ten
nodes distributed independently and uniformly at random
in a square domain should form a connected topology with
high probability.

Thus, by the properties of the Geometric distribution
we have q ≥ 1/(0.1 ·0.9 ·20) ≈ 0.56, with the lowest value
maximizing the feasible T in all cases. Figure 5 shows the
results of determining Tmax(q = 1/(0.1 · 0.9 · 20)) from
10000 such random networks: we may conclude, e.g., that
setting T = 1 results in a roughly 95%-probability of a
connected network, whereas T = 1/2 gives a very high
connectivity probability.

4.4 Efficient approximation for determining
the distribution of interference

The computational task of determining the distribution
of the interference from a given network of n nodes,
for receiver node j given the transmitter node i, en-
tails evaluating all the possible 2n−2 values of the sum
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Figure 5. Empirical cumulative distribution function of
Tmax(q = 1/(0.1·0.9·20)) determined from 10000 random
networks with ten nodes distributed independently and uni-
formly at random in a square-shaped domain, when α = 3,
p = 0.1, and N0 = 0.



∑

k 6=i,j ek||xk − xj ||
−α and their probabilities. To be able

to apply these methods to networks with even a moder-
ate number of nodes, an efficient approximation method is
therefore needed. For this purpose, it is useful to note that
given the number of active transmitters m among the other
n − 2 nodes in a time slot (which is independent for each
time slot and Bin(n− 2, p)-distributed), the conditional ex-
pectation of the interference is

E





∑

k 6=i,j

ek||xk − xj ||
−α

∣

∣

∣

∣

∣

∣

∑

k 6=i,j

ek = m



 =

m

n− 2

∑

k 6=i,j

||xk − xj ||
−α.

The distribution of this conditional interference can there-
fore be used to approximate that of the interference itself.

However, this approximation is hindered by dominat-
ing terms ||xk−xj ||

−α resulting from near-by nodes, since
all terms contribute equally to all values of the above con-
ditional expectation. An improved approximation can be
achieved by determining the distribution of the interfer-
ence from such dominating nodes exactly and convolut-
ing this distribution with that of the conditional expected
interference from the remaining nodes. Our criterion for
such a dominating node h 6= i, j is that ||xh − xj ||

−α ≥
f

∑

k 6=i,j ||xk − xj ||
−α, for some fixed fraction f .

Figure 6 shows an example of how these approxima-
tions relate to the exact distribution.

5 Summary and discussion

We generalized the critical transmission range for connec-
tivity of the commonly used Boolean network model to
two models presented earlier that both take interferences
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Figure 6. The cumulative distribution of the scaled in-
terference at node 6, excluding node 5 in the network
of Figure 2. Solid line: exact distribution, evaluated at
210−2 = 256 points; gray line: conditional expectation,
evaluated at 9 points; dashed line: the hybrid approxima-
tion with f = 20%, evaluated at 28 points. The medium
access probability has again been taken to be p = 0.1.

into account. The conceptually simpler model is motivated
by CDMA and leads to an unambiguous definition of the
connectivity boundary in the space of two free parameters.
The other model assumes a slotted-Aloha medium access
scheme and, due to the varying interference from one time
slot to the next, requires defining an additional parameter,
the link confidence. With both models, we showed how to
determine the connectivity boundary for a given network.
The constraints imposed by the requirement of connectivity
on the network parameters imply tradeoffs between differ-
ent performance quantities.

Our results can be used to study by simulation the
connectivity of wireless multihop networks under more
realistic modelling assumptions than those leading to the
Boolean model. The concept of the connectivity boundary
also allows analyzing the interdependence of different net-
works parameters under the requirement of network con-
nectivity.
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