
Combining Opportunistic and Size-Based Scheduling in
Wireless Systems

Pasi Lassila
TKK Helsinki University of Technology
P.O.Box 3000, FI-02015 TKK, Finland

Pasi.Lassila@tkk.fi

Samuli Aalto
TKK Helsinki University of Technology
P.O.Box 3000, FI-02015 TKK, Finland

Samuli.Aalto@tkk.fi

ABSTRACT
HSDPA/HDR systems allow the use of sophisticated oppor-
tunistic schedulers that can utilize information on instan-
taneous channel conditions. On the other hand, for elastic
data traffic the size of the files can be used in size-dependent
scheduling methods, e.g., the well known SRPT scheduler,
to minimize the flow delays. In this paper, we consider the
optimal use of both size and channel information for min-
imizing the flow delay. We derive several heuristics which
utilize both types of information. In a static setting with two
flows and two rates, the optimal policy can be constructed
via dynamic programming and can be compared against the
policies using exact size knowledge. In the dynamic set-
ting (stochastically arriving flows with random sizes), exten-
sive simulations have been performed to evaluate the perfor-
mance of the schedulers under heavy traffic. In the symmet-
ric setting, the differences between the schedulers are clearly
visible, while in the asymmetric setting the dynamics are
more complex. The results still show that significant gains
can be achieved with additionally using size information.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication; G.3 [Probability and Statistics]: Queueing
theory

General Terms
Performance, Algorithms

Keywords
Opportunistic scheduling, size-based scheduling, flow-level
modeling, HSDPA/HDR systems

1. INTRODUCTION
Modern 3G cellular networks allow the use of highly so-

phisticated scheduling mechanisms, and systems such as HS-
DPA/HDR have been designed specifically for supporting
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the demands of data traffic. In these systems time is slotted
and scheduling decisions can be made at a very small time
scale (milliseconds). The idea in the scheduling, in princi-
ple, is to allocate the transmission resources of the time slot
to a single user at a time, thus effectively eliminating intra-
cell interference between the users. The delay tolerance of
data applications is higher than for traditional voice traffic,
which allows the scheduler more freedom in how to allocate
the time slots. This together with the fast time scale of
scheduling has given rise to so called opportunistic sched-
ulers, where the scheduler allocates the time slot to the user
with currently favorable channel conditions.

We consider the optimal (downlink) scheduling problem
from the so called flow-level point of view for a single base
station in an HSDPA/HDR cellular network. At the flow
level traffic consists of flows, which roughly correspond to
file transfers. The flows are elastic meaning that the ap-
plications tolerate variations in the instantaneous transmis-
sion rate, cf., file transfers controlled by TCP (for FTP and
HTTP applications). The setting is also dynamic, where
the flows arrive in a stochastic manner and have random
sizes. Note that relative to the time slot duration a typical
flow requires many time slots to complete. The flow-level
corresponds to the time scale at which user’s experience the
performance of elastic traffic, which is captured by the total
time it takes to transmit the whole flow (file), i.e., the flow
delay. The task of the scheduler is then to allocate the time
slots among the competing flows in an efficient manner, for
example to minimize the mean flow delay.

In wireless systems the channel state (or the signal-to-
interference-noise ratio) varies randomly, e.g., due to fast
fading. At the flow level this implies that the achievable
transmission rates vary randomly from time slot to another.
However, if the scheduler does not utilize the instantaneous
channel state information, at the time scale of flows these
rate variations average out, and in the limit when the time
slot length goes to zero the system can be modeled as an
M/G/1 queue, see [5, 1]. In this context, the processor shar-
ing (PS) queuing discipline approximates the round robin
(RR) scheduler. The flow level delays can then be mini-
mized by using flow-level size information, cf., the shortest
remaining processing time (SRPT) policy. The benefits of
size-based scheduling in wireless systems compared with the
plain RR scheduler has been considered in [1].

In the schedulers discussed above, the base station is only
at most aware of the mean rate of the channel. So called
opportunistic schedulers, on the other hand, try to exploit
the random variations in the channel rates in successive time



slots to optimize the performance. For example, the propor-
tionally fair (PF) scheduler has been implemented in stan-
dardized systems, such as HSDPA and HDR, and always
allocates the time slot to the flow that has the highest in-
stantaneous rate relative to its throughput. Indeed, it has
been shown that the PF scheduler increases the capacity of
the system, see [2, 6].

The idea here is to utilize simultaneously both channel
variations and information about the flow sizes, when select-
ing the user to be served during the next time slot. Even
under very simple assumptions about the channel, the opti-
mal scheduling rule is not known.

In the present paper we introduce two classes of sched-
ulers, which utilize the rate and size information in a dif-
ferent manner. In the first class we have so called prior-
ity policies that give an absolute priority to the flow with
the highest rate. If there are multiple flows with the same
highest rate, then among these flows we apply size informa-
tion, either SRPT-like exact size information or knowledge
of service thus far. In the second class we have index poli-
cies, which combine the rate and size information into a
distinct index value for each flow and the scheduler then se-
lects the flow with the highest index. In this class, we have
the TAOS2 scheduler, which was given in [9], serving as the
reference policy, as well as the PF scheduler. In a static set-
ting with two flows we can obtain analytical results on the
optimal policy by using a dynamic programming approach,
and we compare the performance of some of the proposed
schedulers against the optimal policy. In the dynamic set-
ting with stochastically arriving flows, extensive simulations
of the schedulers under heavy traffic are used to develop in-
sight to their heavy traffic behavior, that is beyond the load
region of schedulers that do not utilize channel rate infor-
mation.

The paper is organized as follows. In Section 2 we com-
pare the performance of the PF scheduler with standard
size-based schedulers. The schedulers combining both rate
and size information are defined in Section 3. The analytical
results on the optimal policy in a static scenario are in Sec-
tion 4, while the simulation results for the dynamic setting
are in Section 5. Finally, the conclusions are in Section 6.

1.1 Related work
As discussed earlier, when rate variations are not utilized

by the scheduler, the system can be modeled at the flow
level as an M/G/1 queue. For this system the optimal pol-
icy minimizing the mean flow delay is given by SRPT, see
[13]. Among the non-anticipating policies, the foreground-
background (FB) policy, which serves the flow with least
amount of attained service, is optimal when the service times
belong to the class of distributions with the decreasing haz-
ard rate (DHR) property, see [12, 17]. DHR distributions,
such as the Pareto distribution, have been used to model
the sizes of Internet flows, see [7]. These ideas were applied
to HSDPA/HDR systems in our earlier paper [1]. Here we
continue by considering also the use of rate variations and
the size information.

The PF scheduler represents the reference scheduler among
opportunistic schedulers. Typically the analysis of the PF
scheduler, e.g., demonstrating the achievable scheduling gains,
has been done in a static setting with a fixed number of users,
see, e.g., [8, 16]. Also, so called relative best (RB) sched-
ulers have been analyzed, see [2]. The PF scheduler can

however perform in an unfair manner in certain settings, as
discussed, for example in [3], where the score-based sched-
uler is proposed as a solution. In [11], the performance of
both PF and score-based approaches are compared, and also
the performance degradation due to the need to measure the
channel statistics is analyzed.

In this paper the focus is on the flow-level performance.
Related work on the round-robin scheduler in HSDPA/HDR
systems is in [5], where various system aspects are analyzed
from the flow-level point of view. The flow-level performance
of weight-based opportunistic schedulers has been analyzed
in [6], where it is shown, among other things, that the system
under PF scheduler corresponds in the symmetric setting
to a processor sharing queue with state-dependent service
rates. Some flow-level analysis on the score-base scheduler
can be found in [4]. The round robin, PF and maximum
signal-to-noise ratio schedulers are also analyzed at the flow-
level in [15] with a more detailed link level model.

Our analysis using a dynamic programming approach in
the static setting is similar to the one in [14]. Finally, closest
to the setting in this paper is the work in [9]. The authors
introduce the TAOS2 scheduler, which gives the optimal
one-step decision rule to improve the rate-oblivious standard
SRPT scheduler. The authors have derived lower bounds on
the performance of the scheduler in a static setting. Also,
some experiments with the dynamic setting have been car-
ried out. We include TAOS2 in our experiments, and also
introduce a new set of priority-based schedulers, as well as
schedulers using only knowledge of service attained thus far
(non-anticipating schedulers). Additionally, we give results
on the optimal policy in the static setting and an extensive
set of simulations on the dynamic setting.

2. SIZE-BASED POLICIES VS. PF POLICY
Here we illustrate the difference between applying stan-

dard size-based schedulers that do not take advantage of
the channel rate variations and the PF scheduler.

2.1 Assumptions
We consider downlink data transmissions in a cellular sys-

tem, such as HSDPA, where the base station always trans-
mits to one single user (or in our case a flow) within a time
slot. The flows are experiencing a time varying channel,
for example due to the fast fading phenomenon. The flows
are independent from each other and the rate of each flow i
varies over time according to some stationary process Ri(t)
and, as in, e.g., [6], it is assumed that the base station knows
perfectly the rate Ri(t) of each flow for each time slot. Fur-
thermore, we assume that the channels of all the flows are
symmetric, i.e., the stationary distribution of Ri(t) is iden-
tical with all flows.

The traffic in the system consists of elastic flows corre-
sponding roughly to file transfers that the users are down-
loading through the base station. The flows have a random
size, denoted by X (bits), and typically require many time
slots to finish their service. The flows arrive at the base
station according to a Poisson process with intensity λ.

Finally, we consider the system in the limit when the time
slot duration is negligible compared with the duration of the
flows, see [5, 6, 1]. This allows us to use results on M/G/1
queues for assessing the performance impact of fast fading
on standard size-based schedulers and the PF scheduler.



2.2 Different schedulers
So called standard size-based schedulers are not able to ex-

ploit the variation of the instantaneous rates of the flows. In
the limit, when the time slot duration tends to zero, the rate
variations average out and the flows are served according to
the mean of the rate process. The system corresponds to an
M/G/1 queue with arrival rate λ, service time S = X/E[Ri]
and load ρ = λ E[S]. Note that stability of the system re-
quires ρ < 1. However, different schedulers can be derived
depending on the accuracy of the flow-level size information.

PS policy: If the scheduler simply assigns time slots in a
round robin manner, the service is approximated by the PS
(Processor Sharing) discipline, which does not utilize size
information at all.

FB policy: Within the stability region ρ < 1 it is possi-
ble to affect the mean delays of the flows by using knowledge
of the flow sizes, see, e.g., [1]. The FB (Foreground Back-
ground) policy always serves the flow that has received least
amount of service. Among non-anticipating policies, the FB
policy minimizes the mean flow delay when service time dis-
tribution has the DHR property.

SRPT policy: The optimal scheduler minimizing the
mean flow delay is given by SRPT, which always serves the
flow with the smallest remaining processing time, implying
exact knowledge of the remaining bits in the flow. However,
the stability region for the SRPT policy (also for PS and
FB) is still ρ < 1.

For the above standard size-based schedulers the equa-
tions for the conditional and total mean flow delays are read-
ily available from the literature, see, e.g., [10]. Note that the
results apply also in asymmetric scenarios. The asymmetric
channels of the flows correspond to classes and just modify
the service time distribution, see [1].

PF scheduler: The idea in opportunistic scheduling, on
the other hand, is to exploit the rate variations between the
different flows, such that time slots are allocated to the flow
that happens to have good channel conditions in the con-
sidered time slot. A well-known example of channel-aware
schedulers is the PF scheduler which allocates the time slot
to the flow i that has the highest instantaneous rate Ri rel-
ative to its realized throughput. In the symmetric setting,
the PF scheduler can be approximated at the flow-level by a
processor sharing queue with state dependent service rates,
see [6]. The PF scheduler benefits from multiuser diversity
which increases the capacity of the system. In our consid-
ered symmetric modeling setting, this implies that the sys-
tem can be stable also for ρ > 1. This is possible as ρ
is defined based on the mean rate of the channel, and the
PF scheduler exploits instantaneous rate variations, which
essentially increases the capacity. However, the exact sta-
bility limit now depends on the channel properties. In this
paper, we refer to the load region ρ > 1 as heavy traffic.

2.3 Numerical example
Next we illustrate the impact of rate variability on the

relative performance of the size-based schedulers and the
PF scheduler. Consider the following simple model, taken
from [5], for the instantaneous rate of the flows, R,

R = min{c0, m · ξ},
where c0 represents the maximum achievable rate in the sys-
tem, m represents the mean rate of the flow in the absence of
fast fading and ξ is a random variable denoting the marginal
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Figure 1: Comparison of the mean flow level delay
as a function of ρ for PS, FB, SRPT and PF.

distribution of the fast fading process. Thus, it is assumed
that the instantaneous rate is linear in the received signal-to-
noise-ratio up to a maximum rate c0 with the parameter m
modeling the impact of path loss and ξ the fast fading pro-
cess. We assume that ξ is exponentially distributed (with
mean 1), corresponding to a Rayleigh fading channel. Also,
we choose the parameters such that c0 = 1, the file sizes
obey a Pareto distribution with shape parameter 2 (DHR
type distribution) and the scale parameter b is determined
so that the mean service time E[S] = 1 (given the channel
parameters m and c0).

The parameter m controls the variability of the rates; low
m means poor channel quality conditions (e.g., far from the
base station) while a high m corresponds to good channel
conditions (e.g., close to the base station). From the point
of view of scheduling gain (PF scheduler), the best results
are expected when m is low and correspondingly the rate
variability is high (and thus scheduling gain is also high).
As the parameters are chosen always so that E[S] = 1, the
performance of PS, FB and SRPT does not depend on m.

The results, based on known formulae, e.g., from [10, 6,
1], are shown in Figure 1, which displays the mean flow-level
delay as a function of the load ρ for the different policies. For
the PF policy two curves are given. The graph labeled “PF,
low”corresponds to the low variability case with m = 10 and
“PF, high” represents the high variability case with m = 1.
It can be observed that when the rate variability is high, the
scheduling gain enables the system to serve the flows at a
much higher average rate and the resulting performance is
much better than even under the optimal size-based sched-
uler SRPT. However, when the average channel condition is
very good and scheduling gain becomes small, the size-based
methods are clearly advantageous.

Our objective in this paper is to develop schedulers that
utilize simultaneously both rate and size information in an
attempt to further minimize the flow level delays. As seen
from the previous results, it is very important to achieve a
proper balance between the size and rate information de-
pending on the channel conditions of the flows.

3. POLICIES COMBINING SIZE AND RATE
INFORMATION

In this section we present the used policies for minimizing
the flow-level delay. The policies are categorized depend-
ing on how the instantaneous rate information is utilized.
Within each category there are variants of the policies based



on the type of flow-level size information.
To define the policies, some notation is introduced. We

consider the scheduling decision at time t. At time t there
are N(t) flows in the system and the instantaneous rate of
each flow is denoted by Ri(t) (as earlier). We assume that
the possible values of Ri(t) form a (finite) discrete set of size
L, i.e., Ri(t) ∈ {r1, . . . , rL}. For example, in HDR/HSDPA
systems there are 11 possible rates. Furthermore, we assume
that the rate process evolves at a fast time-scale so that
the values of Ri(t) in successive time slots constitute an
independent and identically distributed (i.i.d.) sequence.

Associated with each flow i there may be knowledge about
the size of the flow. The general idea in using this informa-
tion is the same as in standard size-based scheduling, that is
to favor small flows in an effort to reduce the number of on-
going flows in the system. We denote by Yi(t) the remaining
number of bits to be served for flow i at time t. Use of Yi(t)
forms the basis of SRPT-like policies. On the other hand,
Ai(t) denotes the attained service of flow i in bits at time t,
i.e., the amount of bits that have been served from the flow
by time t. Policies using Ai(t) are FB-like policies. The time
that flow i has spent in the system up to time t is denoted
by Di(t). As the scheduling always concerns a given time
slot t and all variables have instantaneous values at time t,
we omit the explicit dependence on time from the notation.

3.1 Priority policies
In the priority policies, we give absolute priority to the

flows that have currently the highest instantaneous rates. In
this way, the utilization of the channel can be maximized.
Given that there are N flows in the system, the set of in-
stantaneous rates is {R1, . . . , RN} and we denote by K the
set of flows having the highest rates in the current slot, i.e.,

K = {i : Ri = max{R1, . . . , RN}}.

In case the maximum is not unique, depending on the ac-
curacy of the flow-level size information, we have different
policies for breaking the ties.

SRPT-P: If exact information about the remaining job
sizes Yi is available, we can use that to allocate the service
to the flow with the highest instantaneous rate and least
amount of remaining bits to be served. This gives us the
SRPT-P (SRPT with Priorities) policy. Under this policy
the scheduler always selects the flow i∗ that achieves

i∗ = arg min
i∈K

Yi.

FB-P: If information about Yi is not available, knowledge
of attained service Ai can be used to approximate Yi in the
case that the flow size distribution has the DHR property.
This gives us the FB-P (Foreground-Background with Pri-
orities) policy, where the scheduler always selects the flow
i∗ that achieves

i∗ = arg min
i∈K

Ai.

Fair-P: Information about the time that each flow has
been in the system Di and the attained service Ai can be
used to increase the fairness between the flows. The ratio
Ai/Di represents the throughput of flow i and by favoring
the flow with smallest throughput we arrive at the Fair-P
(Fair with Priorities) policy. Under this policy, the scheduler

chooses the flow i∗ that achieves

i∗ = arg min
i∈K

Ai

Di
.

In all above policies, in case i∗ is not unique the decision
is taken randomly.

3.2 Index policies
All policies here are index policies, where based on the

channel information and the size information a distinct index
is obtained for each flow in the system. The scheduler then
chooses the flow with the highest index.

PF: The reference policy in our studies is provided by
the PF scheduler, which aims to balance fairness and per-
formance. The PF scheduler allocates the time slot to the
flow i that has the highest instantaneous rate Ri relative
to its throughput, which is typically estimated via an expo-
nentially smoothed average of the realized rates, see [16, 3].
However, in our scenario the throughput of flow i is readily
given by Ai/Di. Therefore, we define the PF scheduler so
that it selects the flow i that achieves

i∗ = arg max
i=1,...,N

Ri

Ai/Di
.

RB: The relatively best (RB) scheduler, as defined in [2],
on the other hand is a policy where the fairness is taken
with respect to the expected quality of the channel. In more
detail, the RB policy allocates the time slot to the flow that
has the highest instantaneous rate relative to its mean rate,
i.e., to the flow i∗ achieving

i∗ = arg max
i=1,...,N

Ri

E[Ri]
.

TAOS2: In [9], a policy has been devised, which is an
SRPT-like policy exploiting knowledge of the remaining bits
Yi in each flow and the instantaneous rates Ri. The policy
is based on considering a static setting with a fixed number
of flows and represents a locally optimal scheduling decision
that improves the standard SRPT, which only uses the mean
rate of the flows. In more detail, let Ii denote the rank of flow
i, when the flows are sorted in an ascending order according
to Yi/E[Ri] (i.e., the standard SRPT criterion). According
to TAOS2, the scheduler selects the flow i∗ that achieves

i∗ = arg max
i=1,...,N

(
(N − Ii + 1)

Ri

E[Ri]

)
. (1)

As can be seen, TAOS2 is a product form rule with com-
ponents related to rate and size information, and where the
rate information is based exactly on the RB policy.

FB-TAOS2: In FB-TAOS2 we simply replace the knowl-
edge of the remaining bits in flow i, Yi, with knowledge of
the attained service Ai. This gives us the non-anticipating
version of TAOS2 and only affects the ranking of the flows.
Thus, in FB-TAOS2 the flows are sorted in ascending or-
der of Ai/E[Ri] and Ii denotes the rank of flow i and the
scheduler selects the flow i∗ according to (1).

Again, in all above policies, ties are decided randomly.

4. OPTIMAL POLICY IN STATIC SETTING
In this section we compare the performance of the SRPT-

like policies (TAOS2 and SRPT-P) and the RB policy (with
no size information) against the optimal policy that mini-
mizes the mean delay. In general, constructing the optimal



policy is very difficult. However, it can be done in a setting
with 2 flows and 2 possible rates for the channel state.

4.1 Dynamic programming formulation of the
optimal policy

With a suitable choice for the parameters, the evolution of
the service of the 2 flows can be characterized by a discrete
time Markov chain defined by the underlying rate process.
Then the optimal solution can be obtained recursively via
dynamic programming. Time evolves in a slotted manner
and the time slot length is denoted by ∆. Let us denote
the two possible rates of the channel by rmin and rmax and
the probability that the rate in an arbitrary time slot equals
rmin is denoted by p1 for flow 1 and by p2 for flow 2. All
∆, rmin and rmax are assumed to be integer valued. The
state of the chain is characterized by integers n1 and n2

denoting the amount of work left in flow 1 and 2, and r1

and r2 denoting the channel states of flow 1 and 2. Our
objective is to minimize the total mean flow delay.

Given the state of the Markov chain (n1, n2, r1, r2), the
decision is between serving flow 1 with rate r1 or flow 2
with rate r2. Independent of the decision, the incurred cost
for the flow delay is equal to 2∆ (service during the cur-
rent time slot delays both flows by ∆). The value function
v(n1, n2, r1, r2) gives the mean flow delay given the state
and the following recursion determines the optimal policy
to minimize the mean total completion time

v(n1,n2, r1, r2) = 2∆+

min{f((n1 −∆r1)
+, n2), f(n1, (n2 −∆r2)

+)}, (2)

where the minimization is between giving the service to flow
1 with rate r1 or flow 2 with rate r2 and the function f(·, ·)
determines the mean flow delay (or the cost) of the decision,

f(n1, n2) = p1p2v(n1, n2, r
min, rmin)

+ p1(1− p2)v(n1, n2, r
min, rmax)

+ p2(1− p1)v(n1, n2, r
max, rmin)

+ (1− p1)(1− p2)v(n1, n2, r
max, rmax).

The initial value for the recursion is v(0, 0, ·, ·) = 0. If only
the class 1 flow is left in the system the cost incurred given
the state equals ∆ and the recursion (2) takes the form

v(n1, 0, r1, r2) = ∆ + f((n1 −∆r1)
+, 0),

and similarly in the case if n1 = 0 but n2 > 0. Note that, if a
flow i finishes its service before the time slot ends (i.e., ni <
∆rmin) the cost incurred is equal to ∆. Now, to compute
the optimal policy and the corresponding minimized mean
flow delay, one just uses the iteration formulae above and
they are iterated until a given upper limit for the flow sizes.

4.2 Analysis of SRPT-P and TAOS2 policies
For the SRPT-P, TAOS2 and RB policies the mean flow

delay can also be obtained. The idea is again to go through
recursively the entire state space and given the state (n1, n2,
r1, r2) the minimization operation in (2) is replaced by the
decision rule of the corresponding policy.

By examining in detail the SRPT-P and TAOS2 policies,
it is also easy to show that they are very similar in the
case of two possible rates, two jobs and symmetric channels,
i.e., p1 = p2. In fact, the only differences arise with two
possible states. Consider the TAOS2 scheduler. If I1 =

SRPT-P, TAOS2
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Figure 2: Ratio of the mean flow delay under RB
and both TAOS2 and SRPT-P to the optimal sched-
uler performance for a diagonal cross section (n, n).

1, I2 = 2, r1 = rmin and r2 = rmax, then the index values
of the flows are {2rmin, rmax}. Thus, the TAOS2 scheduler
will select flow 2 only if rmax ≥ 2rmin, and otherwise flow
1. On the other hand, under SRPT-P the scheduler would
always select flow 2 based on the priority of the higher rate
for flow 2. A similar phenomenon occurs also if the state is
I1 = 2, I2 = 1, r1 = rmax and r2 = rmin. Thus, the SRPT-P
and TAOS2 policies are in the symmetric 2 flows/2 rates
setting equal if rmax ≥ 2rmin. Note that this does not hold
anymore in the same asymmetric setting nor when there are
more than two rates in the system or more jobs.

4.3 Numerical results
Here we compare the mean flow delay under the various

heuristics (RB, TAOS2, SRPT-P) against the optimal pol-
icy. For convenience, we select ∆ = 1 and rmin = 1 as
fixed parameters. In all cases, the results are shown only
for the initial channel state (rmin, rmin), but the results are
practically the same also for other initial channel state.

We first consider a symmetric setting p1 = p2 = 0.5 for
different values of the higher rate rmax = {3, 6, 10} (SRPT-
P and TAOS2 are identical in all cases). We study a cross
section of the state space, where both flows have equal size
and we evaluate the relative performance against the optimal
as a function of the common size n = {1, . . . , 500}. For
the RB policy, the rmax values are indicated in the figure.
For the SRPT and TAOS2 policies this is not possible, but
the lines are ordered so that rmax = 10 corresponds to the
topmost curve and rmax = 3 to the lowest curve.

The results are given in Figure 2, where the oscillations
especially for small n are due to the discrete nature of the
system. For large n the discretization effects get smaller
and the graphs become smoother. The gain obtained with
the optimal policy over the RB policy is noticeable and it
increases with the common size, suggesting a persistent ben-
efit from using size information as the size of the flows in-
creases. On the other hand, as rmax is increased from 3 to
10 the benefit decreases, i.e., under higher channel variabil-
ity RB becomes closer to the optimal policy. On the other
hand, for the SRPT-P and TAOS2 schedulers the benefit
from the optimal policy is very small and it also decreases
as the common size increases, suggesting that the optimal
policy differs from the TAOS2 and SRPT-P policies only
when the flow sizes are small. Also, increasing rmax only
marginally improves the performance for smaller flow sizes.

To see the impact of the asymmetric setting, we consider
a case where for class 1 we set p1 = 0.8 and for class 2 we
set p2 = 0.2. Thus, the overall probability to have rate rmin
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Figure 3: Ratio of the mean flow delay under RB,
TAOS2 and SRPT-P to the optimal scheduler per-
formance for rmax = 2 (upper) and rmax = 10 (lower)
for a diagonal cross section (n, n).

is 0.5, i.e., the same as in the symmetric setting. First we
consider the case with a relatively small rate variability and
set rmax = 2 and the results are shown in Figure 3 (upper),
which depicts the ratio of the mean flow delay under the
RB, TAOS2 and SRPT-P policies to the optimal scheduler
performance for a diagonal cross section of the state space,
(n, n) where n = {1, . . . , 500}. The results show that as the
amount of work in the system increases, the priority pol-
icy SRPT-P is close to optimal, the RB policy is somewhat
poorer but the TAOS2 policy performs worst. Next we con-
sider the case with a higher rate variability where rmax = 10.
The results are in Figure 3 (lower), which shows the results
for the same diagonal cross section (n, n). In this case, RB
and TAOS2 are very close to the optimal and somewhat sur-
prisingly the priority policy SRPT-P is not as efficient. This
can be due to the fact that in this highly asymmetric set-
ting, the RB and TAOS2 policies are able to separate the
two classes from each other and favor class 1 (class 1 has the
bad channel) when it happens to have a high rate, while the
SRPT-P policy treats both classes equally in this respect.

5. HEAVY TRAFFIC SIMULATIONS
In this section we consider the performance of the vari-

ous schedulers introduced in Section 3 in a dynamic setting
where flows arrive according to a Poisson process and have
random sizes. The idea is to study the heavy traffic behavior
of the policies, i.e., with ρ > 1, under different settings for
the flow rates (2 possible rates vs. 11 possible rates) both
in a symmetric and asymmetric scenario.

The simulations are carried out using two flow classes both
with equal Poisson arrival rates of flows, λ1 = λ2 = 0.5, i.e.,
the total arrival rate equals 1. The file sizes obey the Pareto
distribution with shape parameter β = 2. This renders the
variance of X infinite, which is a property that has been
observed in measurements of elastic traffic, see [7]. To have
a given load in the system, we vary the mean file size E[X]
by choosing the remaining parameter of the Pareto distribu-

tion, i.e., the scale parameter b. By using two flow classes we
can analyze both symmetric and asymmetric channel con-
figurations by appropriately parameterizing the channel rate
processes.

In the experiments with only 2 rates, the rates of the
two flow classes are characterized by p1 and p2 denoting the
probability that the channel rate is rmin for flow classes 1
and 2, respectively. We assume that p2 ≤ p1 < 1, i.e., that
class 2 has an equally good or better channel than class 1.
For this setting it is possible to select p1 and p2 such that
the rate processes appear statistically identical for an outside
observer both in the symmetric and asymmetric case.

In the case of 11 different rates as in HSDPA/HDR sys-
tems, Ri ∈ {r1, . . . , r11}, for classes i = 1, 2. For the abso-
lute values of the rates, see, e.g., [6]. We assume that the
probabilities of the different rates obey a truncated geomet-
ric distribution with parameter q ≤ 1 giving us an easy way
to parameterize the rate distribution (only 1 parameter is
required). For class 1 the rates then obey the truncated ge-
ometric distribution with parameter q, while for class 2 the
rate probabilities are a mirrored version of class 1, i.e.,

P{R1 = rk} = P{R2 = r11−k+1} =
qk

∑11
i=1 qi

.

In the simulations, the idea is to investigate the perfor-
mance of the policies as a function of the total load. To
this end we define the load ρ as in Section 2, i.e., it is the
load in the corresponding system where instantaneous chan-
nel variations are not used by the scheduler and the service
rate of the system is simply defined by the mean rate of the
channel. Thus, the load ρ is given by

ρ = λ1
E[X]

E[R1]
+ λ2

E[X]

E[R2]
, (3)

where E[R1] and E[R2] denote the mean rates of class 1
and 2, respectively. Note that, in the corresponding M/G/1
queue, stability requires that ρ < 1.

With the opportunistic schedulers proposed in Section 3,
it is possible to increase load beyond the region ρ < 1, but
it is not known exactly how much and one objective in the
simulations is to experimentally determine roughly the sta-
bility limits. However, an upper bound on the stability limit
is obtained by assuming all flows in both classes are served at
the common maximum rate, rmax. Then, for the system to
be stable, it must hold that λ1E[X]/rmax + λ2E[X]/rmax <
1. Solving this for equality (stability limit) yields E[X] =
rmax/(λ1 + λ2) = rmax. Thus, an upper bound ρ∗ on the
stability limit is given by (3) with E[X] = rmax,

ρ∗ = λ1
rmax

E[R1]
+ λ2

rmax

E[R2]
. (4)

Essentially, ρ∗ as given by (4) captures how much greater
the stability limit under the assumption of maximum rate
service is relative to the M/G/1 stability limit ρ = 1. The
tightness of (4) depends on the channel rate parameters.

Finally, the simulations are conducted in the setting where
the time slot length ∆ is very small compared with time
scale of arrivals and departures. In our simulations, we set
∆ = 0.01 time units.

Recall that the PF, RB, FB-TAOS2, TAOS2 policies are
index policies, and SRPT-P, FB-P and Fair-P are priority
policies. Additionally, the policies use different types of age
information: SRPT-P and TAOS2 apply exact knowledge



Table 1: Classification of the different policies.
Fair FB SRPT

Index PF, RB FB-TAOS2 TAOS2
Priority Fair-P FB-P SRPT-P

of sizes (SRPT-like criterion), FB-P and FB-TAOS2 apply
knowledge of service attained thus far (FB-like information),
and RB, PF and Fair-P aim at some kind of fairness (RB
does not explicitly aim at fairness while PF and Fair-P do).
The different policies can be classified according to the pri-
ority/index and size information usage as shown in Table 1.

5.1 Symmetric scenario
In the symmetric setting we have p1 = p2 = 0.5 so that all

flows have statistically identical channels. The performance
of the system is represented by the mean number of flows
in the system, E[N ], which in our case is also equal to the
mean delay E[T ] since λ1 + λ2 = 1. For each value of ρ, 10
repeated runs were made with 106 flows in each run.

In the first experiment we have only two possible rates in
the system and we keep rmin = 1. Figure 4 depicts the mean
number of flows for the different schedulers as a function of
the load ρ when rmax = 2 (upper) and rmax = 20 (lower),
respectively. In the figure, the index policies are shown with
dashed lines while the priority policies are indicated with
solid lines. In the figure, the labels Fair, FB and SRPT
refer to the classification in Table 1. The fair index policy
corresponds to PF. The RB policy is not shown separately
as it is in the symmetric setting very similar to PF. The
value of ρ∗ in both cases is shown as a vertical line.

More specifically, from the upper panel (low rate variabil-
ity) it can be seen that all other policies perform better
than PF (index policy, fair). Also, the SRPT- and FB-like
policies separate nicely so that the SRPT-like policies are
consistently better than FB-like policies. Finally, the cor-
responding priority based scheme is always better than its
TAOS-variant. In the lower panel, we have rmax = 20 and
hence the rate variability is higher. In this setting, we clearly
see that the priority policies (FB-P, SRPT-P) become prac-
tically identical with the corresponding index policies (FB-
TAOS2, TAOS2). At a very high load, there is some differ-
ence, but also the confidence intervals for the last points are
wider. Again, all policies yield better results than PF (index
policy, fair). Note also that the capacity limit in lower panel
is higher due to a higher scheduling gain. In both figures,
the approximate capacity limit ρ∗ seems to be quite tight.

Finally we look at the case with 11 possible rates as in the
HSDPA/HDR systems. To have a symmetric setting for the
two flow classes, we use q = 1 as the parameter in the trun-
cated geometric distribution of class 1 yielding a uniform
distribution for the rates in both classes (recall that for class
2 the rate probabilities are reversed from class 1). The sim-
ulation runs consisted of 10 repeated simulations with 106

flows in each run. Figure 5 gives the results again as a func-
tion of ρ, where the index policies are shown with dashed
lines and the priority policies are depicted with solid lines.
Now the index and priority policies separate into different
groups. Surprisingly, both TAOS2 and FB-TAOS2 policies
are worse than PF. However, the priority based policies are
all performing slightly better than PF and their relative per-

0.9 1.0 1.1 1.2 1.3
0

2

4

6

8

10

12

Ρ

E
[N

]

Priority policy
Index policy

Fair FB SRPT

Ρ*

1.5 1.6 1.7 1.8 1.9
0

5

10

15

20

Ρ

E
[N

]

Priority policy
Index policy

Fair

FB

SRPT

Ρ*

Figure 4: The mean number of flows (symmetric
setting, 2 rates) for the different schedulers as a
function of the load ρ when rmax = 2 (upper) and
rmax = 20 (lower), respectively.

formance is ordered as expected (SRPT-like policy is best,
FB-like policy next, and the fair variant Fair-P is last). The
capacity limit is also higher than earlier due to a higher
scheduling gain (e.g., the ratio rmax/rmin ≈ 60). However,
the approximate capacity limit is in this case ρ∗ ≈ 3.4 (not
shown in the figure), and it does not seem particularly tight.

5.2 Asymmetric scenario
Next we study the asymmetric setting where the flows

in class 1 have different channel properties than the flows in
class 2. First we consider the case with only 2 possible rates.
The parameters are chosen so that p1 = 0.8 and p2 = 0.2,
i.e., for class 1 the probability of having rate rmin is 0.8 while
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Figure 5: The mean number of flows (symmetric
setting, 11 rates) for the different schedulers as a
function of the load ρ in a system with the same
rates as in HSDPA/HDR systems.



for class 2 the same probability equals 0.2. Thus, class 1 has
worse channel conditions than class 2. Note that with the
above values for the rate probabilities, the overall probability
to have rate rmin is still 0.5p1 +0.5p2 = 0.5, i.e., exactly the
same as in our corresponding symmetric scenario. Hence,
the rate process appears identical to an outside observer
in the corresponding symmetric and asymmetric scenarios.
The simulations consisted of 10 repeated simulations with
106 flows in each run.

For the performance we study first the mean number of
flows in the system allowing us to see how the schedulers
perform overall. Figure 6 shows the results as a function of
the load ρ for rmax = 2 (upper) and rmax = 20 (lower). In
the figure, the index policies are shown with dashed lines
and the priority policies with continuous lines. The labels
Fair, FB and SRPT correspond to the classification in Ta-
ble 1. The fair index policy again corresponds to the PF
scheduler. However, in the asymmetric settings the RB pol-
icy displays a quite different behavior than PF and hence it
is indicated separately. The approximate capacity limit ρ∗

is again displayed as a vertical line.
In both panels of Figure 6, at higher loads, considering

first only the priority policies, the policies are sorted accord-
ing to the size information (SRPT-P is best, FB-P next and
Fair-P last). Among the index policies TAOS2 is best, PF is
practically the same as FB-TAOS2 in the upper panel while
in the lower panel FB-TAOS2 is better than PF, and the RB
policy is worst. However, the FB- and SRPT-like policies
do not separate nicely anymore as in the symmetric setting
and the relative performance of the policies is more com-
plex. Comparing the policies to the PF policy (index, fair),
all policies using size information, except FB-TAOS2 in the
low variability case (upper panel), perform better than PF.
The RB scheduler performs clearly the worst. The priority
based policies SRPT-P and FB-P typically perform better
than the corresponding TAOS2 policy. However, in the high
variability case (lower panel) somewhat surprisingly it is the
TAOS2 policy that shows better performance than SRPT-P
(thus far the SRPT-P policy has always been better). This
can be partly explained by the behavior already seen in the
static asymmetric setting in Figure 3 (lower). Again, the
approximate capacity limit ρ∗ appears to be rather good for
the TAOS2 and SRPT-P policies.

Comparing the symmetric and asymmetric settings with
respect to the capacity regions (see Figures 4 and 6), it can
be observed that the capacity limit in the asymmetric set-
ting is higher than in the symmetric setting with respect to
the capacity limit of the rate-oblivious M/G/1 system, i.e.,
the load ρ can be extended farther beyond 1 in the asymmet-
ric setting than in the symmetric setting. Recall that the
rate processes in the symmetric and asymmetric setting are
parameterized so that in both cases for an outside observer
the probability of having rate rmin or rmax equals 0.5. The
seemingly larger stability region can be partly explained by
the fact that in the asymmetric setting, the scheduler can
separate the asymmetric classes from each other to make
more efficient use of the time slots.

Finally, we consider the case with 11 different rates as in
the HSPDA/HDR systems. The results on the mean num-
ber of flows in the system as a function of the load ρ are
shown in Figure 7, where the upper panel corresponds to a
scenario with a relatively low degree of asymmetry between
the flow classes (q = 0.9) and in lower panel the asymmetry
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Figure 6: The mean number of flows (asymmetric
setting, 2 rates) as a function of the load ρ with
rmax = 2 (upper) and with rmax = 20 (lower).

is quite high (q = 0.5). The simulations consisted of 10 re-
peated simulations of 105 flows. The upper panel displays
similar characteristics as the symmetric scenario in Figure 5.
The TAOS2 index policies and the RB policy are performing
worse than PF, while the priority policies have a slightly bet-
ter performance than PF. The relative order of the priority
policies at the highest load is also as in Figure 5. However,
the confidence intervals at the highest load still overlap, so
a definite conclusion can not be drawn. When the degree
of asymmetry increases (see the lower panel), the situation
changes and all index and priority policies perform in a very
similar manner up to a rather high load. The priority poli-
cies are marginally better than the index policies FB-TAOS2
and TAOS2. At very high load the RB policy first becomes
worse and then the FB-TAOS2 policy. Notably, the PF pol-
icy performs the best throughout the whole load region. In
these cases, the approximate capacity limits are ρ∗ ≈ 3.7 for
q = 0.9 and ρ∗ ≈ 14.9 for q = 0.5, and they do not seem to
be particularly accurate, especially for q = 0.5.

5.3 Fairness in asymmetric scenarios
Finally, we investigate the fairness properties of the sched-

ulers in the asymmetric setting. The results corresponding
to the same scenarios as in Figure 6 are shown in Figure 8.
In the scenario of the upper panel, the mean rate of class 1
(bad channel) is 1.2 and for class 2 (good channel) it is 1.8,
and thus the rate asymmetry between the classes is 1.5. In
the scenario of the lower panel, the rate asymmetry is higher
equalling approximately 3.4. The fairness measure corre-
sponds to the metric, max{E[T1], E[T2]}/ min{E[T1], E[T2]},
where E[T1] and E[T2] denote the mean delay of class 1 and
2, respectively. Essentially, this metric represents how far
the performance of the two classes are from each other. The
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Figure 7: The mean number of flows (asymmetric
setting, 11 rates) for the different schedulers as a
function of the load ρ in a system with the same rates
as in HSDPA/HDR systems with low asymmetry
(upper) and high asymmetry (lower).

results reveal the non-monotonous behavior of the fairness
for the RB and FB-TAOS2 policies (and the same behavior
presumably holds also for TAOS2 if load would be further
increased), which all use the same relative metric for giving
a weight to the instantaneous rate. The reason for the non-
monotonicity is that in the beginning class 1 flows have a
higher delay (recall that that class 1 flows have a bad chan-
nel), but as the load is increased, which also increases the
number of class 1 flows, the situation eventually changes:
the scheduler will more often find a flow in class 1 having a
sufficiently high rate which gives a better index value than
for any class 2 flow. At this point the flow delay in class
2 starts increasing rapidly. On the other hand, the priority
policies behave in a quite stable manner with the SRPT-
P policy being somewhat more unfair than the FB-P policy.
Notably the priority based fair policy Fair-P and the PF pol-
icy both achieve a good balance between performance and
fairness so that at high loads fairness measure tends to 1.

Figure 9 shows the fairness properties of the schedulers in
the same scenario with 11 rates as in Figure 7. The upper
panel gives the results for the low asymmetry case and the
lower panel for the high asymmetry case. In the low asym-
metry case the fairness behavior is similar to that already
seen in Figure 8, i.e., the index policies RB, FB-TAOS2,
TAOS2 demonstrate the non-monotonous behavior, while
the priority policies SRPT-P and FB-P are becoming in-
creasingly less fair as load increases. The fair priority pol-
icy, Fair-P, and PF give a good balance between performance
and fairness. However, in the high asymmetry case, all pri-
ority policies are quite unfair, even the Fair-P policy, while
PF behaves more stable with respect to fairness.
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6. CONCLUSIONS
In this paper we have considered the optimal scheduling

problem of downlink time slots in an HSDPA/HDR system
to minimize the mean flow delay of elastic traffic by utiliz-
ing simultaneously both instantaneous rate information and
information about the flow sizes. We have assumed that
at the flow-level the channel offers a discrete set of possible
rates, the flows are independent from each other and that
the channel rate varies independently in each time slot.

Several schedulers have been derived which differ in the
way that the rate information is used. In the priority based
policies, absolute priority is always given to the flows with
highest instantaneous rates and, within this set of flows, size
based information is applied. In the other class of policies,
we have index policies which utilize a relative metric for the
rates combined with size dependent information. The size
information is related to knowing exactly the size of the flow
or only knowing the attained service thus far.

In a static setting with two flows and two possible chan-
nel rates, the optimal policy can be constructed via a dy-
namic programming approach and the policies using exact
size knowledge can be compared against this. The results
showed that in the symmetric setting both TAOS2 and the
SRPT-P policies were close to optimal. However, in the
asymmetric setting the relative performance of the TAOS2
and SRPT-P policies depended heavily on the parameters.

To analyze the performance of the schedulers in the dy-
namic setting with stochastically arriving flows, several sim-
ulation experiments were made under heavy traffic condi-
tions. Compared with the standard PF scheduler the re-
sults showed that in the extreme case with only 2 possi-
ble rates, clear performance improvements can be obtained
with combined use of rate and size information. However,
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Figure 9: The fairness measure between the two
classes in a system with 11 rates (HSDPA/HDR
case) with low asymmetry (upper) and high asym-
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when the number of possible rates is increased the bene-
fits to be gained decrease substantially. Additionally, in the
symmetric setting the priority based policies offer better per-
formance than the TAOS2-based policies. Also, the differ-
ence between using exact knowledge of the flow sizes or only
knowing the service attained thus far could be clearly sepa-
rated. In the asymmetric setting, the differences were not as
easily discernible. For example, depending on the scenario,
TAOS2 can be better than the priority based SRPT-P. In
the fairness behavior, the index policies, except PF, exhibit
a non-monotonous behavior, while the priority policies have
a more stable behavior (if asymmetry is moderate).

Future research contains still many more open issues. For
example, even in the considered simple channel model set-
ting the optimal scheduler is not known, and more research is
required for its characterization. Also, the stability proper-
ties of the studied heuristics require more analysis. Of more
practical interest can be to consider the impact of imprecise
feedback information. Also, the same scheduling problem
could be studied under slowly varying channels reflecting
the fact that the state of the channel in successive time slots
may not be independent.
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