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Abstract—We study the maximum weight independent sets of
links between nodes distributed as a spatial Poisson process in an
infinite plane. Three different definitions of the weight of a link
are considered, leading to slight variations of what is essentially
a spatial reuse problem in wireless multihop networks. A simple
Boolean interference model is assumed with the interference
radius equaling the transmission radius. We study both the case
where the transmission radius is fixed and the case where it can
be reduced (by power control) so as to just reach the destination
to minimize the interference. For the case of a fixed transmission
radius, we give asymptotic results for the low density regime and
present a rudimentary analysis for the high density asymptotics.
The main contribution of this paper is in the numerical results
for the maximum weight for the considered infinite networks
and in thus establishing some previously unknown parameters of
stochastic geometry. For instance, we find that in the unweighted
case, just counting the number of independent links, the maxi-
mum possible packing is 0.322 links per node attained with the
mean neighborhood size of 2.73. The results are obtained by the
Moving Window Algorithm that is able to find the maximum
weight independent set in a strip of limited height but unlimited
length. By studying the results as the function of the height of
the strip, we are able to extrapolate to the infinite plane.

I. INTRODUCTION

We study the following fundamental problem: given a
network in an infinite plane with nodes placed according to
a planar Poisson process and connected to each other via
wireless links with given weights and a given transmission
range, what is the total weight (per unit area or per node)
of the maximum weight set of non-interfering links under
the Boolean interference model, the interference range being
assumed to equal the transmission range? In the terminology
of graph theory, the set of non-interfering links maps to what is
called an independent set; we use these terms interchangeably.
The studied problem is purely one of stochastic geometry, but
it has a close connection to modeling the capacity of large-
scale wireless multihop networks, and this paper is written
with that viewpoint in mind.

The question arises, e.g., in the context of analyzing the
local forwarding capacity of massively dense wireless net-
works, see [2], [6], motivated by the future applications of
large scale sensor networks. From a single node’s perspective
the surrounding network appears as an infinite network of
randomly placed wireless nodes. The solution to the maximum
weight problem gives the maximum instantaneous forwarding
capacity in the neighborhood of the considered node, which

in turn sets an upper bound for the local sustainable mean
forwarding capacity, i.e., the average rate at which traffic
can be “moved” in a given direction, see [1], [7]. (Note
that the maximum weight independent set cannot be used
repeatedly for forwarding traffic because it consists of inde-
pendent, isolated links that do not form a connected network.)
Results like these yield useful information about the achievable
gains from utilizing optimal global coordination in multihop
communications, and thus complement the well-known scaling
results for the capacity of multihop networks, see [5] and the
more recent results in [4] on random networks.

In this paper, we consider the above problem with three
different kinds of weights: A) unweighted, i.e., each link has
the weight one, B) weighted by the length of the projection
of the link in a given direction, e.g., on the x-axis, and C)
weighted by the length of the link. In case A, only the number
of links in an independent set, i.e., the size of the set is
counted. The problem is then just the maximum independent
set problem. Case B corresponds to the above discussion of
forwarding capacity, as the length of the projection tells how
much the traffic is moved in the x-direction or the amount of
x-progress. Case C is similar but without sense of direction.

Each of these three cases defines a challenging problem
in stochastic geometry. Finding the maximum independent
set for a given finite graph is known to be an NP-complete
problem, and in our case the graph is even infinite. However,
in the present problem the graphs are not arbitrary but the
interference is localized; links separated far enough do not
interfere with each other. In our approach, we will efficiently
exploit this special structure of the graph.

We study the problem also with two different assumptions
on the transmission range. In the basic case the transmission
range is assumed to be fixed. Additionally, we examine the
case where the transmission range can be adjusted (by power
control) up to a given maximum radius. The idea is that not
every sending node uses the maximum radius but a radius just
large enough to reach the receiving node, thereby minimizing
the interference.

Our analytical contribution comprises of asymptotic analy-
ses of the different cases A, B, and C with a fixed transmission
radius. The asymptotics are analyzed both when the mean
number of neighbors tends to zero and to infinity (loosely
speaking, the low and high density asymptotics). In the pre-



vious case, the analysis is simple and the results are exact.
In the high density limit, the problem is more intricate, and
we present only a rudimentary analysis, which however, we
believe, captures the essential dependency. The asymptotic
behaviors at both ends yield insight on the behavior of a curve
also in the intermediate range.

The main contribution of this paper is in the numeri-
cal results representing the total weight of the maximum
independent sets of the studied systems as a function of
the mean neighborhood size. In the case of a fixed trans-
mission radius, these curves have a maximum, which is of
special interest in defining the best that can be obtained
as well as the optimal value of the transmission radius in
relation to the mean distance between the nodes. In the
case of an adjustable transmission range (up to a given
maximum) no maximum exists, since all the independent
sets that are feasible with a given maximum range are
feasible when the maximum range is made larger. Sim-
ilarly, we see that the results with an adjustable range
are always as good as or better than when only the
maximum range can be used since anything that can be
done with a fixed range can be done with an adjustable
range.

The results are obtained by applying the Moving Window
Algorithm (MWA), originally developed in a different context
in [8], but fine-tuned for the present application. The algorithm
is able to find the maximum weight independent set (and
its weight) of any network realization in a strip of limited
height but unlimited length. The algorithm works by moving
a window along the strip, say from left to right, starting from
an initial position. The window is high enough to cover the
strip in the vertical direction and wide enough so that no two
links on different sides of the window interfere with each
other. The algorithm maintains a tree representing all possible
conflict-free sets within the window, with each leaf of the tree
being assigned a value equal to the cumulative weight of the
maximum weight independent set so far, conditioned on the
choice of the conflict-free set in the window corresponding
to the leaf in question. The tree and the assigned values are
updated as the window moves. By studying the results as a
function of the height of the strip we are able to extrapolate
to the infinite plane.

We have applied the MWA algorithm for case B (weighted
with x-progress) in our earlier paper [7]. In the present paper,
we generalize the algorithm and extend the results for the
cases A and C, and additionally consider the impact of power
control. The algorithm is computationally demanding, espe-
cially for large windows and high mean neighborhood sizes,
where, besides long running times, the memory requirements
of the tree become a bottleneck. The results are presented
as far as it has been possible to proceed with a computer
with a 4 GB memory. For cases A and B the explored range
covers the points where the curves with fixed transmission
range reach their maxima; for case C this is still unattainable.
Notably, for the unweighted case A without power control, we
are able to establish as a new result that the maximum size of

an independent set is 0.322 links per node attained at mean
neighborhood size of 2.73.

The rest of this paper is organized as follows. In Section II,
we introduce the notation and present scaling considerations to
reduce the unknowns to the minimum. The asymptotic results
are derived in Section III. In Section IV, we describe the MWA
algorithm. The numerical results are presented in Section V,
and we conclude in Section VI.

II. NOTATION AND SCALING CONSIDERATIONS

As discussed in the Introduction, we consider a system
where the locations of nodes are assumed to obey a planar
Poisson process. The intensity of this process is denoted by λ.
In the basic case, the transmission radius is fixed and denoted
by R. In the case of power control, the transmission range
can be chosen up to a maximum Rmax. Thus, there is a
feasible link between any two nodes within R (or Rmax)
from each other. Interference is modeled using the Boolean
interference model with the interference radius equaling the
(used) transmission radius. A transmission interferes with
all the receptions inside its range, implying that a link is
only possible if the receiver hears exactly one transmission
(excluding simultaneous transmission and reception).

The beauty of the system with the Boolean interference
model is that there are only two parameters in the model:
λ and R (or Rmax). And there is only one (independent)
dimensionless parameter that can be formed from these two
system parameters. We use the most natural one, viz. the mean
number of neighbors within the range, denoted by ν,

ν(λ,R) = πλR2,

with R replaced with Rmax in the case of an adjustable
transmission range. With proper scaling considerations, as
detailed below, all unknown functions of the two system
parameters can be reduced to functions of this single variable.

Our goal is to find the maximum weight (or size) of an
independent set of links per unit area in the following cases1:
A. Unweighted,
B. Weighted by the x-progress of the links,
C. Weighted by the length of the links.

In the first case (A), we aim to calculate the maximum
number of links per unit area, denoted by U(λ,R). By
dimensional analysis, we can write

U(λ,R) = λu(ν(λ,R)), (1)

where u(ν) is a dimensionless function of a single variable to
be determined. In fact, u(ν(λ,R)) represents the number of
links per node.

1The graph theoretic correspondence of our problem to the well known
maximum weight independent set problem results from the following map-
ping between the graph model of the wireless network and the so-called
interference graph. An independent set of links in a wireless network is an
independent set (of vertices) in the network’s interference graph, where each
link corresponds to a vertex, and two vertices are adjacent if the links interfere
with each other. Determining the maximum weight of an independent set of
links is equivalent with finding the maximum weight independent set in the
interference graph.



The second case (B) differs from the previous as we are
interested in the maximum density of progress, Ux(λ,R), that
is the maximum x-progress (the progress of the link in a fixed
direction) per unit area, and by dimensional analysis we get

Ux(λ,R) =
√
λux(ν(λ,R)), (2)

where ux(ν) is another unknown dimensionless function.
In the last case (C) we are interested in the total length of

the links per unit area, Ul, that can be expressed with the help
of a yet another dimensionless function ul, exactly as in (2),

Ul(λ,R) =
√
λul(ν(λ,R)). (3)

In short, our task is to find the dimensionless functions
u(ν), ux(ν), and ul(ν). In the sequel, speaking generally we
use u∗(ν) to represent any of these functions. The notation
U∗(λ,R) is used similarly.

III. LOW AND HIGH DENSITY ASYMPTOTICS

In this section we consider the asymptotic behavior of the
dimensionless functions u∗(ν) when the mean node degree
approaches zero or infinity. The analysis when ν approaches
infinity is rudimentary but believed to capture the essential
dependency. The obtained theoretical limits provide useful
insight and will be compared to simulations in Section V.

A. Asymptotics in the limit ν → 0

In the unweighted case (A), a general upper bound for the
function U is given by

U(λ,R) ≤ 1
2
λ(1− e−ν).

The reasoning with the above inequality is that there are on
the average λ nodes per unit area, and that one obviously gets
an upper bound for U(λ,R) if each node can freely choose the
neighbor to form a link with, without any restrictions imposed
by other links. The factor 1

2 accounts for the fact that it takes
two nodes to form a link. The parenthetical expression is the
probability that a node has a neighbor. Written in terms of
u(ν) the upper bound takes the form

u(ν) ≤ 1
2

(1− e−ν).

It is also obvious that asymptotically when ν → 0 the upper
bound becomes tight, since in the rare cases when a node has a
neighbor within its transmission radius, they can indeed form a
link with a high probability without any other link interfering.
In this asymptotic regime the probability (1− exp{−ν}) ≈ ν,
and we have

u(ν)→ 1
2
ν. (4)

For the case weighted by the x-progress (B), the general
upper bound for the function Ux becomes

Ux(λ,R) ≤ 1
2
λRX(ν),

where X(ν) is the mean distance (in units of R) from a
randomly chosen node to its most distant neighbor node in

the x-direction, i.e., absolute value of the x-distance (if there
is none, the distance is taken to be zero). For u(ν), we have

ux(ν) ≤ 1
2

√
ν

π
X(ν).

When ν is small, X(ν)→ 4ν/(3π), where 4/(3π) is the mean
x-distance to a neighbor, and ν is the approximate probability
of having a neighbor. Thus, we have

ux(ν)→ 2
3

(ν
π

)3/2

. (5)

The third case (C) is similar to the second case, but we
have to replace the x-distance between the nodes by the actual
distance, L(ν). Hence, the limits become

L(ν)→ 2
3
ν, and ul(ν)→ 1

3
√
π
ν3/2, (6)

when ν → 0.

B. Asymptotics in the limit ν →∞
We now turn our attention to how U(λ,R) behaves for large

λ when R is considered to be fixed and present a plausible
reasoning for the asymptotics. The starting observation is that
if the end points of a link can be arbitrarily placed on a
continuous plane, then the most efficient way of packing links
is to form vertical columns. The claim is most credible in the
case with x-progress (B). There has to be a distance larger than
R between two consecutive links, as illustrated in Figure 1, but
the vertical distance between the links can be small. In fact,
the Boolean interference model (unrealistically) sets no limit
on how densely the links can be vertically packed: two parallel
links of maximal length R, however close, never interfere with
each other. This suggests that for a very high λ, when there
are nodes almost everywhere, a good strategy is to try to form
vertical columns.

In cases A and C, that are undirected, the packing can be
done even more efficiently by changing the direction of every
other column. This way a small distance ε is enough between
the columns as the endpoints near each other are all either
transmitters or receivers.

R R+Ε R R+Ε R R+Ε R

Fig. 1. On a continuous plane links can be efficiently stacked in vertical
columns (case B). In cases A and C, links can be packed even tighter since
ε margin is enough between columns transmitting in alternating directions.

The next step is to estimate the expected vertical distance
between the links. Based on the above observation we consider
a naive model where, starting from a vertical link of length
R, the end points of the next link above are determined
independently by proceeding in the vertical direction in the



HX,YL
A

Fig. 2. The simplified model for estimating the vertical distance between
the stacked links.

shown areas of Figure 2 until next node (from the Poisson
process) is found.

The width x of the area between the vertical line and the
circle is for small heights y approximately parabolic, x ≈
y2/2R. Denote the coordinates (random variables) of the node
by (X,Y ). Since A ∼ Exp (λ) and A ≈ Y 3/(6R), we have
the complementary distribution function of Y ,

P{Y > y} = P{A >
y3

6R
} = e−

λy3

6R ,

from which

E[Y n] =
∫ ∞

0

e−
λy3/n

6R dy =
(6R
λ

)n/3 ∫ ∞
0

e−y
3/n
dy

=
(6R
λ

)n/3
Γ
(

1 +
n

3

)
.

In particular we have

E[Y ] = Γ
(4

3

)(6R
λ

)1/3

, E[Y n] =
Γ(1 + n

3 )
Γ( 4

3 )n
E[Y ]n,

whence the variance is

V[Y ] = E[Y 2]−E[Y ]2 =
(

Γ( 5
3 )

Γ( 4
3 )2
−1
)

E[Y ]2 ≈ 0.132E[Y ]2.

The distribution of X is determined by that of Y , X ∼
Uniform(0, Y 2/(2R)), from which

E[X] = E[E [X |Y ]] = E[
Y 2

4R
] =

Γ( 5
3 )

4RΓ( 4
3 )2

E[Y ]2

and

V[X] = E[E
[
X2 |Y

]
]− E[X]2 = E[

1
3

(
Y 2

2R
)]− E[

Y 2

4R
]2

=
1
3Γ( 7

3 )− 1
4Γ( 5

3 )2

4Γ( 4
3 )4R2

E[Y ]4 ≈ 0.0759
R2

E[Y ]4.

Now, consider the random walk Xn =
∑n
i=1(Xi, Yi), n =

1, 2, . . .. When λ→∞ this random walk tends to a determin-
istic motion along the vertical line with constant rate. This
is because both E[X] and V[Y ] go to zero quadratically in
E[Y ]. Thus over a finite interval y, which takes on the average
n = y/E[Y ] steps, the expected total displacement in the x-
direction is nE[X] ∼ yE[Y ], which goes to zero with E[Y ]

as λ→∞. Similarly the total variance of the displacement in
the y-direction after n steps is nV[Y ] ∼ yE[Y ] and goes to
zero as λ→∞ (the total variance of the x-displacement goes
to zero even faster as the one step variance V[X] ∼ E[Y ]4).

The fact that the independent random walks of both the
end points tend to constant deterministic motion along the
vertical lines, in the hindsight justifies considering each step
starting from a vertical link of maximal length R; the wiggle
and contraction of the added links tend to zero.

Finally, we are able to calculate the asymptotic behavior in
the three cases starting from the unweighted one (A). From
the above it follows that E[Y ] defines the vertical packing
distance. As there is one vertical link in every rectangle of
height E[Y ] and width (1 + ε)R, cf. Figure 1, the reward per
unit area is asymptotically U(λ,R) ≈ 1/(RE[Y ]),

U(λ,R) ≈ 1
Γ( 4

3 )

( λ

6R4

)1/3

, u(ν) =
1

Γ( 4
3 )

(√6
π
ν
)−2/3

.

Similarly in the weighted case (B), as there is one vertical
link of length R in every rectangle of height E[Y ] and width
(2+ε)R, the weight per unit area is asymptotically Ux(λ,R) ≈
1/(2E[Y ]),

Ux(λ,R) ≈ 1
2 Γ( 4

3 )

( λ

6R

)1/3

, ux(ν) =
1

2 Γ( 4
3 )

(36
π
ν
)−1/6

.

Finally in the third case (C), Ul(λ,R) = 2Ux(λ,R), and
ul(ν) = 2ux(ν) as the number of links compared to the
packing in Figure 1 can be doubled. Hence,

Ul(λ,R) ≈ 1
Γ( 4

3 )

( λ

6R

)1/3

, ul(ν) =
1

Γ( 4
3 )

(36
π
ν
)−1/6

.

This asymptotic behavior of u∗(ν) presumably gives ev-
erywhere an upper bound to the true curve. We return to the
comparison with the numerical values later in Section V. For
more realistic interference models, one can conjecture that the
asymptotic tail of u∗(ν) comes down more rapidly than for
the considered Boolean interference model due to the fact that
this model unrealistically allows multiple transmissions just
outside the interference range of a receiving node.

Note also that the ν→∞ asymptotics do not apply when
adjusting the transmission radius, R, is allowed. Though the
number of potential neighbors increases with a greater Rmax,
it is always possible to use the previous link configuration
unless a better one becomes available. Thus in these cases,
u∗(ν) approaches some limit.

IV. MOVING WINDOW ALGORITHM

In this section we derive an algorithm similar to Retrospec-
tive optimization introduced in a study of reservation systems
[8].

The algorithm considers a small portion of the network at a
time, a rectangular window that moves, and regarding the strip
that the moving window covers during a simulation, the result
is exact. The algorithm uses a binary tree to enumerate all
the possible link combinations in the window area to find the
maximum size or weight of an independent set of links per unit



area so far conditioned on the choice of the combination of
conflict-free links. The length of the simulation is not limited,
and the covered strip can be of any desired length. We repeat
the simulation for windows of different height to extrapolate
the value of the maximum weight per area for an infinitely
large network.

Because the height of the window in practice is limited,
the top and the bottom of the strip can be connected to
diminish the border effect and represent an infinite dimension,
see Figure 3. The perimeter of the formed cylinder needs to
be large enough for the results to be meaningful. The other
direction can be handled by moving the window along the
cylindrical network. The width of the window (i.e., the length
of the cylindrical window) needs to be large enough for the
window to contain all the links that can possibly interfere with
the links that are going to enter the window in the future
(that is, 3R which is the maximum length of two links and a
R + ε margin). The possible combinations of these links are
maintained in the binary tree. The links that have already left
the window do not affect the possible on/off-state of the links
entering the window and can thus be removed by a procedure
explained next.

Fig. 3. The top and the bottom of the window are connected together to
diminish the border effect. The formed cylinder is moved in the direction of
its axis.

A rooted binary tree represents all the possible link combi-
nations in the window area. Every edge of the tree describes
whether the link corresponding to that level is active or not,
and the value assigned to each leaf shows the maximum size
or weight of the independent set thus far (starting from the
initial position of the window) conditioned on the combination
of active links in the window represented by the leaf. This
is illustrated in Figure 4. The figure represents an example
of a situation where the simulation of the unweighted case
(A) (the values in the vertices represent the size of the
independent set of links) has just started, and the first four
nodes have entered the window making it possible to form six
links. The maximum size of an independent set of links is 2
corresponding to activation set {uv, xw} or {vu,wx}.
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Fig. 4. A window containing 4 links and the corresponding binary tree with
6 levels representing the links (in alphabetical order) in the window.

When the window of Figure 4 is being moved to the right,
the first event is the node u leaving the window. Since the
entering and exiting links are independent, we can combine the
on- and off-branches corresponding to a link whose endpoint
has been dropped out of the window and choose the greater
values for the new tree. That is, we compare leaves2 that only
differ in the dropped link and choose the maximum of those to
be the value of the same node in the new tree where the level
corresponding to the dropped link has been eliminated in this
way. For example, when the first link to leave the window,
uv, is being eliminated from the tree, the leaf with value 2
corresponding to the activation set {uv, xw} (first from the left
in Figure 4) is compared to the leaf with value 1 corresponding
to the activation set {xw} (second from the right), and the
value of leaf {xw} in the new tree in Figure 5 (second from
the right) is thus 2. Also the link vu has to be removed from
the tree when the node u leaves the window.
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Fig. 5. The binary tree of Figure 4 after the first link to leave the window
uv has been removed. In addition to the leaves, also the other vertices have
been updated.

2Besides the leaves also the other vertices can be updated, but they hold
no significance to the final result since the leaves cover all the possible link
combinations.



The next event, when moving the window, happens when
node y enters and makes two new links possible. These new
links are then added to the binary tree, after which the shape
of the tree is the same as in Figure 4, but the value assigned
to each leaf, except for those with vw or wv, is one higher
since in these cases it is possible to use either the link uv or
vu that have already exited the window. At this point, it is not
explicitly visible which dropped links can be activated. Thus,
the maximum value in the tree is the maximum size of the
independent set of links so far given the set of active links
in the window area. In this way we can generate the network
realizations on the fly and progressively find the maximum
size or weight of the independent set of links.

We do not maintain information about the links belonging to
the maximum weight set, although, this information could be
extracted from the algorithm with the cost of used memory.
To further minimize the memory requirements the links are
removed from the window as soon as they stop interfering
with links that are going to enter the window in the future.
When a link does not interfere with future links anymore, the
information whether the link belongs to the maximum weight
independent set is no longer required in the calculations, but
the link can be removed from the binary tree maintaining the
on/off status of the relevant links. This way the size of the
binary tree, that is the bottleneck limiting the usefulness of
the algorithm, can be kept as small as possible.

The algorithm limits in no way the length of the simulation
in the direction in which the window moves, and when
the execution is continued, the result converges without bias
towards the true value. When the simulation is ended, the
maximum size or weight of the independent set of links is
the maximum of the values assigned to the leaves of the
binary tree. The simulation is repeated to produce confidence
intervals for the value. In the other direction, we have to
rely on extrapolation and estimate the maximum value for an
infinitely wide cylinder, as discussed in the next section.

A. Extrapolation

This section concentrates on extrapolating the maximum
weight per area for the infinite plane from the measurements
considering only strips of the network with limited height.

The simulations with the moving window algorithm produce
values u∗(ν, p), where p (in units of R) is the perimeter of
the cylinder. For a given ν, several values of p are needed to
extrapolate u∗(ν) with an infinitely wide cylinder. Figure 6
represents u(p) of case A for different values of ν. As seen
from the figure, the narrowest cylinders do not give a reliable
estimate for larger values of ν. The exact number of values of
p required for the extrapolation depends heavily on the case
studied as discussed later related to the x-progress case.

The second case (B) with x-progress differs from the others
as it is the only directed case. The working principle of the
algorithm does not depend on the direction of the traffic,
i.e., the direction in which the progress of the maximal
independent set is calculated, but it has to be fixed. We
have two extremes: the direction is parallel with the direction
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Fig. 6. Function u(p) for different values of ν, and the 95 % confidence
intervals.

in which the cylinder moves (along the cylinder) or the
progress is calculated perpendicular to the movement of the
cylinder (around the cylinder). In the latter case u(p) depends
heavily on the number of link columns that we are able to fit
around the cylinder. The maxima appear when the perimeter
is approximately a multiple of 2R, meaning that we are able
to fit full-length links and the margins R + ε between them.
When the direction of the progress is turned by a right angle,
we get more stable results as the vertical distance between the
links in a column is more stochastic. This effect is illustrated
in Figure 7. The observation supports the assumption made
in Section III-B about the most efficient way of packing the
links, that is, to form vertical columns.
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Fig. 7. Function ux(p) for different values of ν when direction of progress
is around the cylinder (dashed lines) and along the cylinder (solid lines).

B. Half-space considerations

Here we study the maximum weight problem by considering
the Poisson process in a half-space configuration. We show
that the maximum weight over the whole plane can be related
to a local additive contribution from a single node added on the
border of the half space. The result also allows an alternative
way of justifying the MWA algorithm.

Consider the problem of the maximum weight of an inde-
pendent set of links per area in a half-space configuration,
see Figure 8. The border introduces a boundary effect but far
from the boundary, inside the body of the Poisson process, the
expected total weight per unit area is given by U∗(λ,R).

Now, consider moving the boundary incrementally to the
right, so that a new area dA is covered. The increase in the
total weight of the maximal independent set can be evaluated
in two different ways: a) one can think that the slice dA has



dA

Fig. 8. Poisson process in the half space and an incremental shift of the
boundary.

been added in the body, pushing the boundary to the right;
then the added weight is U∗(λ,R) dA, b) one can think that
the slice has been added to the right boundary introducing new
nodes, as shown in Figure 8; In the limit dA→ 0, the added
nodes are far apart and the increase is the number of nodes,
λ dA, times the contribution from a single added node at the
boundary, as illustrated in Figure 8. Equating these two yields
the average weight per node

1
λ
U∗(λ,R) = C,

where C is the expected total increase of weight due to a
single node added at the border. This is in itself an interesting
result as it relates mean value over the whole infinite plane to
a quantity that has a local character.

To study C, we have to compare two cases. In the first case,
there is a node on the border of the network, and in the second
there is not. Now, the window starts from a point where one
side (right) of the window corresponds to the border of the
network and moves away (left) from the border. The top and
the bottom of the window are again connected to diminish the
border effect and form a cylinder. The effect of the node is the
difference in the maximum value in the binary tree in these
two simulations. The problem of this formulation is that one
simulation produces a single sample instead of some kind of
mean, and this causes a large deviation.

From the algorithm point of view, it makes no difference
whether the additional node is the first node of the simulation
or the last. We can draw multiple samples from a single
simulation by assuming that every node entering the window is
the node on the border of the network. Not even the differences
need to be calculated separately in this case – the sum of the
differences is simply the total weight of the independent set
(and is given by the maximum leaf value in the tree). Hence,
we have returned to the original algorithm.

V. NUMERICAL RESULTS

In this section we present the numerical results obtained
by the Moving Window Algorithm of Section IV for the
three cases: unweighted (A), weighted by x-progress (B), and
weighted by length (C). In addition to fixed transmission radius
R, we consider transmission radii limited by a maximum
value R ≤ Rmax. In this case the parameter ν is defined
to correspond to the mean number of neighbors within the
maximum range ν(λ,Rmax).

Figure 9 shows u(ν) for the unweighted case (A) with
both fixed and adjustable transmission radius. With a fixed
transmission radius the maximum occurs at ν∗ = 2.73 and
equals 0.322. The curve with power control is an increasing
one as all configurations that are feasible with a given Rmax
are also possible with a greater Rmax, and being upper
bounded by the theoretical maximum of 1

2 , i.e., one link per
two nodes, it tends to a limit when ν →∞. As can be seen, the
limit is relatively close to the theoretical maximum, implying
that the maximum gain from a freely adjustable transmission
radius is approximately 50 % (30 % at ν∗).
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Fig. 9. Function u(ν) for unweighted case (A) with and without power
control.

Figure 10 represents u∗(ν) for the weighted cases (B and
C) with fixed transmission radius and with the possibility
to reduce the transmission power to the minimum required.
Even though the computational complexity grows with the
number of links, it is possible to simulate x-progress with fixed
transmission radius up to the optimal size of the neighborhood.
The maximum occurs at ν∗ ≈ 10 and equals 0.20. In the
case of a length-weighted set (C), the number of links in the
window is doubled compared to the second case, since we have
to consider both directions separately. Thus we are not able to
find the optimal neighborhood size. As with the unweighted
case, the curves corresponding to cases with power control do
not have a maximum but are increasing functions of ν tending
to a limit when ν → ∞. Again, the maximum gain from an
adjustable transmission radius is close to 50 % in case B.
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Fig. 10. Functions u∗(ν) for weighted cases, x-progress (B) and length (C),
and for their versions with adjustable transmission radius.

As mentioned, the size of the binary tree places limitations
on the feasible simulation parameters (ν and p). Since the
process is stochastic, the number of links in the window
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Fig. 11. Numerically evaluated curve for the function u(ν) along with the
low- and high-ν asymptotic curves.
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Fig. 12. Numerically evaluated curve for the function ux(ν) along with the
low- and high-ν asymptotic curves.

may temporarily grow very large, and the size of the tree
may exceed the available memory (4 GB). Thus, we are
only able to simulate cylinders wide enough until a certain
value of ν in each case. An adjustable transmission radius is
always computationally more complex than a fixed one since
it increases the number of conflict-free link combinations and
the size of the tree.

The time needed for the calculations depends on the size
of the tree. In the case weighted by the x-progress (B), we
do not have to consider links with negative weight, and thus,
we are able to do simulations with relative high values of ν.
Hence, the number of links in the window stays continuously
on a high level, and the simulations are slow. For example,
the last points of case B (20 repeats with simulation length of
1000R) took over 24 h of computer time.

Finally, we compare the numerical results with the asymp-
totic results of Section III. Figure 11 represents these for u(ν)
and Figure 12 for ux(ν). As can be seen from these figures,
even the rudimentary analysis seems to yield a plausible
asymptotic behavior for large ν. However, the figures also
show that asymptotes alone do not characterize the curves
accurately in the most interesting parameter area.

VI. CONCLUSIONS

We studied the maximum weight independent sets in an
infinite plane. This is a problem of stochastic geometry that
relates to the question of the largest possible number of
simultaneous successful transmissions, i.e., the spatial reuse
in wireless multihop networks.

We illustrated the working principles of the Moving Win-
dow Algorithm that allowed us to study the problem nu-

merically. The algorithm produces exact results (weight per
area) for any network realization in an arbitrarily long strip
or, to reduce boundary effects, a cylinder obtained from
the strip by joining its upper and lower ends. The network
realization can be generated on-the-fly as the window moves,
thus enabling unlimited simulations and accurate unbiased
estimates. The height of the strip (perimeter of the cylinder)
is, however, limited and to obtain results for an infinite plane
an extrapolation technique was used.

Three different cases were studied. The first considered the
number of simultaneous transmissions per unit area, the second
the number of transmissions weighted by the progress of the
transmissions in a given direction, and the third the number of
transmissions weighted by their lengths. In addition, the effect
of power control was studied.

As expected, the problem turned out to be computationally
demanding. However, we were able to produce previously
unknown numerical results for all the cases, and in two cases
to cover the optimal operating region. Only in the third case,
with links weighted by their lengths, were we unable to reach
the most interesting parameter region, leaving room for more
computational science oriented work in the future.

We presented also asymptotic analyses of the systems.
The high-density asymptotics are a challenging problem, and
our analysis is to be considered as a first attempt. Though
capturing the essence of the problem, the analysis can be made
more refined and improved in rigor.

Another direction for future research would be to experi-
ment with other possible approaches provided by stochastic
optimization in its various incarnations, like simulated anneal-
ing or the “packing approach” proposed in [3]. We believe that
the MWA algorithm’s ability to give exact results in a stripe or
cylinder, however, gives it an advantage that is hard to beat.
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