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Abstract— Fountain codes provide an efficient way to transfer packets required for decoding the message, as well as for the
information over erasure channels. We give an exact performance probability of decoding the message after receiving exactly
analysis of a specific type of fountain codes, called LT codes, WhenN packets (the earliest time the decoding is possible). This
the message lengthlV is small. Two different approaches are L
developed. In a Markov chain approach the state space explosion, approgch, however, is limited & < 4 due to the state space
even with reduction based on permutation isomorphism, limits €Xplosion, even after the state space reduction based on the
the analysis to very short messagedV < 4. An alternative com- permutation isomorphism. The alternative combinatorial ap-
binatorial method allows recursive calculation of the probability proach, applicable for maximizing the probability of decoding
of decoding after NV received packets. The recursion can be the message in precisely steps, is based on the observation
solved symbolically for values of NV <10 and numerically up . Lo ' . S
to N ~ 30. Examples of optimization results give insight into thgt for this objective the ordgrof arriving packets is |rrelleva'nt.
the nature of the problem. In particular, we argue that a few 1his method allows us to derive the optimal degree distribution
conditions are sufficient to define an almost optimal LT encoding. by a recursive algorithm for values up 16 ~ 20.

These two approaches for finding the optimal degree distri-

. INTRODUCTION bution are the main contribution of this paper. The exact results

Digital fountain coding is a relatively new concept forgive insight@nto the nature ofthe optimizqtion problem. In. par-
digital content distribution introduced by Byers et al. ir{lcular, we find that there are just a few important conditions

1998 [1]. The concept is based on an analogy to a fountﬂngoc’d distribufcio_n has to satisfy. The described approaches,
spraying water drops, which then are collected into a buck Pweverr,] are I|m|ted|_ toblsrr}all lvalues d|V Ano:)her gew
This translates into servers spraying stochastically genera?é)d)rc.’ac I, more a%pllca € for larger Iya U?S?f a_.:)ed on 4
pieces of data, which receivers then collect. When a sufficigff Simulations an |mportance sampling 1S described in _[ 1
number of packets is collected the file can be decoded. witipe results from simulations, however, are only approximative.

good fountain codes the total size of the packets needed for Il. PRELIMINARIES
decoding (on average) is close to the original size of the filg, LT codes
although some overhead is necessary due to the nature of

these codes. An important characteristic of a digital fountain T €0des proposed by Luby in [5] are the first codes fully
6eal|zmg the digital fountain concept presented in [1]. They are

is that it is irrelevant which particular packets are received: X X
As soon as a certain amount of the packets are received rtﬂgaless, i.e., the rate does not need to be fixed beforehand, and

message can be decoded (with high probability). It shoufficoded symbols are generated on the fly [6], [7].
be noted that codes enabling such fountain coding scenar,iol) Encoding of LT cheThe encoding process s ex.trgmely
have already existed for some time, namely the Reed-SolonfiffPle- A key element IS so-calletégree d|str|but'|ordef|n|ng
codes [2] and LDPC [3] codes to some extent. The key bendfiE numbgr of blocks in each packet. Algorlthm _1 S.hOW.S
of recently discovered fountain codes is the low computation&€ €ncoding procedure [5]. First the degree distribution is
complexity for even long message lengths sampled to obtain the degrek The output _pr_:lcket_ is th(_en

In this paper we derive the optimal degree distributions f@€nerated by choosing blocks from the original file uni-
the so-called LT codes by using two different approaches. Tﬁgmly at ra.ndom and' combml.n'g these blocks by bitwise
first approach is based on the observation that the decodiigR OPeration. Stopping condition for the encoder can be
process constitutes a Markov chain, and we are able specified, e.g., by agreeing on the number of encoded packets

write down closed form expressions for the mean number g?forehand, or the recipient(s) can send an acknowledgement.
2) Decoding of LT codesDecoding is done iteratively by

"«Centre for Quantifiable Quality of Service in Communication System&/Sing information of which source blocks received packets
Centre of Excellence” appointed by The Research Council of Norway, fundednsist of. This information needs to be included somehow in
by the Research Council, NTNU and UNINETT. Currently E. Hyytid is withyye procedure; different alternatives are available but are not
the Telecommunications Research Center Vienna (ftw.), Austria. . - .

t The work was done in the project ABI supported by the Finnish FundirdiScussed here. First the possible known blocks are subtracted

Agency for Technology and Innovation (Tekes), Nokia and Ericsson. by taking a XOR between the packet and the known block(s).



Algorithm 1 A general LT encoding algorithm I1l. M ARKOV CHAIN APPROACH

1: repeat . . .
2 %hoose a degreé from degree distribution(d). The decoding process can be studied as a Markov chain
3:  choose uniformly at randomi blocks m(i1), . . ., m(ia)- [8]. From the receiver's point of view, the set of received
4 sendm(in) &m(iz) & - - & m(ia). and either partially or fully decoded packets denotes a state.
5: until enough output symbols are sent.

State transition probabilities depend on the arrival probabilities
of specific packets, which in turn depend on the degree
distribution used in the encoding. The process ends when it has

Algorithm 2 A general LT decoding algorithm
1: repeat

2. while no degreet packets in buffei3 do reached the absorbing state consisting of the original blocks.
3 B « received packet- known blocks. For example consider a file consisting of three bloekis and

4:  end while ; i ot
5 mi(j) - degreet packet froms. {; discovered} c. When a receiver has already received a packet cons_lstlng
6: foral ceB:cincludesm(j) do of block ¢ and another one of blocksand ¢, the process is

7 c— c®dm(j) in state{a, bc}. The state{a, b, ¢} is the absorbing state.

8. end for . The number of possible distinct packet2i% — 1 (i.e. the

9: until original message is recovered.

number of the subsets of a set withelements, excluding the
empty set). The number of different sets of received distinct

If the degree of the packet is still higher thant consists of packets is thea® ! (including the |n|t_|al state). We call this
he number of raw states. FoF = 3 this number is128, for

several original blocks and it is stored in a buffer. If a degreg-~ it is 32768. and th b fast Witk
1 packet is recovered, it is identical to an original block, i.e., — LS » and the number grows very fast wihl.

a new block has been discovered. Next the newly discoverad Reduction of the state space

block is removed from the other buffered packets including rpe state space of the Markov chain describing the decod-
it. If this step reveals new degree-1 packets, the decodipg nrocess, however, needs only include the states that are
continues iteratively until the original message is fully d&zqycible in the sense that they cannot be reduced by the
coded. Otherwise the decoder has to wait for a new packgl:oder. For instance the raw stde abe} is not included
The decoding process is sketched in listing Algorithm 2. 55 gecoding reduces it to the stdte be}. This decreases the
Note that one input block can be just one bit or a largefmper of states remarkably. Further reduction is possible by
chunk, the encoding and decoding processes are the SP€aring that if a sample path of the process is modified by
regardless. Moreover, the decoding is suboptimal. An ideal yting the original blocks then the resulting sample path is
dec_:odllng equates t_o solving a I|r_1ear system of e.quaF'ori‘scOmorphic to the original one. The transition probabilities in
which is a computationally demanding task for large file sizeg,oge two sample paths are identical. This is due to the fact that

B. Notation in the encoding process, after the degdae drawn,d distinct
Hélocks to be combined by the XOR operation are drawn
randomlyfrom the set ofV blocks. Correspondingly, any two

convenient, we also refer to the point probabilitieshyi.e., states that can be obtained from each other by a permutation

p; = p(j). Later we will compare the performance of the opr the original blocks are isomorphi_c. For ins_tance, the states
timized distributions to the following reference distributions:1%4: @bd; acd} and{bd, abd, bed} are isomorphic. In contrast,
Def.1 (Uniform): p; = 1/N, i=1,...,N. {ad, abd, c_zcd} and {ac_i, abd, bgd} are two non—|somorph|c.
. . states. It is enough to include in the state space a single unique
Def.2 (Degree-1):p; = 1(i = 1). . . . :
_ . TNy canonical representative from each class of isomorphic states.
Def.3 (Binomial): pi=gv — ( i )’ =L...,N. Using the above reduction schemes the number of states can
Def.4 (Soliton):p1 =%, andpi:ﬁv i=2,...,N. be brought down td2 for N=3 and t0192 for N=4. Systems
Binomial distribution is the standard Biiv, ;) with event Of this size are amenable to numerical analysis. Kor5,
0 excluded. It results from including every source blockowever, even the reduced state space has 612224 states, which
independently with probability, discarding an empty packet.is too much to be conveniently handled, and for-5 the task
Let the random variabl¢;, denote the number of decodeds overwhelming. The 12 different states of the casée-3
input symbols after receiving thieh packet. Initially,Z, = 0 are shown in Fig. 1 as the darker blocks. The lighter blocks
and at the endZ;, = N. The random variablg€" denotes the represent intermediate states that are immediately reduced.

number of packets needed for decoding the original messageStill further reduction is possible by special tricks. For
. instance, all states that have the property that an arrival of any
T= Inkm{k : Zr =N}

degree-1 packet will lead to full decoding can be aggregated

The earliest time when the decoding process can finish is wH@rf Single macro state. Transitions between states within this
the Nth packet arrives and thd& > N. Moreover, we lefpy ~Macro state signify just a self-transition of the macro state.
denote the probability that a message consistingrdslocks !N Fig. 1, the four states in the boXab, be}, {ab, ac, be},

is successfully decoded with exactl received packets, ~ {abac; abc}, and {ab, ac, be, abe}, constitute such a macro
state.The corresponding reduced state space sizes for the cases

Py =P{Zy =N} =P{T = N}. N =3,...,5are 9, 87 and 161065, respectively.

We denote the number of blocks (or input symbols) in t
message byN and the degree distribution by(d). When



2“’ » wherem,,s = (0 ... 0 1) represents the absorbing state.

(@] [w] [#o] For N=3 the reduced state space of the Markov chain
m N consists of 9 states (with the additional state aggregation).

N N Using Mathematica, or directly by inspection from Fig. 1, we
. - can find the transition probability matrix

AN Ll gl 0
g ) [oves | Lo Lo | | ey 0020 3 % ps im0
777777777777777 P= 8 8 8 IZ)B 2p13rp2 Zz)l ;D02 8 p1+2pz2+3p3
00 00 o s g 0o  ZmfZpe
Fig. 1. State transitions in the decoding Markov chainroe 3 blocks. 00 0 O 0 2 22 4ps Zpo Zp1
00 00 0 0 0 p2+tps P1
00 0 O 0 0 0 0 1
The state transition probability matriR for the Markov
process with the reduced state space can be constructed edd#ing (1) we now have explicitly
e.g., by using Mathematica [9]. First, one finds the canonicalp 7] = mpA~1eT
representative of each class of states. Then, for eachsstate "1 | 6op 18p; n 9ps .
in the reduced state space and each possible packene protopi=3 0 (B=p2)B=2pi—p2) T 2(patp2)(3p1+2p2)
determines the resulting staté in the reduced state spacefrom this result it is easy to calculate the optimal weights
and updates the transition matrix appropriately. minimizing the mean number of steps to decode the message.

Similarly, using (2) one obtains an expression B, the
probability of full decoding after 3 received packets, identical
We consider two different optimization criteria for the degjin (5) obtained by the approach of Section IV. Optimized
gree distribution. A natural objective is to minimize the meagsgy|ts for these two different objectives are listed in Table |.
number of packets needed to successfully decode the messgffective MinAvg means minimization of average number of
Alternatively one may wish to maximize the probability oktepsy [T] needed for decoding andaxPr maximizing the
successful decoding after reception/fpackets. probability P; of decoding in exactly three steps. The results
Using the state transition matrik we can calculate the of the table indicate that these two criteria are very similar;
average number of sent packets needed to recover the wholgegree distribution that is optimal for one of these criteria
original file. This Markov chain has now the state where alorks very well also with respect to the other criterion.
blocks are decoded as an absorbing state. In the example witkor comparison, the table shows also results obtained with
three blocks, using the notation presented, this stgl@.is c}.  four other degree distributions introduced in Section I1-B. Both
As this Markov chain is clearly finite, it can be written in thg,niform and degree-1 distributions perform rather poorly, the

B. Optimizing the degree distribution

following canonical form: degree-1 distribution being worst. In contrast, the binomial
p_ Q R distribution performs reasonably well, next followed by the
~\0 I)” soliton distribution (in fact, these distributions are similar).

For N=4 the reduced state space has 87 states. With

represents transitions from transient states to absorbing o symbollc. state trangltlon mgtnx generat.ed with the aid
andlI is identity matrix corresponding to the absorbing state?! Mathematica, the_optlmal weights can S.t'” be calculated
In our case, there is just one absorbing state and the idengpgj are presented in _T_able Il together \.N'th the reference
matrixI reduces to d x 1 matrix. Now the fundamental matrix &' tr|but|on_s._Not su_rprlsmgly, the conclusm_ns_we_ can draw
M = (I—Q)-! is well-defined with all elements positiveare very S|_m|lar as in the cas¥ = 3. The distribution that
and represents all possible transition sequences in the tranji&rﬁpt'mal in theMaxPr sense works very well also for the

states without going to the absorbing one. A specific elem {nAv_g criterjon, a_md vice versa. Also the rgnking of the other
my; in M tells the mean number of visits in stafebefore four distributions is the same as before. Binomial and soliton

absorption when starting in state Using the fundamental distributions work reasonably well with respect to both criteria

matrix, average number of steps can be calculated as folloW%ough’ in relative terms, not quite as w_eII as in the_ case
N = 3), being almost equal (again the distributions are in this

E[T]=mMe" =m(I-Q) ‘e’ =moA~"e", (1) case very similar), while the other two are much poorer.

where mg = (1 0 ... O) is the initial distribution vector 1V. COMBINATORIAL APPROACH
corresponding to an empty system! = (1 ... 1)T, and
A = 1-— Q. Similarly we can calculate the probability of
successPy after receivingN packets. This is given by the
probability of the absorbing state aftér steps,

where Q is the transition matrix between transient stafs,

When the objective of optimization is maximization of the
probability P of successful decoding after reception &f
encoded packets, i.e. at the first instant complete decoding is
possible, the problem can be analyzed using another approach.
Py = moPVwl,, (2) The central observation is that in this case the order in which



TABLE | TABLE Il

OPTIMAL WEIGHTS AND PERFORMANCE IN THE CASEN = 3 OPTIMAL WEIGHTS FORMAXPR CRITERION IN CASESN = 5,...,8
MinAvg | MaxPr | binomial | soliton | uniform | deg-1 N 5 [ 7 8
P1 0.524 | 0.517 3/7 2/6 1/3 1 p1 | 0.370 | 0.327 | 0.204 | 0.268
p2 | 0.366 | 0.397 3/7 3/6 1/3 0 p2 | 0.451 | 0.467 | 0.480 | 0.491
ps | 0.109 | 0.086 1/7 1/6 1/3 0 p3 | 0.102 | 0.099 | 0.093 | 0.085
ETTT| 4046 | 4.049 4.133 4.459 4.725 5.5 P4 0.055 | 0.068 | 0.082 0.099
P3 0.451 0.452 0.437 0.397 0.354 | 0.222 P5 0.021 | 0.024 0.021 0.013
D6 0.014 | 0.020 | 0.027
TABLE |I p7 0.009 | 0.010
OPTIMAL WEIGHTS AND PERFORMANCE IN THE CASEN = 4 bs 0.007
E[T] | 7.111 | 8.613 | 10.097 | 11.565
MinAvg | MaxPr | binomial | soliton | uniform | deg-1 Pn 0.226 | 0.166 | 0.124 0.094
1 0.442 | 0429 | 4715 3/12 1/4 1
pz | 0.385 | 0.430 | 6/15 6/12 1/4 0
p3 | 0112 1 0.100 | 4/15 | 2/12 | 1/4 0 second fraction is the probability of the event that when from
ps | 0.061 | 0.041 1/15 1/12 1/4 0 ininau balls (block £ which hi i
ETTT [ 5580 | 5500 | 6.255 | 6.276 | 7.182 | 5333 an urn containinge balls (bloc s_),m of which are white (sti
Py | 0.314 | 0.315 | 0.257 | 0.262 | 0.184 | 0.094 unresolved); balls are drawn without replacement (a degiee-

packet is constructed) then exacilyof these balls are white

(the reduced degree of the packet after removal of the resolved
the packets are received is irrelevant; whatever the orderddfgree-1 packets ig).

the N packets the decoding either is or is not successfulStarting from the seed®, = 1 and P,(p1) = p; the

at the moment when all thé/ packets have been receivedrecursion equation (3) can be solved successively to yield
The probability of success can then be found by a recursivep

_ 1.2
combinatorial approach as detailed below. > = 3P1t 2P )
A. Recursive algorithm Ps = 2pi+ 3pip2+2p1p3 +2pips + 4pipaps, - ..

For completeness, let us now writ®, = P, (p1,...,Pn)- In principle, it is easy to let for instance Mathematica
In this function we allow degree distributions with a positivgenerate expressions (5) automatically to any desired order.
probability for an empty packet and define implicity = However, the size of the expression grows fast. kor=
1— " | pi. Obviously we havePy = 1 and P;(p1) = p1, 4,...,10 the number of the terms in the expression is 14, 42,
which provide the seeds for the recursion. 132, 429, 1430, 4862, 16796, becoming soon unmanageable.

In order to calculateP,(p:,...,p,) We condition this Alternatively, one can solve the recursion equation (3) numer-
probability onn —m of then received packets having degregcally for a given degree distribution. This takes more time
1, which happens with a probability equal to the — m)th than using a pre-constructed expression of type (5) but with
point probability of the binomial distribution Bim,p:). For our C implementation run on a standard PC we can calculate
successful decoding one must necessarily havem > 1, the value of, e.g.P3 in a time of the order of one minute,
otherwise the decoding does not get started. Further, becafsg roughly in one second, and calculation7@f, takes only
the successful decoding afterreceived packets requires thatbout 0.05 s, allowing optimization studies for systems of that
no packets are wasted there must be no duplicates and all dlx, even though a symbolic expression is beyond reach.

n — m degree-1 packets must be distinct. This happens wEh N ical |
the probability(n — 1)!/m! "™, - Numerical results

Given the n — m distinct degree-1 packets, we have a Forthecases/ =5,...,8 the symbolic expressions of type
remaining decoding problem for the: other packets that (5) can be relatively easily handled and optimized numerically.
originally are surely at least of degree 2, but whose degreBge results are shown in Table I, where the estimates for
may be modified when the—m degree-1 packets are removed® [1'] were obtained by simulations. An example of the optimal
from the other packets in the decoding process, giving degree distribution obtained using the numerical recursion for

somewhat greater valu® = 16 is shown in Fig. 2, with

Pa(prs . pn) = "zzl <n) P — py)™ Fhe optimumpg = 0.01551..The Qistributiqr} has a strikingly
= 3) irregular character. Same kind of irregularities do also show up
already for smaller values @¥ in Table Ill. It should, however,
< (-1t pm(p(”v"ﬂ o plmm)y be noted that the results exhibit a great degree of insensitivity
mlnn—m=1 booeimek with respect to some features of the degree distribution. This is
where demonstrated by the fact that the same maximal v&iue—=
()~ Di mezr 0.01551 is obtained for instance with a distribution where only
p; = Top () j=1,...,m. (4) the probabilitiesp; = 0.1565, p» = 0.5493, ps = 0.2095,
1= [

pg = 0.0732 andp;6 = 0.0115 are non-zero.
The first fraction in (4) gives the probability that a packet has In order to better understand the nature of this kind of
degreei conditioned on that it is not a degree-1 packet. Thasensitivity we calculated the second derivative mattjx =
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Fig. 2. Optimal degree distribution fa¥v = 16.

Fig. 3. P3 as a function ofp2 andps with p; = 1 —p2 — p3. The principal
directions at the maximum point are also shown.

0*Pn /OpiOpj, i,j = 2,...,N at the optimum point with
the variablep, eliminated by the norm conditiol, p; = 1.
The eigenvectors and eigenvaluesdofletermine the principal

directions and curvatures in these directions. It turns out tr}

the eigenvalues constitute a rapidly decreasing sequence,
the ratio of two consecutive eigenvalues being of the order
10. For instance in the cas€ = 3 (A is a2 x 2 matrix) the
eigenvalues ar@; = —6.97 and\, = —0.71. TheP5 surface

is illustrated in Fig. 3, where also the principal direction§
are shown. The function forms a ridge which is steep in on

direction but flat in the direction along the top of the ridge.
The effect is much more pronounced wh¥nis larger. For
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Fig. 4. Maximized success probabiliyy (left) and the relative overhead
for N=1,...,20 packets.

efficient only whenV is of the order of 10000.

V. CONCLUSIONS

In this paper we have focussed on optimizing the degree
distribution of LT codes when the message lengtlis small.

We have specifically considered two optimization criteria,
called MinAvg and MaxPr. 1) minimize the mean number of
packets required for decoding the message, and 2) maximize
the decoding probability with exactliy packets.

The decoding process constitutes a Markov chain which
allows determining the optimal degree distribution. An effort
was made to reduce the size of the state space as much as
possible, notably by making use of the permutation isomor-
phism. Unavoidably though, due to the state space explosion,
thjs approach is only feasible for very small values\afWith
fie second objective one can use an alternative combinatorial

‘? roach which leads to recursive equations for the success
Bobability (recursion onN). By using this approach the
optimal degree distribution can be obtained for considerably
larger (still quite modest) values @¥, symbolically for NV <
0 and numerically up to order aV = 30.
€0ne conclusion of this study is that the two optimization
criteria discussed are very similar. We also found that there are
just a few conditions that a good distribution has to satisfy;

instance, forV=10 the largest and smallest eigenvalues aighanyise there is a lot of freedom in its precise definition.

> v H e . :
A1=—-27.3 and \g=-2.53 x 107" showing that the function ;s ,ggests that in a well-chosen parametric form of the

is extremely insensitive to changes in the direction of the Iagiyintion just a few parameters need to be tuned in order to
eigenvector. In fact, when the vector representing the distrib 5t nearly maximal performance

tion is constrained to lie on the intersection of hyperplanes
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