
Dimensioning methods for data networks with
flow-level QoS requirements

Pasi Lassila and Aleksi Penttinen and Jorma Virtamo
Helsinki University of Technology

P.O.Box 3000, FIN-02015 TKK Finland
Email: {Pasi.Lassila, Aleksi.Penttinen, Jorma.Virtamo}@tkk.fi

Abstract—We consider dimensioning of data networks. The
network is modeled in a dynamic setting where elastic flows (file
transfers) arrive randomly and share the bandwidth according
to balanced fairness. Simple methods are derived for determining
the link capacities so that given flow-level throughput require-
ments are satisfied. We consider two different approaches to
define the throughput requirements: single constraint on average
throughput in the network and separate constraint for every
route. The results enable a simple characterization of the order-
of-magnitude of the required capacities, which can be utilized in
practical network planning and dimensioning.

I. INTRODUCTION

Optimal network dimensioning is a classical problem in
teletraffic theory. The role of dimensioning is to assist network
planning by providing reasonable estimates of the required
resources to fulfill a certain demand with a predefined level
of service. For circuit switched networks the dimensioning
criterion has traditionally been the call blocking probability,
and the related dimensioning methods have been based on
Erlang’s formula [1]. One attractive property of Erlang’s
formula is its insensitivity property, i.e., the performance of the
system depends only on the traffic load and not on any detailed
properties of call holding times. This makes the application
of the formula for dimensioning simple, since only a single
parameter is needed to characterize the traffic.

Here our focus is on dimensioning of wireline data net-
works, such as IP networks, which carry mostly data traffic
consisting of file transfers. Data traffic is elastic by nature,
meaning that the applications transmitting the data can sustain
fluctuations in the transmission rate (cf., operation of TCP).
For data traffic it is not the delays of individual packets
that reflect the QoS experienced by a user. Instead, the user-
experienced performance manifests itself at the so called flow
level.

At the flow level, we have a dynamic system, where flows
(i.e., file transfers) arrive randomly and depart upon comple-
tion. During a file transfer the flow shares the bandwidth
with other flows in the system and, accordingly, the rates
of the flows vary randomly over time. The performance at
the flow-level is expressed as the mean transmission rate
during a file transfer, i.e., the per-flow throughput, or mean
flow transfer delay (or roughly mean file transfer delay). The
dimensioning problem for fixed data networks is to determine
the link capacities of the network for a given traffic pattern so

that the per-flow throughput experienced by users remains at
acceptable levels.

To elucidate, consider a single link with an average traffic
load, say, 8 Mbps. The dimensioning problem could be to
determine the capacity of the link so that the average data rate
of file transfers using the link would be 1 Mbps. By modeling
the link using the well-known M/G/1-PS queue we easily get
the result that a link with capacity 9 Mbps suffices. However,
the situation becomes a lot trickier in a network setting where
the flows traverse through several links with different loads.
This is the topic of this paper.

The most important aspect affecting the flow-level perfor-
mance is the bandwidth sharing policy. Common idealized
bandwidth sharing schemes are max-min fairness [2], propor-
tional fairness [3], and more recently, balanced fairness [4].
In this work, we apply models based on balanced fairness due
to the following reasons. Under balanced fairness computing
the throughput is significantly easier than with other sharing
schemes in the dynamic setting. Furthermore, the throughput
depends only on traffic load (insensitivity), i.e., similarly as
in Erlang’s formula, knowledge of only one traffic parameter
is needed when applying the results for dimensioning. The
other sharing models require more detailed traffic modeling.
However, balanced fairness can also be used to approximate
both max-min and proportional fairness [5]. Even under bal-
anced fairness throughput evaluation becomes computationally
difficult in networks of realistic size, but for dimensioning
purposes suitable bounds are available [6], [7].

To define the dimensioning problem we assume that the
resources are shared according to balanced fairness, the net-
work topology is given, routes are fixed and the offered load
together with the throughput requirements are known. To start
with, the link capacities need to be such that the network is
able to carry the traffic, i.e., that the corresponding dynamic
system is stable. At this stability limit the network is not
able to support any flow-level performance. Thus, our focus
is on how much excess capacity is needed to satisfy given
throughput constraints.

We consider two different approaches to define the through-
put constraints. In the first, we set a constraint on the average
throughput in the network. In the second, we constrain the
throughput of each class (i.e., route) separately. Our contribu-
tions are:

a) In the average throughput setting, we provide an explicit



formula for an upper bound on the excess capacity of the
links.

b) In the per-class throughput setting, we provide an explicit
formula for a lower bound on the excess capacity of the
links. For the upper bound, an efficient iterative solution
method is presented.

The results enable a simple characterization of the order-of-
magnitude of the required capacities, which can be utilized in
practical network planning and dimensioning.

The paper is organized as follows. In Section II we re-
view the related literature. Section III outlines the network
model. Section IV defines the dimensioning problems. Per-
class throughput problems are addressed in Section V. We
illustrate the application of the methods via some numerical
examples in Section VI. Finally, the conclusions are given in
Section VII.

II. RELATED WORK

Existing methods in the literature on dimensioning of data
networks are usually formulated as optimization problems, but
the distinction comes from the assumed network traffic model,
i.e., whether it is static or dynamic. Static is here used to imply
that the network model treats traffic basically as fluid and no
stochastic elements are present in the model. In static models,
the dimensioning problem is often formulated as a multi-
commodity optimization problem, see [8]–[10]. The network
consists of routes and the problem is to determine the link
capacities and the bandwidth allocations for each route such
that a given utility function is maximized. The maximization
is then performed by assigning a budget constraint on the
total cost of the network links. The utility function can be
formulated according to various fairness criteria (max-min or
proportional fairness). Additionally, other considerations may
easily be included, such as network failures. In principle, the
multi-commodity flow problem is well defined and easy to
apply for various types of network design problems. However,
the approach does neglect one important aspect, namely the
dynamic and stochastic nature of the traffic.

A classic data network dimensioning method that is also
formulated as an optimization problem, but employing a
stochastic traffic model, is the square-root method in [2]. The
idea in the method is basically to determine the link capacities
such that the total network cost is minimized subject to a
constraint on the overall mean packet delay in an open M/M/1
queuing network. The drawback of the approach is that the
performance criterion is a packet-level metric which is not a
meaningful end-to-end performance measure for elastic data
traffic.

There are also a number of papers that focus on dimen-
sioning of a single bottleneck link. In [11], different models
(on-off fluid model, processor sharing and Brownian motion)
have been used to evaluate the dimensioning requirements
given by different single link traffic models. The results are
also compared against measurements. The so called GPS
(generalized processor sharing) model [12] has been applied
for dimensioning of elastic TCP traffic in [13]. The GPS model

assumes an infinite user population (Poisson arrivals) and it
can nicely capture the situation where flows are peak rate
limited such that the bottleneck link appears as an M/G/∞
system until the link becomes full, after which the flows start
sharing the bandwidth equally. A finite user population variant
of GPS has been studied in [14], where a simple and explicit
formula is derived for the required capacity, given the number
of users, offered traffic and a target dimensioning criterion for
the mean useful rate of a user.

In our previous work [15] we considered the dimensioning
of wireless mesh networks under flow-level QoS requirements.
The problem addressed in the present work appears as a
sub-problem in an approximation scheme for mesh network
dimensioning, although the two problems are different.

Similarly as in [14] and [13], we apply flow-level models,
but instead of focusing on a single link, we consider the
network case and apply models based on balanced fairness
for dimensioning of data networks. Our formulation is in
spirit similar to the one in [2], except that the performance
measure in our case is not the packet delay, but the flow level
throughput associated with file transfers in a network.

III. FLOW-LEVEL MODELING OF ELASTIC TRAFFIC

Consider a network of L links with traffic routed along N
routes. Each route corresponds to a flow class. The routing is
described by the matrix A, where the element ail = 1 if class
i uses link l and 0 otherwise. Let Ri be the set of links used
by class i. When link l is on route Ri we use the notation
l ∈ Ri. Correspondingly, the notation Fl is used for the set
of flow classes using link l.

The flows arrive randomly and have finite durations in each
flow class. The traffic of class i is characterized by the traffic
load ρi, which is the product of the mean arrival rate of class-
i flows, λi, and their mean flow size, E[Si]. The vector of
loads is denoted by ρ. The link loads are given by the vector
r = ATρ. The lth component of r is denoted by rl. All vectors
are assumed to be column vectors.

We assume that the bandwidth is shared dynamically among
the on-going flows and that the sharing policy is balanced
fairness [4]. Balanced fairness is a resource sharing notion that
essentially renders the flow-level traffic process reversible. The
stationary distribution of the system depends only on the traffic
loads under rather general assumptions. This significantly fa-
cilitates analysis of the system, while the performance remains
comparable with other fair sharing schemes [5]. Balanced
fairness has been extensively applied in performance analysis
of various communication networks, see, e.g., [16]–[19].

The performance measure we consider is the flow through-
put of class i, which is defined as the ratio of mean flow size
and flow duration in the class, i.e.,

γi =
E[Si]
E[Ti]

.

Under balanced fairness one can obtain explicit formulas
for γi for particular systems [4], [16], [20], but generally
the approach results in a recursive formulation which is too



cumbersome for dimensioning purposes. For dimensioning
we can utilize the upper and lower bounds for throughput,
introduced in [6] and [7].

The most straightforward approach to the throughput of
class-i flows is to approximate the throughput by the available
capacity of the bottleneck link along the route of the class. In
this case, the throughput function Γi(c) is given by

Γi(c) =
(

max
l∈Ri

1
cl − rl

)−1

, (1)

where c denotes the vector of link capacities and ci its ith
component. In fact, (1) provides an upper bound on the
throughput, as shown in [6], and it is accurate when the
performance of the class is mostly determined by a single
bottleneck.

As a lower bound for the throughput, the so called store-
and-forward (SF) bound has been proposed in [6]. The bound
is based on assuming that the flow is transmitted along the
route so that the flow is first received entirely by the next hop
node and only then forwarded to the next node along the route
(hence the name store-and-forward). The throughput function
Γi(c) in this case equals

Γi(c) =

(∑
l∈Ri

1
cl − rl

)−1

. (2)

Recently, however, Bonald improved this bound in [7]. The
corresponding throughput function Γi(c) is

Γi(c) =

(
max
l∈Ri

1
cl

+
∑
l∈Ri

rl

cl

1
cl − rl

)−1

. (3)

We refer to (3) as the improved store-and-forward (ISF) bound.
ISF is a considerably tighter bound in certain cases than SF, but
dimensioning using the SF bound is computationally easier, as
will be discussed later.

IV. THE DIMENSIONING PROBLEM FORMULATIONS

The problem of dimensioning is to determine the required
amount of bandwidth on each link to fulfill a given throughput
requirement when the routing is fixed by the matrix A and
the load vector ρ is given. Note that in the dimensioning ρ
represents an estimate of the traffic demand in the network.

The stability of the dynamic system requires that the link
capacities c are greater than r. At this limit the flow-level
performance approaches zero. Thus, more capacity is needed
to attain any given flow-level performance objectives. We
simplify the notation here by considering only this excess
capacity d = c − r.

A. Dimensioning based on average throughput

When considering how much extra capacity is required, it
is natural to formulate the dimensioning as an optimization
problem, where the objective is to minimize the overall cost
of the network subject to given performance requirements.
The performance requirement can be chosen as the average

throughput of the flows in the network, γave = E[S]/E[T ],
where E[S] is the mean flow size,

E[S] =
1∑
i λi

∑
i

λiE[Si],

and E[T ] is the mean flow transfer delay in the network.
By using the store-and-forward bound, an upper bound for
the mean flow transfer delay in the network is given by the
function

E[T ] =
∑

i

λi∑
j λj

∑
l∈Ri

E[Si]
dl

,

Thus, we have the throughput function

Γave(d) =
E[S]
E[T ]

=

(∑
i

ρi

ρtot

∑
l∈Ri

1
dl

)−1

,

where ρtot =
∑

i ρi. The associated optimal network dimen-
sioning problem can be expressed as

mind wTd,
Γave(d) ≥ γave,
d > 0,

(4)

where w is the vector of cost per unit capacity on each link and
γave is our target average per-flow throughput in the network.
The cost vector w is included for generality.

This optimization problem can be solved explicitly. The
Lagrangian function Θ associated with (4) is given by

Θ =
∑

l

wl dl + λ

(∑
i

ρi

ρtot

∑
l∈Ri

1
dl

− 1
γave

)
, (5)

where λ is the Lagrangian multiplier of the average throughput
constraint. The derivative of (5) goes to zero at

dl =

√
λrl

wlρtot
, ∀l.

At the optimum the throughput constraint is satisfied as an
equality, which yields

√
λ = γave

∑
l

√
rlwl

ρtot
.

Thus, the optimal values of dl are given by

dl = γave

√
rl

wlρtot

∑
j

√
rjwj

ρtot
, ∀l. (6)

The result above can be seen as the flow-level counterpart of
the original square-root method [2] for dimensioning accord-
ing to the packet-level delay. Note that such a simple explicit
solution for this formulation is available only when applying
the store-and-forward bound.



B. Dimensioning based on per-class throughput

Due to the explicit solution, the above method is indeed
easy to apply in practise for any network and it can be
used to provide quickly computable estimates of the required
capacities. However, the solution does not provide any guar-
antees on the per-class performance in the system, i.e., in the
obtained solution some classes may have significantly lower
throughput than others. This motivates us to consider also
optimization problems, where the throughput requirement is
defined separately for each class.

The dimensioning problem is then to fix the link capacities
so that the throughput requirements on each route are satisfied
and that the overall cost is minimized. Formally, we search for
d which solves the following problem:

min
d

wTd,

Γi(d) ≥ γi, ∀ i,
d > 0,

(7)

where γi denotes the per-class throughput requirement and
w is a positive capacity cost vector. In (7), the throughput
function Γi(d) can be any of the throughput functions (1-3).

By applying (1), a simple lower bound on the required
excess capacities (and the network cost) can be obtained. This
approximation gives us the following constraints on the link
capacities (

max
l∈Ri

1
dl

)−1

≥ γi, ∀i.

Since the constraint holds for the maximum value in the class,
it must hold for all the links in the class, i.e.,

1
dl

≤ γ−1
i , ∀l ∈ Ri, ∀i.

These constraints are satisfied if the most stringent ones for
each dl are satisfied and we get

dl = max
i∈Fl

γi, ∀l. (8)

Thus, we have an explicit solution for the required link capac-
ities, cl = rl + dl, where dl represents an optimistic estimate
(lower bound) of the excess capacity needed on link l to satisfy
the throughput requirements of all classes. Note that this result
can be interpreted so that the network is dimensioned assuming
that each link l behaves as an independent M/G/1-PS queue
with an offered load rl.

By applying the throughput functions (2) or (3) upper
bounds on the required capacities can be obtained. In the
next section, we propose efficient methods to solve (7) when
throughput function (2) or (3) is used.

V. UPPER BOUND ON LINK CAPACITIES WITH PER-CLASS

REQUIREMENTS

The dimensioning problem (7) with throughput formulas
(2) and (3) is a non-linear optimization problem that can be
tedious to solve, especially for large problem instances. One
of our main contributions is the following scalable iterative
method for solving the optimization problem.

A. Store-and-forward bound

The store-and-forward (SF) bound gives us the throughput
function

Γi(d) =

(∑
l∈Ri

d−1
l

)−1

. (9)

Thus, dimensioning problem (7) for the excess capacity d
becomes:

min
d

wTd

Ad−1 ≤ γ−1,
d > 0.

(10)

where we use the notation d−1 = (d−1
1 , . . . , d−1

L )T (also for
γ) for brevity. The Lagrangian dual to this problem is given
by

max
u

Θ(u)

u ≥ 0,
(11)

where

Θ(u) = inf
d>0

{
wTd + uT

(
Ad−1 − γ−1

)}
. (12)

Although the dual problem is tractable by standard numer-
ical optimization techniques [21], the special structure of the
problem allows a simple iterative solution. Note first that the
vector d realizing the infimum in (12) is given by

d =

√
ATu
w

, (13)

where the division by w stands for component-wise division.
Recall that in the optimum the complementary slackness (CS)
condition,

ui

(∑
l∈Ri

d−1
l − γ−1

i

)
= 0,

must hold for all classes. By utilizing the relation (13) the
CS conditions result in a natural iteration for u. Start from
any strictly positive u0 and iterate the value until convergence
using

uk = uk−1 ∗ γ ∗ A
√

w
ATuk−1

. (14)

The symbol ∗ is used to denote component-wise multiplica-
tion.

Extensive numerical experiments suggest that the iteration
converges. Note that if the iteration converges, the limiting
value is indeed the optimal solution to (11). Given that the
iteration is started from a strictly positive u0, the form of (14)
ensures that uk > 0 for all k, i.e., all uk are feasible solutions
to the dual. Assume that the iteration converges to a limit value
u∗. It is easy to see that then the limiting coefficient of uk−1

in (14), γ ∗Ad−1, cannot be larger than 1 for any class. This
is equivalent to that the corresponding limiting value of (13),
d∗, is a feasible solution to (10). Finally, at the limit the CS
conditions are satisfied. Thus, d∗ and u∗ are optimal solutions
to (10) and (11), respectively.

In conclusion, the solution to the dimensioning problem is
given by (13) where u is obtained from the iteration (14).



B. Improved store-and-forward bound

The throughput function of the improved store-and-forward
bound (ISF) is given by

Γi(d) =

(
max
l∈Ri

1
dl + rl

+
∑
l∈Ri

rl

dl(dl + rl)

)−1

. (15)

With a suitable restatement of the constraints the solution
process is analogous to the store-and-forward case. To elim-
inate the max-operations from the constraints we form two
matrices B1 and B2 as follows. B1 is generated from A by
duplicating each row i of A as many times as there are non-
zero elements on that row (i.e., the number of links used by
route i). B2 is generated from A by taking each of the non-
zero elements to its own row (which is otherwise full of zeros).
As with B1, the right hand side of the constraints are obtained
by duplicating the elements γi as many times as there are links
on route i. We denote this vector by γISF. In other words, we
replace each throughput constraint by a set of constraints and
the optimization problem (7) becomes

min
d

wTd

B1
r

d(d + r)
+ B2

1
(d + r)

≤ γ−1
ISF,

d > 0.

(16)

Analogously to the store-and-forward case, the iteration step
is now given by

uk = uk−1 ∗ γISF ∗
(
B1

r
d(d + r)

+ B2
1

(d + r)

)
, (17)

where dl is obtained from solving the infimum of the La-
grangian. In this case, dl is the positive real-valued root x of
the polynomial

wlx
4 + 2rlwlx

3 + (r2
l wl − βl)x2 − 2αlrlx − αlr

2
l = 0,

where αl and βl are the lth elements of BT
1 uk−1 and BT

2 uk−1,
respectively. The scalability of this approach is not as good
as it is with SF bound because of the increased number of
constraints and additional computation related to the solution
of d.

VI. NUMERICAL EXAMPLES

In this section we consider two numerical examples to
illustrate the methods and their properties.

A. Simple network example

We consider a network with 2 links and 2 traffic classes
in a so called parking-lot configuration, see Figure 1. In this
example, the load is ρ = [5, 7]T Mbps and the routing matrix
is

A =
(

1 1
0 1

)
.

C1 C2

ρ1

ρ2

Fig. 1. Network with 2 links.

TABLE I
DIMENSIONING BASED ON AVERAGE THROUGHPUT WITH γAVE = 1 MBPS.

c1 (Mbps) c2 (Mbps)
BF 6.02 13.56

AVE 6.06 13.65

Thus, the link loads are r = [5, 12]T Mbps. For this network
explicit formulae are available for the per-class throughputs
under balanced fairness [20]:

ΓBF
1 (c) =

(
1

c1 − r1
+

1
c2 − r2

− 1
c2 − r1

)−1

,

ΓBF
2 (c) = c2 − r2.

(18)

At the stability limit c = r, the flow-level performance tends
to zero and some excess capacity is needed to achieve a given
flow-level QoS criterion.

We first consider dimensioning based on average throughput
such that the sum of the link capacities is minimized, i.e.,
the link costs are w1 = w2 = 1. The average throughput
requirement is γave = 1 Mbps. Since the exact throughputs are
known for this network, we can compare the results from using
(6) with the application of the exact throughput formulas (18).
The exact solution can be obtained numerically by solving

min
c

wTc,(∑
i

ρi

ρtot

1
ΓBF

i
(c)

)−1

≥ γave,

c > r.

The resulting link capacities required to satisfy γave are
shown in Table I. Recall that the relation between the actual
link capacity cl and the excess capacity dl resulting from (6)
is simply, cl = rl+dl,∀l. In the table, the BF-row contains the
results from applying the exact results under balanced fairness
and the AVE row shows the results from (6), which is based
on using the conservative SF bound for the throughput.

If the link capacities are fixed according to the BF-row in
Table I the actual realized throughputs from (18) are 0.66 and
1.56 Mbps for class 1 and 2, respectively. The corresponding
figures for the AVE-SF dimensioning are 0.70 and 1.65 Mbps.

To illustrate the per-class throughput methods, we let the
target per-class throughput be the same for all classes so that
γi = 1 Mbps, i = 1, 2. The results are shown in Table II,
where LB refers to the lower bound on link capacities obtained
from (8), BF to the exact result with (18), UB-SF to the upper
bound on the link capacities from (13) and (14) and UB-ISF
to the tighter upper bound from (17). The exact solution is



TABLE II
DIMENSIONING BASED ON PER-CLASS THROUGHPUT WITH γi = 1 MBPS,

i = 1, 2.

c1 (Mbps) c2 (Mbps)
LB 6.00 13.00
BF 6.81 13.78

UB-ISF 6.87 13.86
UB-SF 7.00 14.00

TABLE III
PER-CLASS THROUGHPUTS GIVEN BY DIFFERENT DIMENSIONING

METHODS WITH γi = 1 MBPS, i = 1, 2.

ΓBF
1 (c) (Mbps) ΓBF

2 (c) (Mbps)
LB 0.53 1.00
BF 1.00 1.78

UB-ISF 1.04 1.86
UB-SF 1.13 2.00

obtained numerically by solving

min
c

wTc,

ΓBF
i (c) ≥ γi, i = 1, 2,

c > r.

The resulting per-class throughputs from (18) when using
the capacities given by the different dimensioning methods are
shown in Table III. Whereas the simpler methods, i.e., lower
bound (8) and the upper bound (13), can be used to quickly
bound the solution under balanced fairness, a more accurate
estimate (and a tighter upper bound) of the required capacities
is provided by the ISF method (17).

B. Large network example

The previous example illustrated the dimensioning methods
with a simple network, where an explicit solution for the
per-class throughput under balanced fairness is available. In
general, explicit solutions for the throughput are not available.
However, our dimensioning methods continue to be applicable
in networks of arbitrary size.

We consider a larger network example with the flow classes
(routes) as shown in Figure 2. The network consists of 2
gateway nodes and there are 18 flow classes (routes) in the
network. We minimize the sum of the link capacities, i.e., the
link costs wl = 1, for all l, and we assume that the offered
load ρi = 1 Mbps, for all i.

First we compare the average throughput dimensioning with
γave = 0.1 Mbit and per-class throughput dimensioning with
γi = 0.1 Mbit for all i. To keep the presentation succinct we
assume that the network graph is undirected thus resulting 12
links as numbered in Figure 2. The resulting link capacities
are shown in Table IV. The labeling for the methods is as in
Table II. As the throughput requirement is small relative to
the load, all the methods yield comparable results.

The gap between the estimated upper and lower bounds on
the link capacities depends on the throughput criterion. We
illustrate this by evaluating the sum of the excess capacities,

11

12

1 2

3 4 5

6
7

8

9

10

GW

GW

Fig. 2. Example topology with two gateways and 18 flow classes (shown as
arrows)

TABLE IV
LINK CAPACITIES FROM THE DIFFERENT DIMENSIONING METHODS FOR

THE LARGE NETWORK EXAMPLE.

Link AVE LB UB-SF UB-ISF
1 3.19 3.1 3.27 3.23
2 2.15 2.1 2.29 2.28
3 3.19 3.1 3.13 3.13
4 2.15 2.1 2.28 2.27
5 3.19 3.1 3.29 3.27
6 2.15 2.1 2.39 2.36
7 3.19 3.1 3.39 3.36
8 4.22 4.1 4.45 4.41
9 3.19 3.1 3.38 3.35
10 1.11 1.1 1.15 1.15
11 5.24 5.1 5.32 5.31
12 2.15 2.1 2.14 2.14

i.e., the value of the objective function, as a function of the per-
class throughput requirement. In our example, the throughput
requirement is again equal for all classes, γi = γ, for all i,
and the traffic loads are ρi = 1 Mbps, for all i. The network
links are now assumed to be unidirectional (22 links in total).
The results are shown in Figure 3. When the throughput
requirement γ is relatively high compared to the traffic loads,
the accuracy of the SF method becomes worse suggesting the
use of LB and ISF methods to characterize the link capacities.
At small values of γ there is little difference between the
SF and ISF methods. Recall that the actual required capacity
under balanced fairness is between LB and ISF.

Finally, consider the case where the throughput target is
kept fixed but the load is increased. In our example, γi = 1
Mbps, for all i, and the load is increased so that load is the
same in all classes, i.e., ρi = ρ, for all i. As a function
of the total offered load in the network,

∑
i ρi, we evaluate

the sum of the normalized excess capacities
∑

l
dl

rl
, which

characterizes the required amount of extra capacity relative to
the link loads. The results are shown in Figure 4. For a fixed
throughput requirement, when load is increased the required
extra capacity relative to the link loads decreases sharply due
to the multiplexing gain.
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VII. CONCLUSIONS

We have provided methods for dimensioning of data net-
works with elastic traffic assuming that the bandwidth is
shared according to balanced fairness. The average throughput
dimensioning formulation consists of a single constraint and
can be explicitly solved when applying the SF bound. The
per-class throughput dimensioning has a constraint for each
flow class. Using the upper bound for the per-class throughput
we get a straightforward solution for the lower bound of the
network cost. Using the lower bound formulas (SF and ISF) for
the throughput we obtain upper bounds on the network cost.
The associated optimization problems are more challenging.
For this problem we developed an iteration scheme that is
extremely simple to implement, especially in the case of the
SF bound.

Our work is based on the balanced fairness assumption.
While the bandwidth sharing in real networks does not exactly
obey balanced fairness, it has been observed that balanced
fairness also serves as a reasonable approximation to other
sharing schemes, such as max-min or proportional fairness [5].
Therefore, we believe that the dimensioning methods provided
here can be applied to easily obtain well-founded, although
rough, estimates of the required link capacities to be used in

practical network planning.
The on-going work addresses two important extensions. The

peak rates of the flows are often limited by, e.g., ADSL access
rates, which has an impact also on dimensioning of the rest
of the network. Another important issue is to include the QoS
requirements of delay-sensitive traffic, such as VoIP traffic,
into the model.
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