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Abstract. We analyze the impact of size-based scheduling on the flow
level performance of elastic traffic in wireless downlink data channels.
The impact is assessed by comparing the flow level delay of the sim-
ple RR scheduler to two optimized non-anticipating schedulers (FB and
FB◦) and SRPT. The optimized distance-aware scheduler FB◦ is derived
by applying the Gittins index approach. Our results show that for Pareto-
type file size distributions, the size-based information is more important
than the location information. Additionally, FB not only decreases the
overall mean delay, but it can also decrease considerably the mean delay
of all users independently of their location.
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1 Introduction

We consider the optimal scheduling problem for downlink data traffic in a single
cell of a cellular system. We assume that the traffic consists of elastic flows, such
as file transfers using TCP, with each flow characterized by its size, i.e., the total
amount of bits to be transferred. An important performance measure for such
elastic flows is the total time needed for transfer of all the bits, which we call
flow level delay, or just briefly, delay.

Standardized systems like HSPDA and HDR minimize the intra-cell inter-
ference by having a time-slotted system where the base station transmits at full
power to only one terminal in each slot. Typically the time slot is very short
(milliseconds) compared to the flow level delay (ranging from seconds to min-
utes). The “air time” is shared in a fair way among the receiving terminals by
the simple Round Robin (RR) scheduling discipline. For short time slots this is
well approximated by the Processor Sharing (PS) discipline.

The cell capacity may be increased by applying channel-aware scheduling
disciplines that utilize the fast fading effect. An example is the Proportionally
Fair (PF) discipline implemented in HSPDA/HDR systems, where the time slot
is scheduled to the terminal with the highest momentary receiving rate propor-
tionally to its average receiving rate. This will lead to the PS discipline in the



limit as the time slot shrinks down to zero, however, with a higher cell capac-
ity compared to the limit of the RR discipline [8, 2, 4]. The improvement in the
cell capacity has been studied in [2] with the number of flows fixed and in [3]
assuming a randomly varying number of flows. The latter concludes that the
improvement in a dynamic setting, however, is not that large.

A fundamental result related to single server queueing systems says that
the number of jobs is minimized pathwise by applying the SRPT (Shortest Re-
maining Prosessing Time) scheduling discipline [13]. This implies, by Little’s
result, that SRPT minimizes the mean delay as well. The benefit is achieved
by utilizing the size-dependent information. However, applying SRPT as such in
the downlink data traffic problem is intractable due to unpredicatable factors
such as fading effects. Hu et al. [9] developed heuristic algorithms that combine
channel-aware and size-dependent scheduling.

In this paper we focus on non-anticipating disciplines for which the remaining
service times are not known. If the service time distribution belongs to the class
DHR (Decreasing Hazard Rate), the FB (Foreground Background) discipline is
optimal among the non-anticipating disciplines in an M/G/1 queue [14, 11, 15].
FB is a size-based discipline giving full priority to the job with least amount of
attained service, see [10]. If there are multiple jobs with the same least amount
of attained service, then the service is shared evenly between these jobs.

What makes the difference here in the downlink data traffic problem, as com-
pared to an ordinary M/G/1 queue, is the location information. Due to the slow
fading effect, terminals far away from the base station have a lower receiving
rate than the near-by terminals. Thus, an optimal scheduler that utilizes this
information achieves even better delay performance than FB. As the main the-
oretical contribution of this paper, we determine the optimal non-anticipating
and distance-aware discipline for DHR flow sizes by applying the so called Git-
tins index approach. In the case of Pareto distributions, which have been used to
model flow sizes in the Internet [5, 6], the optimal discipline proves to be a simple
modification of FB. We demonstrate that the improvement of the optimal policy
is, however, marginal when compared to the ordinary FB discipline for Pareto
flow size distributions. This implies that utilizing the size-dependent information
is more important than utilizing the location information when scheduling the
time slots for downlink data traffic. On the other hand, we also demonstrate,
that there is a clear improvement in the delay performance when the simple RR
discipline is replaced by FB.

Bonald and Proutière [3] state that FB would exacerbate the discrimination
against far terminals. This is indeed the case: the reduction in the mean delay is
greater for the near terminals. Our observation, however, is that there is some
reduction in the mean delay for all terminals even for the farthermost ones. The
losers are the huge flows indepedent of their location.

The rest of the paper is organized as follows. The model is explained in Sec-
tion 2. In Section 3 we give the mean delay formulas for the reference disciplines,
while in Section 4 the optimal non-anticipating and distance-aware discipline is



determined. Different disciplines are compared in Section 5 based on simulations
and numerical evaluations. Section 6 concludes the paper.

2 Model

Consider downlink data traffic in a single cell of a cellular system. The traffic con-
sists of elastic flows. We assume that the flows arrive at the base station according
to a Poisson process with rate λ. The flow sizes X are assumed to be indepen-
dent and identically distributed (positive real-valued) random variables with the
cumulative distribution function denoted by FX (x) = P{X ≤ x} =

∫ x

0
fX(y) dy,

where fX (x) refers to the corresponding density function. The hazard rate hX(x)
is defined by hX(x) = fX (x)/F̄X(x), where F̄X(x) = 1−FX (x). We assume that
the flow size distribution belongs to the class DHR with a differentiable density
function fX (x). Thus, h′

X (x) ≤ 0 for all x ≥ 0.
Each flow is associated with a receiving terminal. We assume that the ter-

minals are independently and uniformly distributed in the cell area, which is a
circular disk with radius r1. Thus, the distance R from the base station to the
receiving terminal for a flow has the following distribution:

P{R ≤ r} =
1

πr2
1

∫ r

0

2πs ds =
(

r

r1

)2

, r ≤ r1.

Furthermore, we assume that the transmission rate (bits per time unit) from the
base station to the receiving terminal depends on the distance r between them
as follows:

c(r) =
{

c0, r ≤ r0,

c0

(
r0
r

)α
, r > r0.

(1)

Thus, we only consider the slow fading effect. Parameter α, called the attenuation
factor, typically takes values in the range from 2 to 4. The fast fading effect is
assumed to average out in the timescale of flow level delay. Note that we consider
an ideal case where the set of achievable rates is continuous omitting possible
coding constraints. No intercell interference is included in this single cell model.

Given the location of the receiving terminal, the service time for a flow is
just the flow size divided by the constant rate. Let Fr(t) denote the cumulative
distribution function of the service time Sr = X/c(r) for a flow with the terminal
located at distance r from the base station. Now E[Sr] = E[X]/c(r) and

Fr(t) = P{Sr ≤ t} = P{X ≤ c(r) t} = FX(c(r) t).

The corresponding density function is clearly fr(t) = c(r)fX (c(r) t) and the
corresponding hazard rate hr(t) = c(r)hX(c(r) t). Since the flow sizes X are
DHR, also these conditional service times Sr belong to the class DHR.

On the other hand, if the location of the receiving terminal is not known,
then the service time for a flow is the ratio between two independent random
variables, S = X/c(R), with mean

E[S] = E[X]
∫ r1

0

1
c(r)

P{R ∈ dr} =
E[X]

c0

(
α

α + 2

(
r0

r1

)2

+
2

α + 2

(
r1

r0

)α
)

.



The cumulative distribution function of the service time S is denoted by F (t) =
P{S ≤ t} =

∫ x

0
f(s) ds with f(t) referring to the corresponding density function.

It is easy to see that

F (t) = FX

(
c0t

(
r0

r1

)α)
+
(

r0

r1

)2 ∫ c0t

c0t(r0/r1)α

fX (x)
(

c0t

x

) 2
α

dx,

from which the density can be derived with the following result:

f(t) = fX (c0t)c0

(
r0

r1

)2

+
2
αt

(
r0

r1

)2 ∫ c0t

c0t(r0/r1)α

fX (x)
(

c0t

x

) 2
α

dx.

The hazard rate of S is denoted by h(t).

Proposition 1. If the flow size distribution FX(x) belongs to class DHR, so
does the service time distribution F (t).

Proof. Since F (t) =
∫ r1

0
Fr(t) P{R ∈ dr}, this is a special case of the result given

in [1, Theorem 3.4]. �

Throughout the paper we assume that the time slot used for scheduling is
negligible compared to the flow sizes. So we have an M/G/1 queue with arrival
rate λ, service times S, and load ρ = λE[S]. For stability, we assume that ρ < 1.

3 Reference schedulers

In this section we give the mean delay formulas for the disciplines PS, FB,
SRPT, and GR. The PS discipline (representing the limiting case of RR) is our
main reference scheduler. FB is the optimal non-anticipating discipline that does
not utilize location information. SRPT is the optimal (hypothetical) scheduler
which gives the lower bound for the delay performance. The last one, GR, refers
to the greedy distance-aware discipline that gives the full priority to the receiving
terminal with the shortest distance from the base station.

PS The conditional mean delay of a flow with service time t is for the PS
discipline as follows [10]:

E[TPS(t)] =
t

1 − ρ
. (2)

Thus, the mean delay of a flow is

E[TPS] =
∫ ∞

0

E[TPS(t)]f(t) dt =
E[S]
1 − ρ

. (3)

In addition, the mean delay of a flow with the receiving terminal located at
distance r from the base station becomes

E[TPS
r ] =

∫ ∞

0

E[TPS(t)]fr(t) dt =
E[Sr]
1 − ρ

. (4)



FB The conditional mean delay for FB reads as follows [10]:

E[TFB(t)] =
λE[(S ∧ t)2]
2(1 − ρt)2

+
t

1 − ρt
, (5)

where S ∧ t = min{S, t} and ρt refers to the truncated load, ρt = λE[(S ∧ t)].
The mean delays E[TFB] and E[TFB

r ] are calculated from this conditional mean
delay E[TFB(t)] similarly as for the PS discipline, see (3) and (4).

SRPT The conditional mean delay formula for SRPT originates from [12]:

E[T SRPT(t)] =
λE[(S ∧ t)2]
2(1 − ρ(t))2

+
∫ t

0

1
1 − ρ(s)

ds. (6)

Here ρ(t) refers to ρ(t) = λ
∫ t

0 sf(s) ds. Again, the mean delays E[T SRPT] and
E[T SRPT

r ] are calculated from this conditional mean delay E[T SRPT(t)] similarly
as for the PS discipline, see (3) and (4).

GR Discipline GR results in a pre-emptive priority M/G/1 queue with a con-
tinuum of priority classes. By applying the well known results for priority queues
[10], we conclude that the mean delay for a flow with the receiving terminal lo-
cated at distance r from the base station is as follows:

E[TGR
r ] =

E[S∗
r ]

(1 − σr)2
+

E[Sr]
1 − σr

. (7)

Here, σr is the expected load up to distance r defined by

σr = λ

∫ r

0

E[Sz] P{R ∈ dz} = λ E[X]
∫ r

0

1
c(z)

P{R ∈ dz}

=





λ
E[X]

c0

(
r

r1

)2

, r ≤ r0,

λ
E[X]

c0

(
α

α + 2

(
r0

r1

)2

+
2

α + 2

(
r

r0

)α(
r

r1

)2
)

, r > r0,

and S∗
r refers to the so called remaining service time for terminals up to distance

r with mean

E[S∗
r ] =

λ

2

∫ r

0

E[S2
z ] P{R ∈ dz} =

λ

2
E[X2]

∫ r

0

1
c2(z)

P{R ∈ dz}

=





λ

2
E[X2]

c2
0

(
r

r1

)2

, r ≤ r0,

λ

2
E[X2]

c2
0

(
α

α + 1

(
r0

r1

)2

+
1

α + 1

(
r

r0

)2α(
r

r1

)2
)

, r > r0.

The mean delay is given by

E[TGR] =
∫ r1

0

E[TGR(r)] P{R ∈ dr}. (8)



4 Optimal non-anticipating distance-aware scheduler

In this section we determine the optimal non-anticipating and distance-aware dis-
cipline for DHR flow sizes. Let Π denote the family of non-anticipating schedul-
ing disciplines that do not utilize location information. In addition, let Π◦ denote
the whole family of non-anticipating scheduling disciplines including also those
that utilize the location information. Thus, our purpose is to find the optimal
discipline in Π◦.

4.1 Gittins index

In this subsection we assume that the scheduler is not utilizing location infor-
mation. We recall some results related to the so called Gittins index, see [7, 15],
and apply them to DHR service times.

For any a, ∆ ≥ 0, let

J(a, ∆) =

∫∆

0 f(a + t) dt
∫∆

0
F (a + t) dt

. (9)

Note that J(a, 0) = h(a) for any a. Function J(a, ∆) is clearly continuous with
respect to both arguments. In addition, the one-sided partial derivatives with
respect to ∆ are defined for any pair (a, ∆),

∂

∂∆
J(a, ∆) =

f(a + ∆)
∫∆

0
F (a + t) dt − F (a + ∆)

∫∆

0
f(a + t) dt

(
∫∆

0
F (a + t) dt)2

(10)

For a flow with attained service a, the Gittins index is defined as follows [7, 15]:

G(a) = sup
∆≥0

J(a, ∆), (11)

Consider now a non-anticipating discipline π∗ which always gives service
to the job with the highest Gittins index. We call this discipline the Gittins
discipline. It is known that the Gittins discipline is optimal with respect to the
mean delay for an M/G/1 queue, see [7, Theorem 3.28], [15, Theorem 4.7].

Theorem 1. E[T π∗
] ≤ E[T π ] for any π ∈ Π.

This can be used to prove the optimality of the FB discipline for DHR flow
sizes. Recall from Proposition 1 that in this case also the service times belong
to the class DHR so that the hazard rate h(t) is a decreasing function.

Proposition 2. Function J(a, ∆) is decreasing with respect to ∆ for any a.

Proof. Let a, ∆ ≥ 0. Since h(t) is decreasing, we have h(a + t) ≥ h(a + ∆) for
all 0 ≤ t ≤ ∆, which is equivalent with

f(a + t)
f(a + ∆)

≥ F (a + t)
F (a + ∆)

. (12)



By (10), we have

∂

∂∆
J(a, ∆) ≤ 0 ⇐⇒ 1

∫∆

0
f(a+t)
f(a+∆) dt

≤ 1
∫∆

0
F (a+t)

F (a+∆)
dt

.

The claim follows from this by (12). ut

Proposition 3. G(a) = h(a) for all a.

Proof. Let a ≥ 0. By Proposition 2, G(a) = J(a, 0) = h(a). ut

Theorem 2. E[TFB] ≤ E[T π] for any π ∈ Π.

Proof. By Proposition 3 and the fact that h(a) is decreasing, the flow with least
amount of service has the highest Gittins index. Thus, in this case the Gittins
discipline corresponds to FB. The claim follows now from Theorem 1. ut

4.2 Utilizing location information

Consider now how a non-anticipating discipline can be improved if the scheduler
is aware of the distances between the base station and the receiving terminals.

Recall that hr(t) refers to the hazard rate related to the cumulative distri-
bution function of the service time Sr for a flow with the terminal located at
distance r from the base station. As mentioned in Section 2, the service times Sr

belong to the class DHR. Thus, the Gittins index for such a flow with attained
service a is Gr(a) = hr(a) = c(r)hX(c(r)a).

Let Ri and Ai(t), respectively, denote the distance from the base station
and the attained service time related to flow i at time t. Furthermore, let γi(t)
denote the proportion of time that is scheduled for flow i at time t. It follows
that Ai(t) =

∫ t

0
γi(s) ds. According to the Gittins rule, the optimal scheduler

transmits to terminal j such that

hRj (Aj(t)) = max
i

hRi(Ai(t)) = max
i

c(Ri) hX (c(Ri)Ai(t)) . (13)

If this maximum is not unique, the service capacity shall be shared between the
maximizing terminals j ∈ J (t) in such a way that

d

dt
hRj (Aj(t)) = c(Rj)2 h′

X (c(Rj)Aj(t)) γj(t) (14)

is the same for all j ∈ J (t). The optimal shares γj(t) can be determined from
this condition together with the constraint

∑

j∈J (t)

γj(t) = 1. (15)

We denote this optimal non-anticipating distance-aware discipline by FB◦.

Theorem 3. E[TFB◦
] ≤ E[T π] for any π ∈ Π◦.

Proof. The claim follows from Theorem 1 together with the derivation made
above. ut



4.3 Pareto flow sizes

Assume now that the flow size distribution is Pareto with shape parameter β > 1
and scale parameter b > 0 such that, for all x ≥ 0,

F̄X (x) =
(

1
1 + bx

)β

, hX (x) =
βb

1 + bx
, h′

X (x) =
−βb2

(1 + bx)2
.

By (13), the optimal distance-aware discipline FB◦ transmits to terminal j such
that

1
b c(Rj)

+ Aj(t) = min
i

(
1

b c(Ri)
+ Ai(t)

)
. (16)

Interestigly, the optimal rule is independent of the shape parameter β. In addi-
tion, the inverse of the Gittins index grows linearly with the amount of attained
service. Within the constant transmission rate area (r ≤ r0), the flow with the
least amount of attained service is the preferred one. In particular, if r0 = r1,
then FB◦ reduces back to FB.

If the maximum is not unique, then

1
c(Rj)

+ b Aj(t) (17)

is the same for all maximizing terminals j ∈ J (t). By (14), if the maximum is not
unique, the service capacity shall be shared between the maximizing terminals
j ∈ J (t) so that

c(Rj)2 h′
X (c(Rj) Aj(t)) γj(t) =

−β γj(t)
( 1

c(Rj)
+ b Aj(t))2

(18)

is the same for all j ∈ J (t). But now by (17) we conclude that, in fact, the
optimal shares γj(t) are the same for all j ∈ J (t). Thus, by (15),

γj(t) =
1

|J (t)|
, (19)

where |J (t)| refers to the magnitude of the set J (t). Thus, for the Pareto dis-
tribution, FB◦ applies PS among the maximizing terminals.

4.4 Exponential flow sizes

Assume now that the flow size distribution is exponential with rate µ so that,
for all x ≥ 0,

F̄X(x) = e−µx, hX (x) = µ, h′
X (x) = 0.

By (13), FB◦ transmits to terminal j such that

c(Rj) = max
i

c(Ri). (20)

It is easy to see that, in this case, it does not matter how the service is shared
among the flows with the same transmission rate. Thus, for exponential flow
sizes, FB◦ is equivalent with the greedy discipline GR.



5 Numerical results

In the following we give numerical evidence of the amount of performance gains
achievable with the various scheduling disciplines. As the baseline scheduler we
use the PS discipline (corresponding to the limit of the RR scheduler). The idea
is to compare the performance of the other disciplines with respect to PS, i.e.,
we are only interested in the relative performance of the policies. Thus, in our
numerical examples we have scaled the parameters such that job sizes have unit
length, E[X] = 1, the maximum transmission rate c0 = 1, and the cell radius
r1 = 1 (unit circle). We evaluate the relative performance for exponentially
distributed and Pareto distributed flow sizes. The parameters affecting the per-
formance are the attenuation factor α and the radius of the constant rate area
r0, which jointly define the variability of the transmission rates. Additionally,
for the Pareto distribution we have the shape parameter β.

In practice, the variability in the rates (or the range of the possible rates) is
determined by the capabilities of the technology and the amount of transmission
power the base station has available. To have a realistic scenario for the vari-
ability in the rates, we use the parameters from Table 1 in [3], where it is given
that in current HDR/HSPDA systems for α = 2 the ratio of the cell radius to
the constant rate area’s radius r1/r0 = 7.94.

5.1 Overall mean delay

We first compare the optimal non-anticipating distance-aware scheduler FB◦

with the plain FB. We have simulated the system at a fixed load, ρ = 0.9, with
Pareto distributed flow sizes under both policies using the same stochastic input
to minimize the variance. In the simulations we vary the loss exponent α = 2 and
4, and the Pareto shape parameter β = 2 and 3. With exponentially distributed
flow sizes, the FB◦ discipline corresponds to the GR discipline, and the results
can be obtained analytically.

The results in Table 1 depict the relative mean delay difference ∆ = (E[TFB]−
E[TFB◦

])/E[TFB], together with the confidence intervals for simulation results.
As seen from the results, FB◦ performs better than FB, especially for exponen-
tial flow sizes. However, for Pareto flow sizes the difference is rather small so
that one does not benefit much from the location information.

Exponential Pareto, β = 3 Pareto, β = 2

α = 2 α = 4 α = 2 α = 4 α = 2 α = 4

∆ 15.7% 17.3% 2.0% ± 0.1% 2.6% ± 0.1% 0.7% ± 0.1% 1.0% ± 0.1%

Table 1. Mean delay comparison between FB◦ and FB.

Next we study the mean overall delays as a function of the load ρ. Since
the delay difference between FB◦ and FB is so small, results for FB◦ are not
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Fig. 1. Mean delay ratio as a function of ρ for exponential distribution (left), Pareto
with β = 3 (middle) and Pareto with β = 2 (right).

shown in the Pareto cases. The idea is to compare how much better/worse the
disciplines GR, FB and SRPT perform than PS by considering the normalized
results E[T π]/E[TPS] for π = GR, FB, SRPT.

The results are shown in Figure 1. In the graphs, solid lines correspond to
α = 2 and the dashed lines to α = 4. The scheduling disciplines are indicated
next to each curve. The left figure corresponds to exponentially distributed flows
sizes. The middle and right figures correspond to the Pareto case with shape
parameters β = 3 and 2, respectively. Under the exponential distribution (left
figure), all disciplines achieve a better performance than PS. In the Pareto cases,
for β = 3 (middle figure), the mean delay for GR is finite, but the delay is greater
than under PS for both α = 2 and 4. For β = 2 (right figure), E[X2] → ∞, and
correspondingly the mean delay for GR becomes infinite. For FB and SRPT,
the delays are always smaller than under PS and the benefit increases with load.
Notably, the benefit does not seem to be affected by the value of α.

In conclusion, it is clear that the size-based scheduling mechanisms FB, FB◦

and SRPT yield substantial performance gains in terms of the overall mean delay.
In addition, due to the marginal difference between FB and FB◦ for Pareto
flow sizes, we conclude that utilizing the size-dependent information is more
important than utilizing the location information.

5.2 Near-far unfairness

Near-far unfairness refers to the inherent property of the HSPDA/DHR systems
that users far away from the base station experience much worse performance
than users near the base station. This is also addressed in [3], where it is re-
marked that size-based schedulers only exacerbate the near-far unfairness prop-
erty. Thus, next we examine in more detail the near-far unfairness issue in terms
of the conditional mean delays of the different disciplines when the receiving
terminal is at a given distance from the base station.

The results as a function of the distance r are given in Figure 2 for the
exponential distribution (left) and Pareto distributions with β = 3 (middle)
and β = 2 (right). The results show the normalized conditional delay of the
other disciplines with respect to PS, i.e., we plot E[T π

r ]/E[TPS
r ] for π = GR, FB.

Results for SRPT are not shown to keep the figures clear. However, under SRPT
the conditional delays are always smaller than under FB by a similar margin as
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Fig. 2. Conditional mean delay ratio as a function of distance r for exponential distri-
bution (left) and Pareto distributions with β = 3 (middle) and β = 2 (right).

in the overall delays in Figure 1. From the figures we can see that GR results
in extreme near-far unfairness, i.e., the performance benefits are achieved at the
expense of the far users (again, for β = 2 the GR discipline does not even have
a finite mean). On the other hand, the FB discipline makes the performance
slightly worse for the users on the border in the exponential case. However, in
the Pareto cases the conditional delays are uniformly in the cell better than
under PS. Thus, roughly speaking, everybody “wins”.

6 Conclusions

We have analyzed the impact of size-based scheduling on the flow level perfor-
mance of elastic traffic in the downlink data channels in a single cell. In such
systems the service time of a flow is determined both by its size and transmission
rate (as determined by the random location of a user in the cell). Both infor-
mation can be used to minimize the flow level delay. The baseline scheduling
discipline was provided by the simple RR policy (corresponding to a PS system
in the limit), which does not employ any information about the rates nor the
sizes. The other studied schedulers were the GR scheduler (only rate informa-
tion), plain FB scheduler (distribution of rates and sizes), FB◦ (distribution of
sizes and exact knowledge of rate) and SRPT (exact knowledge of size and rate).
Notably, the FB◦ policy was derived by applying the Gittins index approach,
and it yields the optimal non-anticipating scheduling discipline that utilizes ex-
act knowledge of a user’s rate. In the case of Pareto distributions, which have
been used to model flow sizes in the Internet [5, 6], the optimal discipline FB◦

proves to be a simple modification of FB.
The results showed that the GR discipline can sometimes (e.g., for exponen-

tially distributed flow sizes) decrease the overall mean delay compared with RR.
However, it is always at the expense of the users that are on the border of the
cell. Comparing plain FB and FB◦, it appears that for Pareto distributed flow
sizes, knowledge of the location is not that important. Additionally, for Pareto
distributed files we demonstrated that considerable gains can be achieved by ap-
plying size-based scheduling (FB and SRPT), both in terms of the overall mean
delay, as well as the conditional mean delay at a given distance from the base
station. The latter property implies that age-based scheduling can increase the
performance of all users, i.e., everybody wins compared with RR.



In this paper the baseline policy was provided by RR. In practical systems,
channel-aware schedulers, such as PF, are used, and they are known to achieve
a better performance under fast fading conditions. However, as shown in [3], the
performance gain in a dynamic traffic situation may not be that great. Thus,
it can be argued that the significant gains achievable with FB may be higher
than those achievable with channel-aware schedulers. Nevertheless, a detailed
performance comparison with channel-aware scheduling remains as future work.
Additionally, multi-cell scenarios offer another area of extensions, as well as the
inclusion of coding constraints in the rate function (1).
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