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Ad Hoc networks are based on a full autonomy of nodes in the network (every node
may be a router, gateway, client, server, etc.) and on their capacity for creating
networks “per se”. Nodes in this kind of networks do not have to be specially
configurated and they can find other nodes by themselves.

The work depeloped in this thesis contributes to the implementation of an “Ad Hoc
Framework”.

The “Ad Hoc Framework” consists of a complete architecture for analysing Ad Hoc
networks. It contains several independent routing modules and a common Ad Hoc
module.

The common Ad Hoc module consists of a component that allows the execution
of multiple routing protocols in the same node. The “Common Registry” and the
“Common Cache” are modules of the common Ad Hoc module implemented

in this thesis.

The independent routing modules are plug-in components of the “Ad Hoc
framework”. Following are the modules implemented as part of this thesis that
contribute to the “Ad Hoc Framework”:
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- Independent routing modules:
- The Optimized Link State Routing protocol (OLSR protocol).
- Common Ad Hoc modules:
- The Common Registry. It is an information file between protocols.
- The Common Cache. It is a common routing table which allows to share
information.

Implementation choices, improvements, efficiency tests and perfomance of the
“Ad Hoc Framework” are reported in the thesis.

This work was partially funded by the Information Society Technologies
programme of the European Commision, Future and Emerging Technologies under
the IST-2001-3813 MOBILEMAN project.

Keywords: Ad Hoc, OLSR, framework, proactive protocol
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Resumen

Las redes Ad Hoc se basan en la total autonomia de los nodos (todos y
cada uno de ellos pueden actuar como encaminadores, clientes y servidores
de cualquier tipo) y en la capacidad de crear una red “per se”, es decir,
sin tener que configurar algin nodo de manera especial y sin indicarles que
otros nodos forman parte de la red (ellos mismos se encangan de buscarse
los unos a los otros).

El protocolo llamado OLSR (Optimized Link State Routing Protocol) se
ha implementado, probado y en algunos casos mejorado dentro de un marco
de trabajo con otros dos protocolos Ad Hoc como son AODV (Ad hoc On
Demand Distance Vector) y ZRP (Zone Routing Protocol).

Este marco de trabajo se basa en que estos tres protocolos trabajen
conjuntamente en un mismo nodo mejorando asi la eficiencia de cualquier
protocolo trabajando solo. La mejora propuesta se basa en el diseno de una
arquitectura del sistema donde se define un médulo de protocolos indepen-
dientes y un moédulo comin del sistema. Este médulo comtn del sistema
incluye un registro comiun, un médulo de comunicaciones, una légica de con-
trol y en una tabla de rutas comiin a todos los protocolos (llamada de ahora
en adelante caché comain).

En el registro comun se guardan las variables de configuracién de cada
uno de los protocolos asi como el rendimiento alcanzado en un momento dado
durante su funcionamiento. De esta manera podemos saber c6mo maximizar
este rendimiento segin los valores que toman las variables de configuracién
de los protocolos en un momento determinado.

El mddulo de comunicaciones, también llamado CCRS (Common Cache
Registry Server), se encarga de manejar los mensajes procedentes de los pro-
tocolos que indican si hay un nuevo protocolo corriendo, si se ha encontrado
una ruta nueva o bien se ha perdido una existente, etc.

La ldgica de control es la encargada de elegir apropiadamente los valores
de los parametros influyentes en cada protocolo para optimizar el rendimiento.

vii



Helsinki University of Technology - Networking Laboratory
X Juan Gutiérrez Plaza

Este médulo envia mensajes de control a los protocolos a través del CCRS.

Por tltimo, la caché comin sélo posee las rutas descubiertas por los pro-
tocolos y ademds informacién til para ellos como los servicios prestados por
los nodos, qué protocolo ha descubierto la ruta, etc.

En esta tesis se expone y explica el protocolo OLSR, la caché comun, el
registro de informacion y el médulo de comunicaciones ademads de las deci-
siones de implementacién, mejoras realizadas, eficiencia de cada uno de ellos
y del conjunto dentro del marco de trabajo asi como las pruebas realizadas
a cada uno de ellos.

En la parte de implementacién se ha desarrollado el protocolo OLSR

(basado en el borrador de Internet -“internet draft”- versién 0.7), la caché
comun, el médulo de comunicaciones y el registro comun.
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Chapter 1

Introduction

This chapter presents information about ad hoc networks and technology. Also
the “state of the art” of ad hoc networks is presented in this chapter, the moti-
vation to experiment with new architectures and the objectives of this Master’s
Thesis.

1.1 Ad hoc networks

Ad Hoc networks are gaining interest day after day as a communications
technology. As a result, studies in this field have grown a lot in recent years.

This kind of network without infrastructure started with wireless tech-
nology in a practical way. The most important technology has been 802.11x
which is cheap and provides high throughput, although other technologies
such as Bluetooth can be used.

In essence, every node in the network behaves as a router and all nodes
cooperate in carrying traffic [9].

These networks can change their topology very quickly. Adaptability
and speed are the two most important characteristics, althouth achieving
both is very difficult.

1.2 State of the art

Nowadays, Ad Hoc mobile networking is being studied deeply because it
has very important applications in a lot of fields like alternative maritime
communications, conferences and congresses and in Military applications
(e.g. networking of aircraft, helicopters, tanks and even infanterymen with
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weareable computers), etc.

Advantages are very clear in these networks, for example:

o Networks without geographical constraints of the fixed networks.
e Flexible topology for a variety of applications.

e There are no wire connections.

Routing is one of the most important problems at this moment.

An efficient and fast routing protocol is very difficult to design because
the topology may change quickly. If topology changes a little bit or the
number of nodes is not so high, efficient routing can be implementated. But
if the number of nodes is high or topology changes a lot, routing will be
hard and slow because there will be a lot of messages between nodes for
managing this information.

Thus, routing is a hard and common problem that many people try to
solve. A lot of protocols and improvements have been proposed by the re-
search community in order to improve the solutions but routing continues
to be a difficult issue.

1.3 Motivation

Our proposal is a solution based on the implementation of a prototype of
an ad hoc framework [17] to study proactive and reactive proctocols and to
explore new algoriths for ad hoc networks.

The Ad Hoc Framework architecture consists of a Common Ad Hoc
Module which includes a common cache, common information registry and
multiple independent routing modules. The Ad Hoc Framework architec-
ture is based on the concept of multiprotocol nodes.

The concept of multiprotocol nodes provides the possibility of creating
Ad Hoc networks where some nodes will run different routing protocols but
all collaborate towards the lifetime of the Ad Hoc network.

There are multiple alternatives for selecting the apropiate ad hoc routing
protocol, reactive, proactive or hybrid:

e Proactive. This kind of protocols are based on getting all routes be-
forehand.
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e Reactive. Routes are searched when they are needed (AODV [16] has
been already implemented for this framework).

e Hybrid. These protocols use characteristics of proactive and reactive
protocols.

1.4 Objectives of this Master’s Thesis

The main objective of this thesis is to implement the OLSR protocol as one
of the independent routing protocols as a new part of the Ad Hoc Framework.

This thesis also contributes to the framework with the design and imple-
mentation of a common cache, a protocol parameter storage (registry) and
a communication protocol between the common cache and the independent
routing protocols which will be described in chapter 2.

A very important goal achieved in this Thesis is to have two protocols
(AODV and OLSR) running on the same node. This feature allows two
different networks running different protocols to see each other through the
intermediate node (bridge node) which is running both protocols at the same
time.



Chapter 2

Theoretical analysis

Prior to every software development, it is compulsory to make a theoretical
analysis of the problem, of the solutions and of the ways for arriving to a good
solution. This chapter deals with the design of some components of the “Ad
Hoc Framework” such as on the independent routing module implementing the
OLSR protocol, the Common Cache, the Common Registry and Control Logic.

2.1 Ad Hoc Framework

The Ad Hoc Framework consists of a complete architecture for Ad Hoc net-
works that include several independent routing modules and a common ad
hoc module.

Figure 2.1 shows the modules of the framework and the relationship with
the kernel routing table.

Basically, the framework is formed by two modules that includes several
components inside:

e Independent routing module.

1. Protocols. These are routing protocols. At the moment there
are three (AODV, OLSR and ZRP) but the idea is based on using
any implemented protocol.

e Common ad hoc module.

1. Common Cache Register Server (CCRS). This module is a
message center. It is listening for register protocols, messages to
cache and between protocols etc.

2. Registry is an information file where protocol parameters are
stored.
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Protocols Common Ad Hoc Module
« . ; «— | Control
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User Space

Kernel Space

Kernel Routing
Table

Figure 2.1: Modules of the Ad hoc Framework

3. Common Cache. Protocols share routes in this routing table.
In this way a node running one protocol can reach other nodes
running a different protocol.

4. Control Logic. This module reads information from the reg-
istry and decides optimal values for protocols parameters, opti-
mal routes, etc.

e External module.

1. Kernel Routing Table. Aplications use the kernel routing ta-
ble in order to send and forward packets. This table should be
coherent with the common cache routing table, this means that
at least the kernel routing table must contain all destinations that
the common cache has.

The main idea of the framework is to collect information from each pro-
tocol in order to get information about the whole network (topology, density,
etc.) and to use this information to improve the performance. The perfor-
mance is improved when the framework changes the protocol parameters
and protocols are using optimal values.

This framework also requires that a given node running a protocol within
the ad hoc network can send and receive packets of other nodes running an

5
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other different protocol.

2.2 The OLSR protocol

2.2.1 Description of the protocol

OLSR is a proactive routing protocol [12], it means that the protocol pe-
riodically sends control messages to mantain the knowledge of the network
topology. OLSR protocol is a “link state” protocol, this means a node broad-
casts over the network the list of its neighbors. In this case all the nodes
know the neighborhood of all the nodes. Therefore, the nodes have all the
routes and thus the sorthest path to all the destinations.

This protocol sends several kinds of control messages in order to mantain
the knowledge of the network and to know the neighborhood.

The OLSR protocol is an optimization of a pure link state protocol. This
optimization is based on two premises. First, it reduces the size of control
packets: instead of all links, it declares only a subset of links with its neigh-
bors who are named as Multipoint Relay Selectors. Secondly, it minimizes
flooding of this control traffic by using only selected nodes, Multipoint Re-
lays to diffuse its messages in the network.

Two types of control messages are handled by the OLSR protocol:
1. Neighbour sensing.
2. Topology discovery.

Prior to explaining the control messages, two conceps must be intro-
duced:

e Multipoint Relays (MPR). The idea behind the MPR concept is to
minimize the flooding of broadcast packets. Each node in the network
will select a set of neighbouring nodes, which will retransmit its packets

through the network (see Figure 2.2). The set of selected neighbouring
nodes is called MPRs of that node [12].

e Multipoint Relay Selectors (MPR Selectors). All the neighbouring
nodes that select a given node as an MPR belong to a set called MPR
Selectors set. A given node only broadcast packets sent by nodes
belonging to its MPR Selector set.

Neighbour sensing messages are called HELL(QO messages. These kind of
control messages are used to build the neighbourhood surrounding a node
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Figure 2.2: Multipoint relays

(only neighbours which can communicate directly with the node belong to
the neighbourhood) and also to compute the MPRs of a node [13]. HELLO
messages are sent in broadcast packets to nodes which are one hop away
from the original node.

Topology discovery is used to know the topology of the whole network
and it handles several kinds of messages:

e Topology Control (TC). This is the most important type of message
for topology discovery. A TC message is sent periodically by each node
in the network to declare its MPR Selector set.

e Multiple Inteface Association (MID). These messages inform about
the nodes which have more than one MANET interface.

e Associated Networks and Hosts (HNA). Nodes with more than
one non-MANET interface broadcast this kind of message.

e Fast Re-Routing (FRR). These messages send information about
routing.

These messages are broadcast through the whole network but they use
MPRs in order to minimize the flooding of the network.
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2.3 Common cache

2.3.1 Introduction

The benefit of using a common cache is to share routing information between
protocols. This way, a node can collect information about other nodes run-
ning a different protocol. If this was not so, nodes running a single protocol
are blinded to the information collected by nodes running other protocols.

We will also benefit from having a common cache by collecting other
information from it such as metrics, cost, services provided by the node,
etc. This extra information will help a node to decide whether to choose a
given node as a router or to choose a different one.

There are two well defined different data structures for implementing an
efficient cache. One of them is a Search Tree (and any kind of its subtype,
Binary Tree, Ternary Tree, B-Tree, etc.) and the other one is a Hash Table.

2.3.2 Brief description of data structures
Search Trees

Basically, a search tree is a data structure where searching takes place using
by a specific field, called a key. Every subtree of a node has values less
than any other subtree of the node to its right. The values in a node are
conceptually between subtrees and are greater than any values in subtrees
to its left and less than any values in subtrees to its right.

The key field is presented on each and every node and is unique. One or
more values of the key are possible in a node depending whether the tree is
binary, ternary or quaternary (see Figure 2.3).

Nodes are reached by branches from their parent node.

There are balanced trees (as binary trees) and unbalanced trees (as red-
black trees, AVL-trees or B-trees). Their characteristics are:

e Unbalanced. These trees do not dynamically change their structure
to improve their access time. Instead, they have less computational
load and need less time for insertions and deletions. The time needed
for seaching an entry for the worst case is ©(n) (where n is the depth
of the tree).

e Balanced. In this case, trees change dynamically to improve the
searching access time. When a deletion or insertion occurs, the tree
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Figure 2.3: Example of a quaternary tree

changes and all nodes, if possible, are set to have the same number of
branches with the minimum depth. The search takes ©(logan) time
for the worst case.

Hash Table

This kind of structure is based on a dictionary in which keys are mapped to
array positions by a hash function. Having more than one key map to the
same position is called a collision. There are many ways to resolve collisions,
but they may be divided into open addressing, in which all elements are kept
within the table, and chaining, in which additional data structures are used.

Insertions and deletions are simple and they do not need a lot of time
and computational load. Searches are very fast; the searching time depends
on the hash function and collision resolution (see Figure 2.4), but may be
constant (©(1)) although the worst case is ©(n).

2.3.3 Pros & Cons
B-Trees
Choosing a balanced tree:

e Pros.

1. Maximun complexity O(logan).
2. No collisions.
3. Fast.
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Figure 2.4: Example of hash table which resolves collisions with link lists

4. Minimizes memory access.
e Cons.

1. Insertion and deletion are complex and slow.

2. Complex structure.

Hash Table
e Pros.

1. In most cases complexity is constant ©(1).

2. Really good behavior for dictionary applications (insert, delete
and search).

3. Very fast if it uses a good hash function.
4. Insertation and deletion are simple.

5. Simple structure.
e Cons.

1. Very slow in the worst case.

2. Slow and large for a lot of data.

10
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2.3.4 Hash Table

According to the analysis of both alternatives, the hash table was chosen to
implement the common cache. The hash table works well when implement-
ing the routing cache (not so large amount of entries and the data is clearly
differenciated by a key).

If the hash function is well defined, the searching time is constant and
very fast and insertions and deletions are simple.

We need a simple hash table API for our purposes. The API is as follows.

e Create table.

Insert data.

Delete data.

Search data.

Destroy table.

And optionally, we could add:

e Update data.

e Update field.

o Get field of an entry.

Following, table 2.1 shows the fields proposed for the common cache, the
size of the fields in bits and some comments to explain each field.

| Fields | Size (b) | Comments
Type 8 Each bit set stands for an active protocol
Destination IP type 1 IPv4 or IPv6
Destination address | 32 or 128 | IPvx of destination
Next Hop IP type 1 IPv4 or IPv6
Next Hop address 32 or 128 | IPvx of destination
Time stamp 32 Time of creation or last update
Cost 8 Cost to reach next hop
Metrics 24 8 bits for battery, 8 for signal and 8 for QoS
Services 16 Remote services which are running (DNS, DHCP, etc.)
Location 48 Geographic location (x, y, z)
Fqdm undefined | Names of the node

Table 2.1:

Fields proposed for the common cache

11
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Hash table efficiency

Assuming an Ad Hoc network composed of 1000 nodes, it is clear that all
nodes will have a different IP address.

Given the described scenario with a hash table of 521 entries we can
store 521 nodes without using a chained list. With a two nodes chaining
list, we can store 1042 nodes and with a 3 nodes chaining list, 1563 nodes.
In a not so good case, we can store 1000 nodes with chaining lists of two
and three elements. In the best case, hash table can store 1000 nodes with
chaining list of one and two elements but hashing function has to be perfect
(it has to spread the key perfectly uniformnly) and node IP addreses that
are used for generating the key must be good.

The size of the hash table is 521 -4 = 2084 B (entry pointers), 1.000-4 =
4000B (maximum data pointer) and 1000 - 4 = 4000B (data key compara-
tion), therefore the table (without data) is ~ 10K B size in the worst case.

Types of hash tables

There are several kinds of hashing. The two most important are:

e Open hashing. If there is a collision, a link list is built. Therefore,
the hash table may have a list per entry.

e Close hashing. There are no lists. If there is a collision, a second
hashing function is used (may be a hashing function or search the next
free entry, for example).

In the first case, any number of data can be stored, although access time
increases. In the second case, it is not possible because we have to know
beforehand how much data is allowed.

For implementing a routing table we can only choose open hashing be-
cause we cannot know the number of nodes, it means that we cannot know
number of route entries in the routing table.

Conclusion

Implementing a common routing table with a link lists hash table is the best
choice. The main reasons are that searching complexity may be constant,
insertions and deletions are simple and the amount of data is not very large.
Also it is good that the memory size is not big. Double hashing, for example,
is not a good choice since we do not know ahead of time how many nodes
could store the table.

Therefore, we conclude that this kind of structure for implementing the
common cache is the most suitable approach.
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2.4 Common registry

2.4.1 Introduction

Common registry is a component of the common ad hoc module within the
Ad Hoc framework that will save information on several protocols in the
same node. This registry saves specific information from each protocol and
common information as last running time, status of the protocol, most effi-
cient configurarion information of protocol running last time, etc.

This information is used by Control Logic in order to improve on the
routing efficiency. The control logic calculates performace of each protocol
and chooses the best configuration for each of them according to the actual
network status.

2.4.2 Brief description of data structures

Firstly, we have to differenciate the common information from the specific
information.

1. Common information. Consist of information stored in the registry,
which is common for all prococols running in the node.

e Status. Status of the protocol. It can be “running alone”, “run-
ning with olsr”, “running with aodv” or “running with zrp”.

e Time last stop. This field is only written if protocol is stopped.
It shows when protocol was stopped.

e [P type. It can be IPv4 or IPv6. If protocol is not running this
field shows the last IP type used.

2. Protocol specific information.

(a) AODV information.
o Active route timeout.
o Allowed hello loss.
e Hello interval.

o Net diameter.

e Node traversal time.
o Rerr rate limit.

o Rreq retires.

e Rreq rate limit.

o TTL increment.

e TTL threshold.

(b) OLSR information.
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o Number of hops.
e HELLQO interval.
o TC interval.

o MID interval.

e HNA interval.

e Dup interval.

e Neighb hold time.
e Neighb 2 hop hold time.
o TC hold time.

o MID hold time.

e HNA hold time.
o TC redundancy.
e MPR coverage.

o Willing.

e Purge interval.

(c) ZRP information.

e Zone Radious.
e [ARP protocol.
e [ERP protocol.
e BRP status.

e NDP status.

o Target LBR.

e (Current LBR.
e RZ(C update.

e Broadcast TP.
o Table refresh.

e Node density.

e Node speed.

2.5 Control logic

This Ad Hoc Framework subsystem calculates the best configuration of the
node in real time. Control logic reads common information and private
information of each protocol running (this information can be read from
common registry) and decides which is the best value for a private variable
in order to maximize the performance.

It can initialize a protocol if performance can be improved. For example,
when AODYV is running and almost all the packets are sent to destination
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nodes which are one hop distance away from the original node, if the time
of entry has expired then this routing entry is deleted and the next access
to this node requires AODYV to search for the path again. This is a very bad
case for AODV, however for OLSR it is a good case because nodes which
are one distance hop away are always in the routing table. Therefore, in this
scenario, control logic would initialize OLSR protocol in order to improve
the one hop distance away access.

Control logic is not only based in physical measurements. Statistics are
also very important for taking the best way for improving.

This module is not implemented yet and it is out of the scope in this
thesis.

2.6 Communication between subsystems

Every subsystem within the Ad Hoc Framework has to communicate with
each other in order to work efficiently (see Figure 2.5). The ad hoc routing
protocols must communicate with the common cache and the common reg-
istry.

| ndependent
OLSR ACDV Routi ng Protocol
Modul e
) )
Conmon Ad Hoc

Modul e
Y Vv
CCRS

Conmmon Cache Common Regi stry

Figure 2.5: Communication between subsystems of the framework

The module called CCRS provides this communication.

The first prococol running must initialize the CCRS. Then, the process
of the CCRS listens (at a pre-defined port) for each protocol and routing
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access.

When a protocol wants to be registered, it sends a port number where it
will listen to. Then, CCRS knows that this port will be used only for that
protocol.

Figure 2.6 shows steps for registering a protocol:

1. A protocol sends a registry message to the CCRS by a common port
(where CCRS is always listening). This message contains the number
of the port where the protocol will send and receive messages.

2. CCRS searches for an old configuration of the protocol in the common
registry.

3. CCRS sends an ACK to the protocol to the given port by the protocol
with the old configuration if it exists.

CGLSR ACDV

3)

CCRS

o

Common Cache Conmon Regi stry

Figure 2.6: Communication protocol

16



Chapter 3

Development

This chapters shows the software development in this project. OLSR imple-
mentation, common cache, common registry and control logic are explained.
Implementation choices, improvements and eficiency are described as well.

3.1 OLSR protocol

Our OLSR implementation follows v.0.7 OLSR iNET draft [10] and it has
been started from the beginning.

It uses UDP protocol for comunicating and the port 698 assigned by
TANA.

The OLSR protocol implementation has been written from scratch al-
thouth other alternatives were studied as [11]. However, this implementation
is based on v.0.3 of OLSR iNET draft. Our implementation have followed
the moludarity, although, because performance in iPAQs, the implementa-
tion is at low level.

The size of our implementation is around 3000 lines of code and the
memory footprint is 3864 B.

This protocol is formed by several modules. Figure 3.1 shows module

diagrams of the system. It also shows the interdependency between modules
and where external framework modules are needed.

e init. This module initializes data structures, gets information of the
node, configures sockets options, etc., and “executes” the protocol.
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ccrs
A
OLSR
y
init [ » ccrs_comm tc
/ hel |l o
packet [€¢—>» nessages [« > npr
\ —
gar bage
col l ector hna

Figure 3.1: Module diagram of the OLSR protocol

packet. Packet module is a low level module which works building
packets with message information and sending them. This module
reads packets and saves the information in OLSR packet structures.

garbage collector. It reads all lists used by the protocol and deletes
old entries.

messages. This module speaks directly with the packet module and
other specific message format modules. It contains the high level mes-
sages processing.

ccrs_comm. This is an API to communicate with the ccrs program.

tc. It is the module which generates and processes topology control
messages.

hello. This module generates and processes HELLO messages.

mid. This module generates and processes multiple interface declara-
tion messages.

hna. It is the module which generates and processes host and network
association messages.

mpr. This module works with MPR and MPR Selector.
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Lists are a very important part in this protocol. Lists are used in a lot
of modules to store control messages information.

All lists in the system have been implemented as follows:

typedef struct {
struct list *first;
struct list *last;
} list_t;

typedef struct {
struct in_addr main_addr;
struct in_addr if_addr;
struct in_addr if2_addr;
struct in_addr main2_addr;
unsigned short valid_time;
} listEntry_t;

struct list {
listEntry_t *entry;
struct list *next;
struct list *prev;

};

This is a list with two pointers; one of them points to the first element
of the list and the other points to the last element. Also, a next pointer and
a previous pointer have been used. These two additional pointers (pointer
to last element and previous pointer) help to manage lists easier and adding
and deleting are faster than usual. We can see a graphical diagram of the
list in Figure 3.2.

dat a dat a dat a dat a

Figure 3.2: The list used in OLSR implementation
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3.2 Common cache

In this section we explain the most suitable way for implementing a Com-
mon Cache or Common Routing Table which is being used by several Ad
Hoc protocols simultaneoustly.

Hash table is the selected (see Section 2.3) approach for implementing
the common cache.

The hash table consists of a collection of key-value pairs. The key of
each pair is something uniquely associated with the corresponding value.
For our common cache this key is the IP address because they are uniquely
associated with a node.

When the hash function receives a key, it has to transform the key into a
valid index for the table (in our default case a number between 0 and 520).
This transformation is obtained as follows:

index = key mod 521

In case of IPv6, we cannot directly access the table by an IP address
because our hash function must have the same kind of input. Figure 3.3
shows how we have resolved this problem by doing an XOR for each four
bytes in a IPv6 address.

32 bits 128 b
| Pv4 | Rv6
32 b 32 b 32 b 32 b

XOR(X)¢————

XOR (X))«

XOR

A

———P Hash function

Figure 3.3: Input in the hash function
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3.2.1 Fields and structures

The specific data structures used for implementing the hash table are shown
in Appendix B.

3.2.2 API

There are two differents APIs, one for local access and another for external
access (i.e. external access from “independent routing protocols”).

Local access.
e Create Hash Table.

— Parameters.
1. Number of entries (integer).

— Return value. Hash table (pointer).

Delete Hash Table.

— Parameters.
1. Hash table (pointer)

— Return value. Void.

Hash. Get the key from an entry.

— Parameters.

1. Hash table (pointer)
2. IP (unsigned integer).

— Return value. Key (unsigned int).

Add Hash. Add a new entry to the Hash Table.

— Parameters.

1. Hash table (pointer)
2. IP (unsigned int)
3. Data (pointer to struct data)

— Return value. New entry (pointer)

Find Hash. Find an entry in the Hash Table.

— Parameters.

1. Hash table (pointer)
2. IP (unsigned int)
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3. Protocol (enumerate). Values may be: AODV, OLSR, ZRP
or ANY_PROT

— Return value. Searched route (pointer) or NULL.
e Delete Hash. Delete an entry in the Hash Table.

— Parameters.
1. Hash table (pointer)
2. IP (unsigned int)
3. Protocol (enumerate)
4. Is route in kernel? (interger). Out parameter.

— Return value. Error or OK (integer).
External access.
e New Route.

— Parameters.

1. Address.

Gateway (next hop).
Mask.

Cost.

Services.

Metrics.

Coordenates.

® NSO W

Names.
9. Input interface.

— Return value. ACK.
e Delete Route.

— Parameters.

1. Address.
2. Gateway (next hop).

— Return value. ACK.
e Update Route.

— Parameters.
1. Address.
— Return value. ACK.
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3.2.3 Update policy

The implementation of the data structure, which is used in the common
cache entries, includes a time_stamp field, which enables the possibility of
applying certain cache policy (e.g. most entries used or most recently entries
used). This means that the kernel routing table will only store a reduced
number of entries. The number of entries in the common cache will always
be greater or equal than the number of kernel routing entries, which must
be lower because of performance reasons.

However, this implementation is quite hard and it is out of the scope of
this Master’s Thesis.

The policy implemented is based only on “cost”. Every reachable node
has a single route entry in the kernel routing table but probably more than
one in the common cache. However, the cache entries copied in the kernel
route table will always be the ones with the minimal cost from the ones
available in the common cache.

Common cache stores all routes whether or not the cost is minimumal.

Therefore, when a route is discovered, it is written into the cache and if
it has the minimum cost it is also entered into the kernel.

When a route is lost, this route is deleted from the kernel table (if it
exists here) and from the cache. Then an alternative minimun cost route is
searched in the cache and written into the kernel routing table.

For implementing this simple algorithm we have added a new field in the
cache. This field is called kernel and shows whether the route is only in the
cache (with a “0” value) or if it is in the kernel as well (with a “1” value).

3.3 Common registry

The common registry has an API with only two functions:

int proc_request (u_int8_t type, prot_t prot, void *mens);
int read_conf (prot_t prot, reg_t *conf /* out */);

In the first function, “type” is the type of the operation which can be:
1. RE_REQ_MSG. Register protocol.

2. UNRE_REQ_MSG. Unregister protocol.
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The second paramenter called “prot”,which identifies the type of proto-

col that wants to register or unregister (in our case it only can be AODV,
OLSR or ZRP).

The last paremeter is a pointer which points to a region of memory where
the parameters of the protocol are stored.

The second function reads the actual or the last (it depends if protocol
is running or not) valid configuration of a protocol and returns this value in
the reference paremeter “conf”.

Configuration information is stored in an ascii file called prots.config.
Writing the configuration in a file facilitates debbuging although it is not
the optimal way. In this file the following information is written:

e Time of creation.
e Table with possible protocol status.

e Protocols running or protocols which were running in the past (with
last stop time).

The following lines show an example of this file.

Common Cache Registry.
Created: Wed Jun 11 19:43:22 2003

Protocol status:
R_alone = 0
R_ZRP = 1

R_OLSR = 2
R_AQODV = 3

ZRP Radius: 2 IARP: olsr IERP: aodv, BRP_status: 1 NDP_status: 1 tlbr: 0.600000
clbr: 0.450000 rzcupd: 10 broadcast: 10 table_refresh: 15 node_d: 8 node_speed: 150

IPv: 4 Status: 1 Time_last_stop: Thu Jun 19 13:01:48 2003
OLSR Num_Hops: 2 Hello_Refresh: 10 Valid_Time: 5 IPv: 4 Status: O

3.4 Control logic

The implementation of “Control Logic” is out of the scope of this thesis.

3.5 Communication between subsystems

The size of the implementation of communication between subsystems is
around 2000 lines of code. It includes the CCRS, the common cache and
the registry modules. The memory footprint for this communication (CCRS
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process) is 1680 B.

Communication between subsystems have been implemented with UNIX
named sockets. Sockets are local to the machine and they do not have ex-
ternal communication.

The common registry process has been implemented to listen to ten
protocols at the same time (this number can be changed at this line within
the implementation).

listen (aodv_fd, 10);

The ccrs server must listen to one socket for the protocol registration
(the port name “/tmp/adhoc” is well known by all protocols) and to an-
other socket for each concrete protocol.

When a protocol sends a message to the register itself, this message also
contains the new socket (“/var/tmp/aodv”, “/var/tmp/olsr”...) for future
communications between the protocol and the server. Finally, the server
sends back an ACK to the protocol and also starts to listen to this new
socket.

The flow diagram is shown in Figure 3.4.

yes Regi ster
pr ot ocol

new regi ster?

new dat a
inoprot[i]?

process
nessage

Figure 3.4: CCRS server flow diagram in the registration operation
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In Figure 3.5, we can see the transaction diagram of the registration

operation.
(1) (2
Protocol [ | ccrs | Regi stry
(4) (3)

Figure 3.5: The transaction diagram of a protocol registration

1. Upon protocol initialization, the protocol registers to the CCRS by
sending a REG_MSG (containing the structure of the socket that the
protocol will listen to) through the named socket “/tmp/adhoc”.

2. CCRS uses one of the registry API functions to examine the registry
file for a valid configuration of the protocol.

3. Either valid protocol configuration string is returned from the file or
it is indicated that no configuration is available.

4. CCRS replies with an ACK to the new socket where the protocol is
already listening. The configuration (from the registry) is piggybacked
on the ACK, if available.

In this new socket, the protocol send petitions to the CCRS as follows:
e New route discovered.

Search for a route.

Delete a route.

Get the configuration of another protocol.

Put the configuration of another protocol.

CCRS can send different messages to protocols:
e New route discovered by another protocol.
o Delete route discovered by another protocol.

e Change configuration.

Transaction diagrams of these operations are the following:

e New route discovered.
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Figure 3.6: Transaction diagram of a new route discovered

(1) The protocol uses its own named socket (“/var/tmp/[protocol]”)
to send a NEW_ROUTE_MSG to CCRS.

(2) Then CCRS searches if the route already exists in the cache, in
the cache and the kernel or in none of them.

(3) The reply contains the existence of the route: in the cache, in the
cache and kernel or in none of them.!

(4) If the route does not exist, then the route is written in the cache
and the kernel.

e Search a route. Similar to previous case.
e Delete a route. Similar to “new route” case.

e Get configuration.

(1)

R (2 < =
Protocol |, | ccrs W
(3)

Figure 3.7: Transaction diagram of “get configuration”

(0) ZRP or other similar protocol (hybrid) checks if its sub-protocol
(reactive or proactive) is running. If not, it starts the relevant
protocol.

(1) ZRP sends the message GET_CONFIG through its named socket
(“/var/tmp/[hybrid_protocol]”) to the CCRS, containing the rel-
evant protocol name, indicating which configuration it wants to
retrieve.

(2) Configuration is retrieved from the registry file.

'At the same time, CCRS sends a message with the new route to the rest of the
protocols telling that another protocol has discovered a route in order to the prococols
can update their internal data structures.
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(3) ACK back to hybrid protocol with the configuration information.

e Set configuration.

- (1) (2) < >

i B

Pr ot ocol CCRS w
(3)

(3)

A

Pr ot ocol

Figure 3.8: Transaction diagram of a “set configuration”

(0) Having previously executed a GET_CONFIG procedure, a hybrid
protocol has manipulated the configuration and now it wants to
write it back to the registry.

(1) A hybrid protocol sends the message SET_CONFIG through its
named socket to the CCRS containing the relevant protocol name
and indicating which configuration it wants to set.

(2) Configuration is written to the registry file.

(3) ACK back to the hybrid protocol and a message type called
CHANGE_CONFIG (containing the piggybacked new configuration
from the hybrid protocol) is issued to the relevant protocol through
the named socket “/var/tmp/[protocol]”.

The CCRS server can listen to one socket at a same time giving priority
to the register socket.

Code of CCRS server is shown in appendix A.
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Chapter 4

Scalability tests, analysis and
integration

This chapter deals with the evaluation of the Ad Hoc Framework implemen-
tation and its integration. Tests are planned and documented to evaluate the
performance of the implemented modules. The aim of the tests is to analyze
how the protocol behaves.

4.1 Configuring :PAQ 3950

This framework has been tested with real wireless nodes. We have used
five iPAQ 3950 running a GNU/Linux operating system (Familiar distribu-
tion [1]) and a laptop running a RedHat distribution with a wireless card.
Installation of the operating system, configuration of the iPAQ, compila-
tion and instructions of the installation of protocols, CCRS, etc., have been
included as appendixes (see Appendix F for more information).

4.2 Tests

All tests have been done sending ping messages between nodes. The number
of nodes was six, five iPAQs and one laptop. All the nodes have only one
MANET interface and do not have any other type of interface. Links and
connections between nodes change in each test.

We have done the same test with OLSR running alone and OLSR run-
ning with AODV in the same node.

The configuration of OLSR . is described in Appendix D.
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The configuration of AODV is the default configuration of this protocol
commented in [16].

The test use cases are the following:

e Test 1. Fully-meshed nodes running only OLSR.

e Test 2. Nodes aligned within node range coverage running only OLSR.
e Test 3. Nodes grouped and connected through a single node.

— Nodes with OLSR.

— Intermediate node with AODV+OLSR and border nodes with
AODV or OLSR.

4.2.1 Test 1

This is the best case for OLSR. All nodes are at a distance of one hop and
all links are direct links.

Configuration

Figure 4.1: Configuration of test 1, fully meshed nodes

OLSR running alone

With this configuration, OLSR shows an excellent behaviour. Routes are
quickly discovered (all of them are discovered by all the nodes within the
first 7 seconds because it is the time needed to receive the first HELLO
message from another node) and they are holding without any problem.
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--- 10.0.

No node has lost packets with this configuration. In the following, some
statistics of “ping” are shown for one node. Test was done when all nodes
were pinging to all nodes.
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0.6 ping statistics --—-
51 packets transmitted, 51 packets received, 0, packet
round-trip min/avg/max = 2.114/3.117/9.605 ms

tt1=255
tt1=255
tt1=255
tt1=255
tt1=255
tt1=255

Kernel route table was modified as follows:

Kernel IP routing table

Destination
10.0.0.5
10.0.0.4
10.0.0.6
10.0.0.1
10.0.0.3
10.0.0.2
127.0.0.0
m
@
5
o
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£
o
et
£
€
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o
0
£

time=2.954
time=3.225
time=3.039
time=2.462
time=2.922
time=3.587

msecC
msecC
msecC
msecC
msecC
msecC

loss

Gateway Genmask Flags Metric Ref

* 255.255.255.255 UH 0

* 255.255.255.255 UH 0

* 255.255.255.255 UH 0

10.0.0.5 255.2565.2565.265 UGH 0

* 255.255.255.255 UH 0

* 255.255.255.255 UH 0

* 255.0.0.0 U 0
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Figure 4.2: Traffic for test 1

31

0

O O O O OO0

Use

[eNeNeNeoNeNeoNe

Iface
ethl
ethl
ethl
ethl
ethl
ethl
lo



Helsinki University of Technology - Networking Laboratory
X Juan Gutiérrez Plaza

However, the common cache has more route entries than the kernel rout-
ing table as we can see in table 4.1 (log file of the cache is added in Appendix

Q).

Destination ‘ Gateway ‘ Cost ‘ Kernel ‘

10.0.0.5 * 1 1
10.0.0.6 * 1 1
10.0.0.6 10.0.0.5 2 0
10.0.0.1 10.0.0.5 2 1
10.0.0.5 10.0.0.6 2 0
10.0.0.1 10.0.0.6 2 0
10.0.0.2 * 1 1
10.0.0.2 10.0.0.6 2 0
10.0.0.2 10.0.0.5 2 0
10.0.0.1 10.0.0.2 2 0
10.0.0.5 10.0.0.2 2 0
10.0.0.6 10.0.0.2 2 0
10.0.0.4 * 1 1
10.0.0.5 10.0.0.4 2 0
10.0.0.6 10.0.0.4 2 0
10.0.0.2 10.0.0.4 2 0
10.0.0.4 10.0.0.5 2 0
10.0.0.1 10.0.0.4 2 0
10.0.0.4 10.0.0.6 2 0
10.0.0.4 10.0.0.2 2 0
10.0.0.3 * 1 1
10.0.0.3 10.0.0.6 2 0
10.0.0.5 10.0.0.3 2 0
10.0.0.6 10.0.0.3 2 0
10.0.0.3 10.0.0.2 2 0
10.0.0.3 10.0.0.4 2 0
10.0.0.3 10.0.0.5 2 0
10.0.0.3 10.0.0.5 2 0
10.0.0.2 10.0.0.3 2 0

Table 4.1: Route entries in the common cache -Test 1-

When a route is lost, another alternative route is searched. For example,
if the node looses the 10.0.0.2 route, the route is deleted from the cache and
the kernel and another route as 10.0.0.2 — 10.0.0.3 will be written in the
cache.

The down fall of this configuration with this protocol is the high traffic
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of control messages. Traffic increases expotetially with each new node.

We can see the traffic as a function of the number of nodes in Figure 4.2
This traffic is the routing protocol incoming traffic per a given node.

OLSR uses MPR nodes and these nodes filter some TC messages. This
protocol has an “already processed messages” list in order to filter more
messages. As a result, traffic is less than in an original (no optimized)
reactive protocol.

4.2.2 Test 2

It was difficult to test this configuration and we had to repeat the test sev-
eral times.

In most cases links were broken for a moment due to the building struc-
ture. There were a lot of interferences (other wireless networks and wireless

phones) and signal power and range were often changing.

In Figure 4.3 we can see the location of nodes for the test.
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Figure 4.3: Nodes location for test 2

Ping messages have been sent between first and last nodes (10.0.0.1 and
10.0.0.6).
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Configuration

Figure 4.4: Configuration of test 2, nodes aligned within node coverage range

OLSR running alone

Routes in this case are discovered quite fast (between 0 and 15 seconds all
the routes are established in all the nodes), but it is notably slower than
the previous configuration. The reason for this behaviour is that now TC
messages also create some routes in addition to similar routes created with
the HELLO messages.

TC messages create routes “out of local range”, this means that there
are no direct links.

The following are ping test results:

64 bytes from 10.0.0.6: icmp_seq=45 tt1=251 time=72.6 msec
64 bytes from 10.0.0.6: icmp_seq=46 tt1=251 time=23.9 msec
64 bytes from 10.0.0.6: icmp_seq=47 tt1=251 time=25.3 msec
64 bytes from 10.0.0.6: icmp_seq=48 tt1=251 time=19.9 msec
64 bytes from 10.0.0.6: icmp_seq=49 tt1=251 time=22.2 msec
64 bytes from 10.0.0.6: icmp_seq=50 tt1=251 time=21.1 msec

--- 10.0.0.6 ping statistics ——-
51 packets transmitted, 45 packets received, 12J, packet loss
round-trip min/avg/max = 19.4/27.7/72.6 ms

Some packets were lost due to broken links in a given instant. Other
worse tests showed broken links for more time and for this reason some
routes were deleted from the route tables (common cache and kernel). In
these cases the protocol needed more time in order to find the route again.

This bad behavior is caused by interferences and by the building struc-
ture as discussed before.

For the first node there is only one direct route, the rest of them are
indirect and the next hop is always the second node (10.0.0.2). The routing
table for first node is as follows:

Kernel IP routing table

35



Helsinki University of Technology - Networking Laboratory

X' Juan Gutiérrez Plaza

Destination Gateway Genmask Flags Metric Ref Use
10.0.0.2 * 255.255.255.255 UH 0 0 0
10.0.0.3 10.0.0.2 255.255.255.255 UH 0 0 0
10.0.0.4 10.0.0.2 255.255.255.255 UH 0 0 0
10.0.0.1 10.0.0.2 255.255.255.255 UGH O 0 0
10.0.0.5 10.0.0.2 255.255.255.255 UH 0 0 0
10.0.0.6 10.0.0.2 255.255.255.255 UH 0 0 0
127.0.0.0 * 255.0.0.0 U 0 0 0

The common cache routing table has all the possible routes given by TC

messages received from other nodes.

Traffic is less than in the previous case. The HELLO messages do not

arrive to all the nodes and some TC messages are filtered by MPR. Traffic is
a bit heavier in internal nodes (because they receive HELLO messages and
TC messages from two nodes) than in the peripheral nodes.

4.2.3 Test 3

OLSR running alone

Figure 4.5: Configuration of test 3, two sets of nodes connected through a
single intermediate node

This test has been performed with static nodes and dynamic nodes.

e Static. The behavior in this case is quite good, time between periph-
eral nodes is less than 15 ms and routes in all nodes and MPR set are
well formed. Less than 2% of all packets were lost. We added the log
of TC messages of the central node as Appendix E.

e Dynamic

36

Iface
ethl
ethl
ethl
ethl
ethl
ethl
lo



Helsinki University of Technology - Networking Laboratory
X Juan Gutiérrez Plaza

1. The initial configuration is test 3 configuration and the final con-
figuration is test 1 configuration.
In this case, new routes (all the routes in the new configuration
are direct) are discovered quickly, in 3 seconds all the new routes
are in the routing table and old routes are deleted.

2. The initial configuration is test 1 configuration and the final con-
figuration is test 3 configuration.
The behaviour in this case is worse than in the previous one.
Routes are discovered slower than in static case because the node
waits until the entries of direct nodes in the neighbour set have
expired. When these entries are deleted, new entries are writ-
ten in the route table inmediately because routes were discovered
previously thanks to TC messages.
In some cases we have found some broken links and the stable
configuration was reached later.
The log file of the central node about general behavior has been
included in Appendix E.

In this case we have not included the “ping” results because there are
no “extreme cases” like in the previous tests.

In Appendix E we can see all logs for this test.

OLSR running with AODV

Figure 4.6: Configuration of test 3 running OLSR and AODV

Both protocols run perfectly together in one node. The common cache
is correctly updated and registration of protocols is fine.
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But this test has had some problems because the nodes of AODV net-
work cannot see the nodes of the OLSR network.

The problem for AODV is that ICMP packets must be captured by
the protocol and checked to see if the destination has been written in the
common cache by another protocol. This characteristic is out of the scope
of this Master’s Thesis.
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Chapter 5

Conclusions and future work

This chapter deals with the final results of this project, evalutations, achieve-
ments, future work, improvements, innovations, etc.

5.1 Conclusions

This OLSR implementation works quite well with static nodes, although its
behaviour is worse when nodes are moving. This is the expected behaviour
according to simulations. Consequently, the protocol works as well as sim-
ulations [18] lend to expect.

We have checked that the protocol does not work fine with several
“jumps” between nodes (see test 2). We cannot know if this behaviour
is caused by bugs in the code or interferences. There are many factors that
affect this kind of communication: physical environments, interferences, etc.
To be sure of this behaviour is caused by other factors and not by implemen-
tation bugs, we should make some more exhaustive tests of the code (“white
box tests”) although a lot of tests have been already performed during the
implementation and testing phases.

Although we have not tested the framework with several networks run-
ning different protocols (see test 3), the common cache, the CCRS and the
registry have had an excellent behaviour in a node running two different
protocols (OLSR and AODV). Therefore, we can conclude that the cooper-
ation between AODV and OLSR using the common cache, the CCRS, etc.,
improves the performance of each protocol running alone and provides new
features for the network.
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5.2 Future work

The next step in this project would be to design and implement the Con-
trol Logic module. A good design of this control logic (probably based on
probability and statistics) will let the whole system run better and reach
an optimal state. The main objective in further study would be to verify if
this improvement on the system is feasible. This means that control logic
is expected to have a great computational load (because during execution it
has to read variables from the common registry and calculate optimal val-
ues) and this improvement cannot be provided sustainably by devices with
reduced computational power (e.g. iPAQ) as compared with the current
desktop PC standars. For compensating this computational load, the con-
trol logic should calculate optimal values when performace parameters are
out of a defined range. This means that control logic is not always running
and it would work only under certain circunstances.

The framework has been designed and implemented to work with other
protocols in addition to OLSR, AODV and ZRP. Therefore, another future
work would be to test the framework with new protocols.

The information in the control registry is in an ascii file saved on per-
manent store (hard disk, flash, etc.). The access to the fields of this file is
sequential and this is not the optimal way. An improvement to this problem
could be made if this file was a memory file (binary file). When the control
registry process is initializated, it should take this file and save it in the main
memory. Every access or modification to the file would be directly done on
memory. If a new protocol is initializated, it will read the information file
from the main memory and not from disk. Finally, the common registry
process should often save the infomation file on disk and the same should
happen if the process is stopped.

Finally, studying the cooperation of AODV and OLSR with and with-
out ZRP in the framework and the performance of these protocols and the
common modules (the CCRS, the control logic, etc) would be other tasks
for a future work.

40



Bibliography

[1] http://www.handhelds.org

[2] http://handhelds.org/feeds/BootBlaster3900/BootBlaster3900.exe
[3] http://handhelds.org/feeds/bootldr/pxa/bootldr-2.19.57.bin

[4] http://handhelds.org/ pb/unstable/bootopie-pb6a-h3900.jfis2

[5] http://h20022.www2.hp.com/busprod/overview/0,12512,series=96474
%5Etype=64929%5Ecategory=215383,00.html?lsidebarLayld=106&rsidebarLayld=63

[6] ftp://ftp.handhelds.org/pub/linux/arm/toolchain/monmotha

[7] http://www.tct.hut.fi/ "xlei/ipaq/download/ipkg-make-kernel-
packages

[8] http://www.tct.hut.fi/ "xlei/ipaq/download/ipkg-build

[9] “Ad Hoc Networking”, Published in “Systems”, pp 33-40. Carlo Kopp,
Febrary, 2002

[10] “Optimized Link State Routing Protocol”, Internet Draft v0.7 - IETF
MANET Working Group, Thomas Clausen, Philippe Jacquet et all,
1st of November of 2002.

[11] http://hipercom.inria.fr/olsr/olsrd.tar.gz

[12] “Optimized Link State Routing Protocol for Ad Hoc Networks”, P.
Jacquet et all, Hipercom Project, INRIA Rocquencourt, BP 105, 78153
Le Chesnay Cedex, France.

[13] “Simulation Result of the OLSR Routing Protocol for Wireless Net-
work”, Anis Laouti et all, INRIA Rocquencourt, 78153 Le Chesnay
Cedex, France.

[14] “Unix Network Programming. Networking APIs: Sockets and XTI,
W. Richard Stevens, Volume 1 - Second Edition, Pretice Hall, 1998.

[15] “Ad Hoc Networking”, Charles E. Perking, Addison Wesley, 2001.

41



Helsinki University of Technology - Networking Laboratory

X Juan Gutiérrez Plaza

[16] “Design and implementation of an Ad Hoc routing framework”, Lei
Xiao, Master’s Thesis, Helsinki University of Technology.

[17] “Replication of routing tables for mobility management in ad hoc net-
works”, José Costa Reuena, Nicklas Beijar and Raimo Kantola. Ac-
cepted to ACM Wireless Networks (WINET) Journal, 2003.

[18] “Simulation Results of the OLSR Routing Protocol for Wireless Net-

work”, Anis Laouti, Paul Mhlethabler et al, INRIA Rocquencourt,
78153 Le Chesnay Cedes, France.

42



Appendix A
Communication between
subsystems

When a daemon receives a message or several messages from an internal
socket, it has to queue messages and serve one at a time. Listening all
sockets and serving one are implemented by a “while”, “select” and “for”
sentences. Code is as follows:

while (1) {
memcpy ((char *) &rfds, (char *) &readers, sizeof(rfds));

if ((n = select (nfds + 1, &rfds, NULL, NULL, NULL)) < 0) {
if (errno != EINTR)
printf("Failed select (main loop)");
continue;

}

if (FD_ISSET (listenfd, &rfds)) {

if ((clifd = ccrs_socket_accept (listenfd, &type)) < 0)
printf ("server accept error %d\n", clifd);

i = client_add (clifd, type);

FD_SET (clifd, &readers);

if (clifd > nfds)
nfds = clifd;

if (i > clients)
clients = i;

printf ("new connection: type %d, fd %d\n", type, clifd);

continue;

}

for (i = 0; i <= clients; i++) {

if ((clifd = client[i].fd) < 0)
continue;

if (FD_ISSET (clifd, &rfds)) {
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“While” always returns to “select” which is listening at all ports. Then, if
one or several ports have information then a “for” looks each protocol ports.
Finally with a “FD_ISSET” we can know if this port has ready information.
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Appendix B

Fields and structures of

common cache

The next structure is typical for implementing a hash table with link list
chaining. There are two pointers to the same structure (they are only used
a collision exists), one field for data (it is a pointer to a data structure)

if

and another one for the key.

struct htab {

};

struct htab *child; /* Child if collision */

struct htab *parent; /* Parent if collision */

unsigned long key; /* Key of hash function, 32 bits */
struct data *data; /* Routing entry */

The data structure of the cache entry is where information is saved. We
have changed IP version field from one bit to one byte because accessing to
memory is faster. IP addresses are inside a “union”, it means that memory
used is the biggest of both (in this case 128 bits).

struct data {

u_int8_t type;
u_int8_t vdest;
union ip_dest {
struct in_addr dest_ipv4;
struct in6_addr dest_ipv6;
};
u_int8_t vnhop;
union ip_nexthop {
struct in_addr nhop_ipv4;
struct in6_addr nhop_ipv6;
};
u_int8_t time_stamp;
u_int8_t cost;
struct metric *metrics;
u_intl16_t_t services;
struct coords *coords;
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u_int8_t kermnel;
struct fqdm *fqdm;
};

Metric structure is very simple. It is only three fields of one byte.

struct metric {
u_int8_t battery;
u_int8_t signal;
u_int8_t qos;

};

Coordenates structure is also quite simple. It is only three fields of two
bytes that represent x, y and z coordinates.

struct metric {
u_int16_t x;
u_intl6_t y;
u_intl6_t z;
};

Names of a node are stored in a link list. We know the end of the list
when the “next pointer” points to “NULL”.

struct fqdm {
char *name;
struct fqdm *next;

};
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Appendix C

Configuration of OLSR for

tests

Parameter ‘ Value ‘
Number of hops 255
Hello interval 7
TC interval 5
MID interval 5
HNA interval 5
Dup interval 30
Neighb hold time 17
Neighb 2 hop hold time 17
TC hold time 13
MID hold time 13
HNA hold time 13
TC redundancy 2
MPR coverage 1
Willing! 3
Purge interval 10

Table 1: Default values for OLSR

!For all nodes this value is the standard, 3, but for laptop we have used 7
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Appendix D
Log of the common

Example for test 1.

new connection: type 1, fd 4
a request received:

this is a registry request
type = 1, protocol =1

A new node has been discovered
Ip: 10.0.0.5

Nh: 0.0.0.0

A new node has been discovered
Ip: 10.0.0.6

Nh: 0.0.0.0

Add new route to the cache

Ip: 10.0.0.6

Nh: 10.0.0.5

A new node has been discovered
Ip: 10.0.0.1

Nh: 10.0.0.5

Add new route to the cache

Ip: 10.0.0.5

Nh: 10.0.0.6

Add new route to the cache

Ip: 10.0.0.1

Nh: 10.0.0.6

A new node has been discovered
Ip: 10.0.0.2

Nh: 0.0.0.0

Add new route to the cache

Ip: 10.0.0.2

Nh: 10.0.0.6

Add new route to the cache

Ip: 10.0.0.2

Nh: 10.0.0.5

Add new route to the cache

Ip: 10.0.0.1

Nh: 10.0.0.2
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Add new route to the cache
Ip: 10.0.0.5

Nh: 10.0.0.2

Add new route to the cache
Ip: 10.0.0.6

Nh: 10.0.0.2

A new node has been discovered
Ip: 10.0.0.4

Nh: 0.0.0.0

Add new route to the cache
Ip: 10.0.0.5

Nh: 10.0.0.4

Add new route to the cache
Ip: 10.0.0.6

Nh: 10.0.0.4

Add new route to the cache
Ip: 10.0.0.2

Nh: 10.0.0.4

Add new route to the cache
Ip: 10.0.0.4

Nh: 10.0.0.5

Add new route to the cache
Ip: 10.0.0.1

Nh: 10.0.0.4

Add new route to the cache
Ip: 10.0.0.4

Nh: 10.0.0.6

Add new route to the cache
Ip: 10.0.0.4

Nh: 10.0.0.2

A new node has been discovered
Ip: 10.0.0.3

Nh: 0.0.0.0

Add new route to the cache
Ip: 10.0.0.3

Nh: 10.0.0.6

Add new route to the cache
Ip: 10.0.0.5

Nh: 10.0.0.3

Add new route to the cache
Ip: 10.0.0.6

Nh: 10.0.0.3

Add new route to the cache
Ip: 10.0.0.3

Nh: 10.0.0.2

Add new route to the cache
Ip: 10.0.0.3

Nh: 10.0.0.4

Add new route to the cache
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Ip: 10.0.0.3

Nh: 10.0.0.5

Add new route to the cache
Ip: 10.0.0.2

Nh: 10.0.0.3

Add new route to the cache
Ip: 10.0.0.4

Nh: 10.0.0.3

Add new route to the cache
Ip: 10.0.0.1

Nh: 10.0.0.3

this is a unregistry request
type = 4, protocol =1
closed : fd 4
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Appendix E
Logs in test 3

OLSR running alone

TC log
Central node is 10.0.0.1.

In incoming TC messages are shown:
o Message sender. sender:

e Message originator. orig:

Time stamp.

Neighbour of originator. neigh:

If message is forwarded by current node. ~--- Forward msg

TC MSG: sender: 10.0.0.5, orig: 10.0.0.5 t: Fri Sep 19 11:27:00 2003
neigh: 10.0.0.1

neigh: 10.0.0.6

neigh: 10.0.0.3

“--- Forward msg

TC MSG: sender: 10.0.0.6, orig: 10.0.0.1 t: Fri Sep 19 11:27:02 2003
neigh: 10.0.0.5
"--- Forward msg

TC MSG: sender: 10.0.0.6, orig: 10.0.0.6 t: Fri Sep 19 11:27:03 2003
neigh: 10.0.0.1

neigh: 10.0.0.5

neigh: 10.0.0.3

neigh: 10.0.0.2

“--- Forward msg
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TC MSG: sender: 10.

neigh:
neigh: 10.0.
neigh: 10.0
neigh: 10.0.
neigh: 10.0

TC MSG: sender: 10.

neigh:
neigh: 10.0.
neigh: 10.0
neigh: 10.0.
neigh: 10.0

TC MSG: sender: 10.

neigh: 10.0.0.1
neigh: 10.0.0.6
neigh: 10.0.0.3
"--- Forward msg

TC MSG: sender: 10.

neigh: 10.0.0.6
neigh: 10.0.0.4
"--- Forward msg

TC MSG: sender: 10.

neigh:
neigh: 10.0.
neigh: 10.0
neigh: 10.0.
neigh: 10.0

TC MSG: sender: 10.

neigh: 10.0.0.1
neigh: 10.0.0.3
neigh: 10.0.0.6

TC MSG: sender: 10.

neigh: 10.0.0.6
neigh: 10.0.0.4
neigh: 10.0.0.2
"--- Forward msg

TC MSG: sender: 10.

neigh: 10.0.0.
neigh: 10.0.
neigh: 10.
neigh: 10.

orig:

orig:

orig:

orig:

orig:

orig:

orig:

orig:

10.

10.

10.

10.

10.

10.

10.

10.
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: Fri

: Fri

: Fri

: Fri

: Fri

: Fri

: Fri

: Fri

Sep

Sep

Sep

Sep

19

19

19

19

19

19

19

19

11:

11:

11:

11:

11:

11:

11:

11:

27:

27:

27:

27:

27:

27:

27 :

27:

03

04

05

05

06

07

08

08

2003

2003

2003

2003

2003

2003

2003
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“--- Forward msg

TC MSG: sender: 10.0.0.3, orig: 10.0.0.3 t: Fri Sep 19 11:27:09 2003
neigh: 10.0.0.
neigh: 10.0.
neigh: 10.0
neigh: 10.0.
neigh: 10.0

In outcoming TC messages are shown:
e Time stamp.

e Neighbour of current node. neigh:

TC MSG Sal

neigh: 10.0.0.6 t: Fri Sep 19 11:27:11 2003
neigh: 10.0.0.5 t: Fri Sep 19 11:27:11 2003
neigh: 10.0.0.4 t: Fri Sep 19 11:27:11 2003
neigh: 10.0.0.2 t: Fri Sep 19 11:27:11 2003
TC MSG Sal

neigh: 10.0.0.6 t: Fri Sep 19 11:27:14 2003
neigh: 10.0.0.5 t: Fri Sep 19 11:27:14 2003
neigh: 10.0.0.4 t: Fri Sep 19 11:27:14 2003
neigh: 10.0.0.2 t: Fri Sep 19 11:27:14 2003
neigh: 10.0.0.3 t: Fri Sep 19 11:27:14 2003
TC MSG Sal

neigh: 10.0.0.6 t: Fri Sep 19 11:27:17 2003
neigh: 10.0.0.5 t: Fri Sep 19 11:27:17 2003
neigh: 10.0.0.4 t: Fri Sep 19 11:27:17 2003
neigh: 10.0.0.2 t: Fri Sep 19 11:27:17 2003
neigh: 10.0.0.3 t: Fri Sep 19 11:27:17 2003
TC MSG Sal

neigh: 10.0.0.6 t: Fri Sep 19 11:27:20 2003
neigh: 10.0.0.5 t: Fri Sep 19 11:27:20 2003
neigh: 10.0.0.4 t: Fri Sep 19 11:27:20 2003
neigh: 10.0.0.2 t: Fri Sep 19 11:27:20 2003
neigh: 10.0.0.3 t: Fri Sep 19 11:27:20 2003

General log

Information showed by this log is the following:
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e If a income message is duplicate. Message originator and sequence

number.

e Nodes add to TC set.

e New direct neighbours. This line is always written when a HELLO
message is received. For this reason route may alredy exist.

o New neighbours at 2 hops. It’s the same case than direct neighbours.

e New mpr nodes. When two hop neighbourhood changes, the mpr set
is deleted and the protocol starts searching for the nodes which will

formed the new mpr set.
e New mpr selector nodes.

e When a mpr selector is deleted.

Duplicate message. Orig: 10.0.0.5,
Duplicate message. Orig: 10.0.0.6,
Duplicate message. Orig: 10.0.0.5

Add TC. Dest: 10.0.0.3, Last: 10.0.

Duplicate message. Orig: 10.0.0.6,
New neighb on 2 hop. If: 10.0.0.6,
If2: 10.0.0.3,

Add MPR. Main: 10.0.0.6

Add TC. Dest: 10.0.0.3, Last: 10.0.

Duplicate message. Orig: 10.0.0.5,

New neighb on 2 hop. If: 10.0.0.5,
If2: 10.0.0.3,

Add MPR. Main: 10.0.0.6

New neighb on 1 hop. If: 10.0.0.4,
Willing: 3 :
Duplicate message. Orig: 10.0.0.6,
Duplicate message. Orig: 10.0.0.6,
Add TC. Dest: 10.0.0.3, Last: 10.0.
Add TC. Dest: 10.0.0.5, Last: 10.0.
Add TC. Dest: 10.0.0.4, Last: 10.0.
Add TC. Dest: 10.0.0.1, Last: 10.0.
Add TC. Dest: 10.0.0.6, Last: 10.0.
Add TC. Dest: 10.0.0.2, Last: 10.0.
Add TC. Dest: 10.0.0.5, Last: 10.0.
Add TC. Dest: 10.0.0.4, Last: 10.0.
Duplicate message. Orig: 10.0.0.5,
Duplicate message. Orig: 10.0.0.5,
Duplicate message. Orig: 10.0.0.5,
Add TC. Dest: 10.0.0.4, Last: 10.0.
Duplicate message. Orig: 10.0.0.1,
New neighb on 2 hop. If: 10.0.0.6,

Seq: 132
Seq: 145
Seq: 134
0.3, Mssn: O :: Time: Fri
Seq: 146
Main: 10.0.0.6
Main2: 10.0.0.3 :: Time:
0.3, Mssn: 0 :: Time: Fri
Seq: 135
Main: 10.0.0.5
Main2: 10.0.0.3 :: Time:
Main: 10.0.0.4,
:: Time: Fri Sep 19 11:27:02
Seq: 148
Seq: 148
0.3, Mssn: 0 :: Time: Fri
0.5, Mssn: 0 :: Time: Fri
0.4, Mssn: 0 :: Time: Fri
0.1, Mssn: 0 :: Time: Fri
0.6, Mssn: 0 :: Time: Fri
0.2, Mssn: 0 :: Time: Fri
0.5, Mssn: O :: Time: Fri
0.4, Mssn: O :: Time: Fri
Seq: 137
Seq: 137
Seq: 137
0.4, Mssn: O :: Time: Fri
Seq: 224
Main: 10.0.0.6

Sep 19 11:26:58 2003

Fri Sep 19 11:26:59 2003

Sep 19 11:27:00 2003

Fri Sep 19 11:27:02 2003

2003

Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep

Sep

19
19
19
19
19
19
19
19

19

11:
11:
11:
11:
11:
11:
11:
11:

11:

27
27
27
27 :
27:
27:
27
27

27 :

03
03
03
04
04
04
04
04

05

2003
2003
2003
2003
2003
2003
2003
2003

2003
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If2: 10.0.0.2, Main2: 10.0.0.2 ::
Add MPR. Main: 10.0.0.6
Duplicate message. Orig: 10.0.0.2, Seq: 26
Add TC. Dest: 10.0.0.1, Last: 10.0.0.1, Mssn: O
Add TC. Dest: 10.0.0.3, Last: 10.0.0.3, Mssn: 0 ::
Add TC. Dest: 10.0.0.6, Last: 10.0.0.6, Mssn: O
New neighb on 1 hop. If: 10.0.0.2, Main: 10.0.0.2,
Willing: 3 :: Time:
New neighb on 2 hop. If: 10.0.0.2, Main: 10.0.0.2
If2: 10.0.0.6, Main2: 10.0.0.6 ::
Add MPR. Main: 10.0.0.6
Add MPR. Main: 10.0.0.2
New neighb on 2 hop. If: 10.0.0.2, Main: 10.0.0.2
If2: 10.0.0.3, Main2: 10.0.0.3 ::
Add MPR. Main: 10.0.0.6
Add MPR. Main: 10.0.0.2
New neighb on 2 hop. If: 10.0.0.2, Main: 10.0.0.2
If2: 10.0.0.4, Main2: 10.0.0.4 :
Add MPR. Main: 10.0.0.6
Add MPR. Main: 10.0.0.2
New neighb on 2 hop. If: 10.0.0.2, Main: 10.0.0.2
If2: 10.0.0.1, Main2: 10.0.0.1 ::
Add MPR. Main: 10.0.0.6
Add MPR. Main: 10.0.0.2
New neighb on 2 hop. If: 10.0.0.2, Main: 10.0.0.2
If2: 10.0.0.5, Main2: 10.0.0.5 ::
Add MPR. Main: 10.0.0.6
Add MPR. Main: 10.0.0.2
Add MPR Sel. If: 10.0.0.2, Main: 10.0.0.2

95

:: Time:
Time:
: Time:

Time:

Fri
Fri
Fri

Fri Sep 19 11:27:07

Time:

Time:

:: Time:

Time:

Time:

Fri Sep 19 11:27:06 2003

Sep 19 11:27:07 2003
Sep 19 11:27:07 2003
Sep 19 11:27:07 2003

2003

Fri Sep 19 11:27:07 2003

Fri Sep 19 11:27:07 2003

Fri Sep 19 11:27:07 2003

Fri Sep 19 11:27:07 2003

Fri Sep 19 11:27:07 2003



Appendix F
Configuring 1PAQ 3950

In order to integrate our Ad Hoc protocol into the testing platform, we
need to configure the GNU/Linux system in the iPAQ 3950 [5] nodes. The
system has to be configured for supporting Wireless LAN, audio and our
AD Hoc protocols implementation. The following sections present a detailed
sequence of steps for a successful configuration of the nodes.

Basic steps are the following;:

1. Install Linux.

2. Configure wireless LAN.

3. Configure iPAQ for access to the Internet.
4. Install AODV protocol.

5. Configure sound in iPAQ.

Installation of GNU/Linux operating system

First of all, installation of an operating system depends directly on the har-
ware supported. In our case, the hardware is very specific and it puts a lot
of restrictions in order to choose a Linux distribution.

This is the iPAQ hardware specification:

e CPU. Intel XScale-PXA250 400 MHz revision 4.
e RAM. 64 MB.

e ROM. 32 MB Flash ROM.

Sound. Philips UDA1380.
Wireless card. PCMCIA D-Link DCF-660W.
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With this hardware configuration, we chose the Familiar Linux distri-
bution. We found this distribution, applications and documentation in [1].

Once chosen a distribution, the steps to install Linux are:

1.
2.

10.

11.

Connect the iPAQ via the USB cradle to Win2K machine.
Use the ActiveSync application to connect the iPAQ from the PC.

Copy boot blaster program (we chose it in [2]) to the default folder
on the iPAQ from the Windows machine using drag and drop or cut
and paste. Ignore any messages that say it may need to convert file
formats.

Copy boot loader program (we chose it in [3]) to the default folder
on the iPAQ from the Windows machine. Again, ignore any messages
that say it may need to convert file formats.

On the iPAQ, find BootBlaster3900.eze and then execute it.

From the Flash menu, select Save. This will save a copy of the current
bootloader to DRAM on the iPAQ (under the name saved_bootldr. bin).

Copy the saved_bootldr.bin off of the iPAQ and put it in a safe place
in order to be able to restore it.

From the Flash menu, select Save Windows gz. This will copy and
compress all the flash ROM on your iPAQ into a .gz file along with a
file containing the asset information from your iPAQ. This will take a
while. After it is complete, copy these files to the PC to save them.
Under normal circumstances, installing Linux will not touch the asset
partition in flash, but it is safer to have a backup copy.

From the Flash menu on BootBlaster, select Program. A file dialog
will open allowing you to select the bootloader to use. Select the
bootloader from step 5). This step can take a while.

From the Flash menu on BootBlaster, select Verify. If it does not say
that you have a valid bootloader, do NOT reset your iPAQ. Instead,
try programming the flash again. If that doesn’t work, program your
flash with your saved bootloader.

Configure the terminal emulator properly with:

e 115200 baud.
e 8NI.

e No flow control.
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e No hardware handshaking.

12. To get to the bootldr’s command line prompt (boot;) and avoid boot-
ing Windows CE: depress and hold the center of the joypad while
pushing the recessed reset button.

13. Unlock flash with this command: pflash 0x40000 Oxffff O by typ-
ing it at the boot prompt.

14. Reboot iPAQ again type reboot for example.

15. Type partition reset.

16. Type load root

17. Send the file system image using Xmodem with the terminal emulator.
We have used [4] file system image. This file contains 2.4.19-rmk4-
pza2-hh8 kernel which has all modules necessary for configuring sound
and wLAN (This step consumes 1 hour approximately).

18. Type boot.

Now, iPAQ has a Linux operating system running.

Configure Wireless LAN

Wireless configuration is not very hard following these steps:

1.

Find out the pcmcia module with the command cardctl ident. In
our case, we obteined the following results:

Socket O:

product info: "D-Link", "DCF-660W", ""
manfid: 0xd601, 0x0005

function: 6 (network)

Add the following lines to /etc/pcmcia/config:
card "D-Link DCF-660W"

manfid 0xd601, 0x0005
bind "orinoco_cs"

Edit /etc/pcmcia/network.opts as the following example:
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Network adapter configuration

The address format is "scheme,socket,instance,hwaddr".

#
#
#
#
# Note: the "network address" here is NOT the same as the IP
# address.

# See the Networking HOWTO. In short, the network address is

# the IP address masked by the netmask.

#

case "$ADDRESS" in

* ok ok k)

INFO="Sample private network setup"

#$ Transceiver selection, for some cards -- see ’man ifport’
IF_PORT="10base2"

# Use BOOTP (via /sbin/bootpc, or /sbin/pump)? [y/nl]

BOOTP="n"

#Use DHCP(via /sbin/dhcpcd,/sbin/dhclient,or /sbin/pump)?[y/n]
#DHCP="y"

#PUMP="n’

#If you need to explicitly specify a hostname for DHCP requests
#DHCP_HOSTNAME=""

#Host’s IP address, netmask, network address, broadcast address
IPADDR="10.0.0.3"

NETMASK="255.255.255.255"

NETWORK="10.0.0.0"

BROADCAST="255.255.255.255"

# Gateway address for static routing

GATEWAY="10.0.0.1"

# Things to add to /etc/resolv.conf for this interface
DOMAIN="netlab.org"

SEARCH=""

DNS_1=""

DNS_2=""

DNS_3=""

# NFS mounts, should be listed in /etc/fstab

MOUNTS=""

# If you need to override the interface’s MTU...

MTU=""

# For IPX interfaces, the frame type and network number
IPX_FRAME=""

IPX_NETNUM=""

# Extra stuff to do after setting up the interface

start_fn () { return; }

# Extra stuff to do before shutting down the interface
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stop_fn () { return; }

# Card eject policy options
NO_CHECK=n

NO_FUSER=n

esac

4. Edit ’/etc/pcmcia/wireless.opts as follows:
case "$ADDRESS" in

#$NOTE: Remove the following six lines to activate the samples below...
# - START SECTION TO REMOVE -----—————--

* ok ok k)

ESSID="netlab"

MODE="ad-hoc"

R END SECTION TO REMOVE -—----------

Configure iPAQ to access the Internet

There are two differents ways of configuring iPAQ for accessing the Internet,
by a ppp connection or by a USB connection.

iPAQ 3950 has many problems with USB connection so it is easier con-
figuring a ppp conection.

Steps for configuring ppp:

1. Make sure that /etc/passwd contains a line like.

ppp::101:101:PPP User:/home/ppp:/usr/sbin/pppd

2. Create or modify /etc/ppp/options as follows.

-detach
defaultroute
noauth

local
nocrtscts
lock
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lcp-echo-interval 5
lcp-echo-failure 3
/dev/tts/0

115200

3. Make sure /etc/modules.conf has the appropriate aliases.

alias /dev/ppp pPpPp_generic

4. Make sure /usr/sbin/pppd is executable by user ppp.

chmod 4755 /usr/sbin/pppd

5. Load modules.

insmod slhc.o
insmod ppp_generic.o
insmod ppp_async.o

iPAQ is now configured. To access iPAQ from desktop just type this
command:

pppd /dev/ttyS1 115200 192.168.0.1:192.168.0.2 debug nodetach
local noauth nocrtscts lock user ppp connect "/usr/sbin/chat -v
-t3 ogin--ogin: ppp"

Establishing a connection with iPAQ can require several attempts.

To access to iNET it is neccessary to copy /etc/resolv.conf as follow-
ing.

scp /etc/resolv.conf root@192.168.0.2:/etc/resolv.conf

Finally, masquerading must be available for communicate the iPAQ to
the outside world.

iptables ——-flush

iptables —--table nat --flush

iptables —--delete-chain

iptables --table nat --delete-chain

iptables --table nat --append POSTROUTING --out-interface ethO -j
MASQUERADE

iptables ——append FORWARD --in-interface pppO -j ACCEPT

Now iPAQ is able to surf in the Internet.
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Install AODYV protocol

For installing AODV we need a cross compiler and a compile kernel. We
have used ToolChain cross compiler [6] in order to compile kernel and aodv
code for iPAQ.

This version of ToolChain is the one (called monmotha) that can compile
code for the xscale processor. It must be installed in /opt/arm.

We have used 2.4.19-rmkj-pzra2-hh8 kernel source code. We have used
CVS environment to download. These are the steps:

1. export CVSROOT=:pserver:anoncvs@handhelds.org:/cvs
2. cvs login. Use anoncvs when password was asked.
3. cvs checkout -r K2-4-19-rmk4-pxa2-hh8. Do this in at /opt/src.

When we have downloaded the kernel source and installed the cross com-
piler, we can compile the kernel for iPAQ.

We are now at /opt/src/linux/kernel and we have to follow next
steps:

1. Edit configure file at . /arch/arm/def-configs/h3900 and enable net-
filter module by NF_QUEUE=m.

2. make h3900_config
3. make oldconfig

4. make dep

5. make zImage
modules

mv System.map System.map.orig

I

mv scripts/ipkg-make-kernel-packages
scripts/ipkg-make-kernel-packages.orig

9. Download a new version of this script from [7].
10. Download a ipkg-build from [8].
11. mkdir ipkgs; cd ipkgs

12. ../scripts/ipkg-make-kernel-packages $PWD/..
2.4.19-rmk4-pxa2-hh8
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13. 1n -s /opt/src/linux/kernel/include/asm
/opt/arm/arm-linux/include/asm

14. 1n -s /opt/src/linux/kernel/include/linux
/opt/arm/arm-linux/include/linux

We had some problems with i2¢ devices, so, before make dep we have
done make xconfig and we have disabled these devices.

Now we have a compiled kernel and its modules and we have to compile
other programs.

In order to install aodv, we need to install the new ip_tables module
which we have compiled previously. One of the all possibles ways to install
is the following:

1. We guess that PC and iPAQ is already connected by a PPP conection.

2. scp iptables-modules-2.4.19-rmk4-pxa2-hh8__arm.ipk
root@192.168.0.2:/

3. ssh root@192.168.0.2
4. cd /ipkg

5. install iptables-modules-2.4.19-rmk4-pxa2-hh8__arm.ipk
-force-depends

6. modprobe ip_filter

Now we can compile and install properly the AODV code. In this iPAQ
we have to do some modifications in the AODV original code.

1. Update this line at Rules.make:
KINC_ARM=-I/opt/src/linux/kernel/include.

2. Add this line at Rules.make:
INCLUDE=-I/opt/arm/arm-linux/include.

3. Comment structure in_pktinfo sited at file aodv_socket.c.
4. make arm

Aodv is already for using in iPAQ), the installation process is the follow-
ing:

1. We assume that PC and iPAQ are already connected by a PPP conec-
tion.

2. We assume that we are at the main directory of aodv.
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3. scp kernel/ipg-arm.o root@192.168.0.2:/1lib/modules
/2.4.19-rmk4-pxa2-hh8/kernel/net/ipv4/ipq.o

4. scp kernel/rl-arm.o root@192.168.0.2:/1ib/modules/
2.4.19-rmk4-pxa2-hh8/kernel/net/ipv4/rl.o

5. scp uu-daemon/aodvd-arm root@192.168.0.2:\~
6. scp uu-daemon/aodv.sh root@192.168.0.2:\"

Now AODV is ready for using.

Configure sound in iPAQ

It is easy to configure sound in iPAQ), although the order in loading modules
is very important because iPAQ could be frozen.

This is the correct order:
1. insmod udal380.0
2. insmod h3900-udal380.0

Sound is enabled.
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