NAME
Fmd1() - Virtual waiting time distribution function
IntFmd1() - Virtual waiting time distribution function for integral values of x
SumMd1() - Calculates the state probabilities of a M/D/1 queue
$\operatorname{RecMd1}()$ - Calculates the state probabilities of a M/D/1 queue using a recursive algorithm

SYNOPSIS

\#include <queuel.h>
double Fmd1(double x, double rho);
double IntFmd1(int N, double rho);
double $*$ SumMd1(double x, double rho);
double $*$ RecMd1(int x, double rho);

DESCRIPTION

delim \$\$ These functions return the state probabilities or the virtual waiting time distribution of a M/D/1 queue.

Fmd1() is a model for the M/D/1 queuing system with Poisson arrivals and deterministic (constant) service time. Parameter x is the amount of unfinished work in the system. Rho is the load level of the system.

ALGORITHM

M/D/1 waiting time distribution is calculated using the following algorithm (Iversen):
$\$ P \$\{\$ \mathrm{~W}<=\mathrm{T}+$ tau $\$\} \$=\mathrm{e} \sup \{$ lambda tau $\}$ sum from $\{0<=\mathrm{n}<=\mathrm{T}\}\{\{(-\{$ lambda tau $\})$ sup n$\}$ over $\{n!\}\}$ P\$\{\$W <= T-n\$\},
where $\$ \mathrm{P} \$\{\$ \mathrm{~W}<=\mathrm{T}-\mathrm{n} \$\}$ is the waiting time for integral values of x :
$\$ \mathrm{P} \$\{\$ \mathrm{~W}<=\mathrm{t} \$\} \$=\mathrm{P} \$\{\$ 0 \$\} \$+\mathrm{P} \$\{1 \$\} \$+\ldots+\mathrm{P} \$\{\$ \mathrm{t} \$\}$.
The state probabilities can be calculated by using a general or a recursive algorithm (Fmd1() uses the recursive algorithm, because it is more accurate):

```
$P(0)=1-A $
$P(1)=(1-A)(e sup A -1) $
$P(2)=(1-A)(-e sup A (1+A) + e sup {2A}) $
$A={lambda h}.$ (If h=1,$A={lambda}).$
```

General algorithm:
$\$ \mathrm{P}(\mathrm{i})=(1-\mathrm{A})$ sum from $\{1<=\mathrm{n}<=\mathrm{i}\}(-1)$ sup $\{\mathrm{i}-\mathrm{n}\}$ e $\sup \{\mathrm{nA}\}(\{\{(\mathrm{nA}) \sup \{\mathrm{i}-\mathrm{n}\}\}$ over $\{(\mathrm{i}-\mathrm{n})!\}\}$ $+\{\{(n A) \sup \{i-n-1\}\}$ over $\{(i-n-1)!\}\}) \$, i=2,3, \ldots$
(The last term always equals $\$\{\mathrm{e}$ sup $\{\mathrm{iA}\}\}$.) $\$$
Recursive algorithm:
$\$ \mathrm{P}(\mathrm{i}+1)=\{1$ over $\{\mathrm{P}(0, \mathrm{~h})\}\} \$\{\$ \mathrm{P}(\mathrm{i})-\$[\$ \mathrm{P}(0)+\mathrm{P}(1) \$] \$ \mathrm{P}(\mathrm{i}, \mathrm{h})$ - sum from $\{2<=\mathrm{n}<=\mathrm{i}\} \mathrm{P}(\mathrm{n}) \mathrm{P}(\mathrm{i}-$ $\mathrm{n}+1, \mathrm{~h}) \$\}, \mathrm{i}=3,4, \ldots$
$\$(\mathrm{P}(\mathrm{i}, \mathrm{h})=\{\{(\{$ lambda h$\})$ sup i$\}$ over $\{\mathrm{i}!\}\}$ e sup $\{-(\{$ lambda h$\})\}) \$$

ERRORS

When $\$$ rho $\$$ is close to 1 , these functions might give inaccurate results.

SEE ALSO

COST 224: Performance evaluation and design of multiservice networks

