NAME

Fmdn() - Virtual waiting time distribution function

IntFmdn() - Virtual waiting time distribution function for integral values of x

Mdn() – Calculates the state probabilities of a queue (queue length)

Fekdn() – Virtual waiting time distribution function

SYNOPSIS

#include <queuel.h>

double Fmdn(double x, double rho, int n);

double IntFmdn(int N, double rho, int n);

double *Mdn(double x, double rho, int n);

double Fekdn(double x, double rho, int k, int n);

DESCRIPTION

delim \$\$ These functions return the state probabilities or the virtual waiting time distribution of a M/D/n queue. (And the virtual waiting time distribution of a $E \sinh M/D/n$ queue.)

Fmdn() is a model for the M/D/n queuing system with Poisson arrivals and deterministic (constant) service time. Parameter x is the amount of unfinished work in the system. *Rho* is the load level of the system and n is the number of servers.

Fekdn() is a model for the $\{E \text{ sub } k\}/D/n$ queuing system with Erlang-k arrivals and deterministic (constant) service time. Parameter x is the amount of unfinished work in the system. *Rho* is the load level of the system and *n* is the number of servers.

ALGORITHM

\$M/D/n\$ waiting time distribution is calculated using the following algorithm (Iversen):

 $P_{s} = \sup \text{ from } \{i=0\} \text{ to } \{n-1\} \text{ sum from } \{j=0\} \text{ to } \{i\} P(j) \text{ sum from } \{nu\}=0\} \text{ to } \{T\} \{\{A(\{nu\}-t)\} \sup \{\{nu\}n+\{nu\}-1-i\}\} \text{ over } \{[\{nu\}n+n-1-i]\}\} \text{ e sup } \{A(\{nu\}-t)\},$

where P(j) is a state probability.

For integral values of the waiting time we have

 $P{\{w \le t\}} = sum from \{\{nu\}=0\} to \{n(t+1)-1\} P(\{nu\}).$

The state probabilities are calculated using the following procedure

- first we make an initial guess \$(M/M/n)\$:

- then we iterate until $\max \left\{i \le I\right\}$ sup $\{(k)\}(i)$ -P sup $\{(k-1)\}(i)$ (i) $\le (epsilon)$:

 $P \sup \{(k)\}(i)=$ $f \sup \{(n_1)=0\}$ to $\{n\} P \sup \{(k-1)\}(\{n_1\})$ P(i,h) + sum from $\{(n_1)=0\}$ P(i,h) =

 $\{\{nu\}=n+1\}$ to $\{n+i\}$ P sup $\{(k-1)\}(\{nu\})$ P $(n+i-\{nu\},h)$ \$, i=0,1,...,I\$

 $P \sup {(k)}(i)=P \sup {(k)}(i-1) {\{lambda h\} over n}$, i=I+1,...,I+n

 $S \sup \{(k)\} = \sup \text{ from } \{i=0\} \text{ to } \{I+n\} P \sup \{(k)\} (i)$

 $P \sup {(k)}(i)= P \sup {(k)}(i) \text{ sup } {(k)} \text{ sup } {(k)} \$

 $(P(i,h)=\{\{(\{lambda h\}) sup i\} over \{i!\}\} e sup \{-(\{lambda h\})\})$

\${E sub k}/D/n\$ waiting time distribution is calculated using the \$M/D/n\$ algorithm: \${E sub k}/D/r\$ (FIFO) is equivalent to \$M/D/r*k\$ (FIFO).

ERRORS

When \$ rho \$ is close to 1, these functions might give inaccurate results.

SEE ALSO

COST 224: Performance evaluation and design of multiservice networks