NAME

Fend1() - Virtual waiting time distribution function
SYNOPSIS in a C-program
\#include <queuel.h>
double Fend1(double x, int n, double rho);

SYNOPSIS in Mathematica

Fend1[Real, Integer, Real]
SYNOPSIS with MathLink
LnkFend1[Real, Integer, Real]
DESCRIPTION
delim $\$ \$$ Fend1() is a model for the $\$\{\mathrm{E}$ sub n\}/D/1\$ queuing system with Erlang-n arrivals and deterministic (constant) service time. Parameter x is the amount of unfinished work in the system and Rho is the load level of the system.

ALGORITHM

$\$\{E$ sub $n\} / D / 1 \$$ waiting time distribution is calculated using the following algorithm:

$$
\$ \mathrm{P} \$\{\$ \mathrm{~W}<=\mathrm{x} \$\} \$=\mathrm{n}\{\mathrm{~F} \text { sub } \mathrm{n}\}(\mathrm{x})=\mathrm{n}\{\mathrm{e} \text { sup }\{\{\text { lambda }\} \mathrm{x}\}\}\{\mathrm{P} \text { sub } \mathrm{mn}+\mathrm{n}-1\}(\mathrm{x}-\mathrm{m}) . \$
$$

To calculate this probability, we need to resolve the coefficients of polynomials $\$\{\mathrm{P}$ sub k$\} \$ \mathrm{up}$ to $\$ \mathrm{k}=$ $\mathrm{nm}+\mathrm{n}-1 \$$, where $\$ \mathrm{~m} \$$ is the integral part of $\$ \mathrm{x} \$$.
$\$\{P$ sub $m n\}=(\{$ sum $\}$ from $\{j=0\}$ to $\{m n-n\}\{$ a sub j sup (mn-n) $\},\{-\{$ beta $\}$ over 1$\}\{$ a sub 0 $\sup (m n-1)\},\{-\{$ beta $\}$ over 2$\}\{$ a sub $1 \sup (m n-1)\}, \ldots,\{-\{$ beta $\}$ over $m n\}\{$ a sub $m n-1 \sup (m n-$ 1) \}), $\$$
$\$\{\mathrm{P}$ sub $\mathrm{mn}+\mathrm{i}\}=(\{$ sum $\}$ from $\{\mathrm{j}=0\}$ to $\{\mathrm{mn}+\mathrm{i}-\mathrm{n}\}\{\mathrm{a}$ sub j sup $(\mathrm{mn}+\mathrm{i}-\mathrm{n})\}$, $\{-\{$ lambda over $1\}\{$ a sub $0 \sup (m n+i-1)\}$, $\{-\{l a m b d a\}$ over 2$\}\{a \operatorname{sub} 1 \sup (m n+i-1)\}, \ldots,\{-\{l a m b d a\}$ over $\mathrm{mn}+1\}\{\mathrm{a}$ sub $\mathrm{mn}+\mathrm{i}-1 \sup (\mathrm{mn}+\mathrm{i}-1)\}), \$$
where $\$ i=1, \ldots, n-1 \$$ and $\$ m=1,2, \ldots \$$
The recursion starts from the initial values $\$\{a \operatorname{sub} 0 \sup (i-1)\}=\{P$ sub $i \sup o\}: \$$
$\$\{P$ sub 0$\}=(\{P$ sub 1 sup $o\}), \$$
$\$\{\mathrm{P}$ sub i$\}=(\{\mathrm{P}$ sub $\mathrm{i}+1$ sup o $\},\{-\{$ lambda $\}$ over 1$\}\{$ a sub 0 sup $(\mathrm{i}-1)\},\{-\{$ lambda $\}$ over 2$\}\{\mathrm{a}$ sub $1 \sup (i-1)\}, \ldots,\{-\{$ lambda $\}$ over 3$\}\{a \operatorname{sub} i-1 \sup (i-1)\}) \$, \$ i=1, \ldots, n-1 . \$$
What remains is to determine the initial values $\$\{\mathrm{P}$ sub i sup o\}. $\$$

ERRORS

When $\$$ rho $\$$ is close to 1 , these functions might give inaccurate results.

SEE ALSO

S. Aalto \& J. Virtamo: M/D/n queue revisited.

