NAME
Fmdn() - Virtual waiting time distribution function
IntFmdn() - Virtual waiting time distribution function for integral values of x
$\operatorname{Mdn}()$ - Calculates the state probabilities of a queue (queue length)
Fekdn() - Virtual waiting time distribution function

SYNOPSIS

\#include <queuel.h>

double Fmdn(double x, double rho, int \mathbf{n});
double IntFmdn(int \mathbf{N}, double rho, int \mathbf{n});
double $* \operatorname{Mdn}($ double \mathbf{x}, double rho, int \mathbf{n});
double Fekdn(double x, double rho, int k, int n);

DESCRIPTION

delim $\$ \$$ These functions return the state probabilities or the virtual waiting time distribution of a \$M/D/n\$ queue. (And the virtual waiting time distribution of a $\$\{\mathrm{E}$ sub k$\} / \mathrm{D} / \mathrm{n} \$$ queue.)
Fmdn() is a model for the $\$ \mathrm{M} / \mathrm{D} / \mathrm{n} \$$ queuing system with Poisson arrivals and deterministic (constant) service time. Parameter x is the amount of unfinished work in the system. Rho is the load level of the system and n is the number of servers.
Fekdn() is a model for the $\$\{\mathrm{E}$ sub k$\} / \mathrm{D} / \mathrm{n} \$$ queuing system with Erlang-k arrivals and deterministic (constant) service time. Parameter x is the amount of unfinished work in the system. Rho is the load level of the system and n is the number of servers.

ALGORITHM

\$M/D/n\$ waiting time distribution is calculated using the following algorithm (Iversen):
$\$ P \$\{\$ \mathrm{~W}<=\mathrm{t} \$\} \$=$ sum from $\{\mathrm{i}=0\}$ to $\{\mathrm{n}-1\}$ sum from $\{\mathrm{j}=0\}$ to $\{\mathrm{i}\} \mathrm{P}(\mathrm{j})$ sum from $\{\{\mathrm{nu}\}=0\}$
to $\{T\}\{\{[A(\{n u\}-t)]$ sup $\{\{n u\} n+\{n u\}-1-i\}\}$ over $\{[\{n u\} n+n-1-i]!\}\}$ e $\sup \{A(\{n u\}-t)\}, \$$
where $\$ \mathrm{P}(\mathrm{j}) \$$ is a state probability.
For integral values of the waiting time we have
$\$ P \$\{\$ W<=t \$\} \$=\operatorname{sum}$ from $\{\{n u\}=0\}$ to $\{n(t+1)-1\} P(\{n u\}) . \$$
The state probabilities are calculated using the following procedure

- first we make an initial guess $\$(\mathrm{M} / \mathrm{M} / \mathrm{n}) \$$:
$\$\{\mathrm{P} \sup \{(1)\}\}(0)=(\{$ sum from $\{\mathrm{i}=0\}$ to $\{\mathrm{n}-1\}\{(\{$ lambda h$\})$ sup i$\}$ over $\{\mathrm{i}!\}+\{(\{$ lambda h$\})$
sup $n\}$ over $\{n!\}\{1\}$ over $\{1-\{$ lambda h\} over $\{n\}\}\})$ sup $\{-1\} \$$
$\$\{\mathrm{P} \sup \{(1)\}\}(\mathrm{i})=\mathrm{P}(\mathrm{i}-1)\{$ lambda h$\}$ over $\mathrm{i} \$, \$ \mathrm{i}=1,2, \ldots, \mathrm{n}-1 \$$
\$\{P sup $\{(1)\}\}(\mathrm{i})=\mathrm{P}(\mathrm{i}-1)\{$ lambda h$\}$ over $\mathrm{n} \$, \$ \mathrm{i}=\mathrm{n}, \mathrm{n}+1, \ldots, \mathrm{I} \$$ (until $\$ \mathrm{P}(\mathrm{i})<\{$ epsilon $\}$)
$\$\{\mathrm{P} \sup \{(1)\}\}(\mathrm{i})=\mathrm{P}(\mathrm{i}-1)\{$ lambda h$\}$ over $\mathrm{n} \$, \$ \mathrm{i}=\mathrm{I}+1, \ldots, \mathrm{I}+\mathrm{n} \$$
- then we iterate until $\$\{\max \operatorname{sub}\{\mathrm{i}<=\mathrm{I}\}\} \$|\$ \mathrm{P} \sup \{(\mathrm{k})\}(\mathrm{i})-\mathrm{P} \sup \{(\mathrm{k}-1)\}(\mathrm{i}) \$| \$<\{$ epsilon $\} \$$:
$\$ \mathrm{P}$ sup $\{(\mathrm{k})\}(\mathrm{i})=\$\{\$$ sum from $\{\{n u\}=0\}$ to $\{\mathrm{n}\} \mathrm{P}$ sup $\{(\mathrm{k}-1)\}(\{n u\}) \$\} \$ \mathrm{P}(\mathrm{i}, \mathrm{h})+$ sum from
$\{\{n u\}=n+1\}$ to $\{n+i\} P \sup \{(k-1)\}(\{n u\}) P(n+i-\{n u\}, h) \$, \$ i=0,1, \ldots, I \$$
$\$ \mathrm{P} \sup \{(\mathrm{k})\}(\mathrm{i})=\mathrm{P} \sup \{(\mathrm{k})\}(\mathrm{i}-1)\{\{$ lambda h$\}$ over n$\} \$, \$ \mathrm{i}=\mathrm{I}+1, \ldots, \mathrm{I}+\mathrm{n} \$$
$\$ S \sup \{(\mathrm{k})\}=\operatorname{sum}$ from $\{\mathrm{i}=0\}$ to $\{\mathrm{I}+\mathrm{n}\} \mathrm{P} \sup \{(\mathrm{k})\}$ (i)\$
$\$ \mathrm{P} \sup \{(\mathrm{k})\}(\mathrm{i})=\{\mathrm{P} \sup \{(\mathrm{k})\}(\mathrm{i})\}$ over $\{\mathrm{S} \sup \{(\mathrm{k})\}\} \$, \$ \mathrm{i}=0,1, \ldots, \mathrm{I}+\mathrm{n} \$$
$\$(\mathrm{P}(\mathrm{i}, \mathrm{h})=\{\{(\{$ lambda h$\})$ sup i$\}$ over $\{\mathrm{i}!\}\}$ e sup $\{-(\{$ lambda h$\})\}) \$$
$\$\{\mathrm{E}$ sub k$\} / \mathrm{D} / \mathrm{n} \$$ waiting time distribution is calculated using the $\$ \mathrm{M} / \mathrm{D} / \mathrm{n} \$$ algorithm:
$\$\{\mathrm{E}$ sub k$\} / \mathrm{D} / \mathrm{r} \$$ (FIFO) is equivalent to $\$ \mathrm{M} / \mathrm{D} / \mathrm{r} * \mathrm{k} \$$ (FIFO).

ERRORS

When $\$$ rho $\$$ is close to 1 , these functions might give inaccurate results.

SEE ALSO

COST 224: Performance evaluation and design of multiservice networks

