delim \$\$
NAME
Berl_i, Berl_d, Xerl, Aerl - Erlang and inverse Erlang functions

SYNOPSIS

\#include <erlang.h>
double Berl_i(int n, double a);
double Berl_d(double x, double a);
double Xerl(double b, double a);
double Aerl(double x, double b);
DESCRIPTION
These functions give solutions to the Erlang blocking formula. Erlang formula gives the probability that a communications system with n (or x) lines can't handle any more calls. This also depends on the traffic intensity a. All arguments to these functions must be positive and $0<b<1$.

Berl_i() returns the Erlang loss probability for a integer valued trunk group n and Poisson traffic a
Berl_d() returns the Erlang loss probability for a trunk group x, where x is a real valued variable (double). Second parameter is the Poisson traffic a.
Xerl() returns the number of trunks for a loss probability b and Poisson traffic a.
Aerl() returns the Poisson traffic value for a trunk group x and loss probability b.

ALGORITHM

Berl_i() is implemented by using the recursion formula
(1) $\$ \mathrm{E}(\mathrm{x}+1, \mathrm{a})=\{\mathrm{a} \mathrm{E}(\mathrm{x}, \mathrm{a})\}$ over $\{\mathrm{x}+1+\mathrm{a} \mathrm{E}(\mathrm{x}, \mathrm{a})\} . \$$

Berl_d() is divided into five sections depending on the value of the parameters.
Range 1: $\mathrm{x}<\mathrm{a}$ and $\mathrm{a}>0.01$
Apply the continued fraction expansion formula.
Range 2: $x>=a$ and $x>60$
Determine a value x ' such that $a>x$ x (i.e. apply an integral valued shift of x). Call Berl_d again with x ' < a and use the recurrence relation to arrive at the original value of x.

Range 3: $x>=a$ and $1<=x<=60$
Apply Rapp's parabola followed by the recurrence relation (1).
Range 4: $\mathrm{x}>=\mathrm{a}$ and $\mathrm{a}>0.01$ and $\mathrm{x}<1$
Apply Laguerre quadrature, Abramowitz [2], p. 923
Range 5: $0<\mathrm{x}<1$ and $0<\mathrm{a}<=0.01$
Apply formula (48) from Farmer and Kaufman [ref 1], p. 161
In Xerl() we first determine with inequality
$\mathbf{E}(\mathbf{n}, \mathbf{a})>E(\mathbf{n}+\mathbf{1}, \mathbf{a})$
the position of the interval $[\mathrm{N}, \mathrm{N}+1]$ such that $\mathrm{N} \ll \mathrm{X}<=\mathrm{N}+1$. By using the secant iteration method, we determine the exact root of the function

$$
\mathbf{f}(\mathbf{x})=\text { Berl_d }(\mathbf{x}, \mathbf{a})-\mathbf{b} .
$$

Evaluation time of $\overline{\mathbf{X}} \mathbf{e r l}()$ is proportional to the result value.
Aerl(): First we compute a starting value for a. Then a is improved using the Newton's iteration scheme. The iteration process is stopped as soon as the relative error in $\mathrm{E}(\mathrm{x}, \mathrm{a})$ is smaller than some prescribed value. When b is very small, this function has long evaluation time.

REFERENCES

[1] Farmer, R.F, Kaufman, I., "On the Numerical Evaluation of Some Basic Traffic Formulae", Networks, Vol. 8 (1978) p. 153-186
[2] Abramowitz, M., Stegun, I., "Handbook of mathematical functions", Dover Publications, Inc., New York, 8th printing, 1972.

