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MLSD in AWGN Channels

◆ In the previous lecture, decision feedback (DFE) was
introduced as modification to linear equalizer

◆ Reduces ISI without noise enhancement

◆ Basic limitations of DFE:
– ISI cancellation results in loss of signal energy

– symbol-by-symbol detection

→ DFE cannot be optimal in the sense of minimum BER

◆ In this lecture:

Derive the optimal (ML) method for detecting a symbol
sequence in a linear channel and find its efficient
implementation using the Viterbi algorithm
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MLSD in AWGN Channels...

◆ Let us reconsider the symbol detection problem in
discrete-time AWGN channels (symbol-rate sampling)

◆ When there is no ISI, symbol-by-symbol detection is
optimal in the sense of minimum error probability

x(k)=akδk

n(k)

+ $a k kδ
y(k)
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MLSD in AWGN Channels...

◆ Maximum a posteriori (MAP) criterion

◆ Bayes rule for conditional probabilities:
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◆ Maximize the probability that the received symbol is the
right one (posterior probability):
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◆ f(r(k)) = probability distribution of r(k)
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MLSD in AWGN Channels...

◆ AWGN channel:   r(k)  =  ak  +  n(k)

◆ Gaussian probability distribution:
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◆ When the symbol probabilities P(Am) are the same for all
symbols, m = 1,…,M , MAP is the same as Maximum
Likelihood (ML) criterion:

2/

1
))((

0
22

/))((

0

0
2

N

e
N

Akrf

nr

NAkr

m
m

==

= −−

σσ

π



Signal Processing Laboratory
© Timo I. Laakso

Page 9

______________________________________________________________________________________________________________________________________

MLSD in AWGN Channels...

◆ Binary PAM:

◆ Gaussian distribution: ML criterion is equivalent to
minimizing  Euclidian (quadratic) distance metric

◆ Decide symbol  ak  so that MIN))(( 2 =− mAkr
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MLSD in AWGN Channels...

◆ Vector AWGN channel:   r =  am  +  n
◆ m = 1… M (M  different possible symbol vectors)

[ ]T)1()1()( +−−= Kkrkrkr Lr

◆ Consider then the detection of  a sequence of K symbols

r(k)  =  ak  +  n(k),  k = 1,2,…,K

◆ The received and transmitted sequences (signals) can be
considered as K-length vectors
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MLSD in AWGN Channels...

◆ The decision of a K-length symbol sequence can be based
on choosing the best symbol vector from the possible ones

◆ ML criterion: maximize probability
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MLSD in AWGN Channels...

◆ The ML solution is equivalent to using K-dimensional
distance metric: Choose the sequence am that minimizes
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◆ Implementation with a bank of M sequence tests

◆ One for each am , m = 1,…, M
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MLSD in AWGN Channels...

◆ MLSD implementation: test all possible sequences am, m =
1,…,M and choose the one with minimum distance metric!

r Compute
D(r,a1)

Compute
D(r,a2)

Compute
D(r,aM)

Choose
am with
MIN D

am,opt
. .

 .

. .
 .

1

2

M
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MLSD in AWGN Channels...

◆ Direct implementation of MLSD is laborious

◆ Binary PAM:  M = 2K  different sequences am  possible

◆ Alternative: the computation can be made in a more
efficient iterative manner (Viterbi algorithm)

◆ Let us study linear channel first!
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MLSD in Linear Channels

◆ Combine Tx, channel and Rx filters into one h(k):

◆ Crucial assumptions:

1) Noise is AWGN after Rx filter:

2) h(k) is finite length (L) → ISI over L symbols only

x(k)=akδk

hT(k)

n(k)

+
$a k kδ

c(k) hR(k)
y(k)

akδk

n(k)

+h(k)
y(k)

$a k kδ
MLSD
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MLSD in Linear Channels...

◆ Received discrete-time signal:

)(*)()( knakhkr k +=

◆ Linear filter input is Gaussian →  the output is too

◆ The conditional probability of the received signal vector
can be expressed as in the AWGN case:
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MLSD in Linear Channels...

◆ The ML solution for linear channel:

Choose the sequence am (which has ak as its elements )
that minimizes the distance metric
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MLSD in Linear Channels...

◆ MLSD implementation for linear channel: test all possible
M sequences and choose the one with minimum distance
metric!

r Compute
DL(r,a1)

Compute
DL(r,a2)

Compute
DL(r,aM)

Choose
am with
MIN D

am,opt
. .

 .

. .
 .

1

2

M
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MLSD in Linear Channels...

Properties of  MLSD in linear channel:

◆ MLSD makes a joint decision of a block of K symbols

◆ Channel estimate needed to compute the distance metric

◆ All the signal energy considered in the decision (energy at
right symbol instant + ISI)

◆ Optimal in the ML sense (min BER)

◆ But: laborious to implement

(binary PAM: M = 2K comparisons!)
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Viterbi Algorithm

◆ MLSD involves computation of distances between
received signal vector and possible symbol sequences

◆ The distance computation is redundant: because the
sequences contain same subsequences, the same squared
differences are computed several times

◆ Strategy for reducing computations:

1) Start computing distance metric from one end of the
sequence

2) Cancel possible subsequences on the way so that those
that cannot be the best are eliminated



Signal Processing Laboratory
© Timo I. Laakso

Page 23

______________________________________________________________________________________________________________________________________

Viterbi Algorithm...

◆ Finite-state machines: a linear discrete-time channel
model with L taps (FIR filter) has a memory of length L-1

◆ The next output depends on the past L values of the input

◆ Binary PAM: the channel has 2L-1 states

+

T TT T...
ak-1

h (0) h (2) h(L-1)

y(k)

Input symbol
sequence ak

h (1)

ak-2 ak-L+1
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Viterbi Algorithm...

◆ Consider a two-tap filter channel model with impulse
response (no noise):

15.0)( −+= kkkh δδ

z-1
xk=ak

h(xk,xk-1) = xk  + 0.5 xk-1

sk

xk-1=ak-1

◆ Markov model for state transitions:

0 1

(0,0.5)

(1,1.5)(0,0)

(xk,sk)=(1,1)

State Ψ 

New state 
New output
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Viterbi Algorithm...

◆ Trellis diagram for the 2-tap channel model:

…
Ψ = 0

Ψ = 1

k = 0 k = 1 k = 2 k = K-1 k = K

(1,1.5)

(1,1.0)

(0,0.5)

(Xk,Sk)=(0,0.0)

State Ψ 

New state New output
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Viterbi Algorithm...

◆ The trellis contains 2L-1  = 2 different states

◆ The sequence is K symbols long

◆ There are M = 2K different possible sequences, of which
the one closest to the received sequence should be found

◆ Each possible symbol sequence corresponds to a certain
path in the trellis, which has a certain length ( =  distance
from the received (sub)sequence)

◆ Each connection of two states is a branch which has a
certain length ( = increase in total length of path)
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Viterbi Algorithm...

◆ The problem of Viterbi algorithm:

How to use the trellis to search the received signal
sequence once and find the optimum ML symbol sequence
with minimum number of computations?

◆ Algorithm:
– proceed symbol by symbol and compute length of new

branches

– determine the overall lengths of remaining paths

– cancel unnecessary paths and keep surviving paths only
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Viterbi Algorithm...

◆ How many paths need to be stored at each step to find the
optimum solution?

◆ Answer: N paths for a system with N states

(Binary PAM, L-tap channel: N = 2L-1)
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Viterbi Algorithm...

Example (No. 9-25 Lee-Messerschmitt):

◆ 2-tap filter, channel h(k) = δk +0.5 δk-1

◆ Sequence length K = 4

Ψ = 0

Ψ = 1

k = 0 k = 1 k = 2 k = 3 k = 40.04 0.36 0.81 0.01

0.64 0.16
0.01

0.81 0.36

0.01
0.16 0.16

0.2 0.6 0.9 0.1Received signal:
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Viterbi Algorithm...
◆ This is how it goes:

|0.2-0|2 = 0.04

0.64

0.04

0.64
Branch length

Path length

|yk-sk|
2

0.04 0.36

0.16
0.40

0.20

0.04 0.36

0.16 0.01
0.16

0.41

0.36

0.04 0.01

0.16
0.16

0.37

0 1 0 0Decisions
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Viterbi Algorithm...

◆ Basic Viterbi gives the detected sequence only after
processing the whole sequence of K symbols (long delay!)

◆ The early symbols usually do not change after processing
a certain number (ca. 5L) symbols

◆ Modification: decide early symbols after processing up to
the truncation depth d (<<K)
– reduces delay and computations

– suboptimal solution in general
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Viterbi Algorithm...

◆ Viterbi algorithm is (almost) optimal ML solution (better
than linear or DFE equalizer)

◆ Viterbi algorithm can be applied when
– the delay of block processing is acceptable

– the complexity (L-1)K  is tolerable (short enough impulse
response)

◆ Example: GSM mobile phone receiver uses Viterbi for K =
148 bit block reception (26 bit training sequence in the
middle, 2 x 58 bits data, 2x3 extra bits).
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Summary

Today we discussed:

Viterbi algorithm

I. Maximum Likelihood Sequence Detection (MLSD) in

AWGN Channels

II. MLSD in linear channels

III. Viterbi algorithm

Next week: Guest lecture!


