

Helsinki University of Technology Signal Processing Laboratory

S-38.411 Signal Processing in Telecommunications I

Spring 2000

Lecture 7: Adaptive equalizers 2

Prof. Timo I. Laakso timo.laakso@hut.fi, Tel. 451 2473 http://wooster.hut.fi/studies.html

Timetable

- L1 Introduction; models for channels and communication systems
- L2 Channel capacity
- L3 Transmit and receive filters for bandlimited AWGN channels
- L4 Optimal linear equalizers for linear channels 1
- L5 Optimal linear equalizers for linear channels 2
- L6 Adaptive equalizers 1
- L7 Adaptive equalizers 2
- L8 Nonlinear receivers 1: DFE equalizers
- L9 Nonlinear receivers 2: Viterbi algorithm
- L10 GL1: DSP for Fixed Networks / Matti Lehtimäki, Nokia Networks
- L11 GL2: DSP for Digital Subscriber Lines / Janne Väänänen, Tellabs
- L12 GL3: DSP for CDMA Mobile Systems / Kari Kalliojärvi, NRC
- L13 Course review, questions, feedback
- E 24.5. (Wed) 9-12 S4 Exam

Signal Processing Laboratory © Timo I. Laakso

Contents of Lecture 7

Adaptive equalizers 2

- I. Estimation of autocorrelation matrix
- II. Stochastic Gradient algorithm
- III. Analysis of SG algorithm

Signal Processing Laboratory
© Timo I. Laakso

Page 3

Helsinki University of Technology Signal Processing Laboratory

I. Estimation of autocorrelation matrix

Estimation of autocorrelation matrix

- ◆ In the previous lecture, we derived the MSE gradient algorithm for adaptation of the FIR equalizer
- ◆ MSEG requires knowledge of channel in form of Rx signal autocorrelation matrix and crosscorrelation vector
- ◆ Separate estimation cumbersome and adds delay
- ◆ Goal of this lecture:

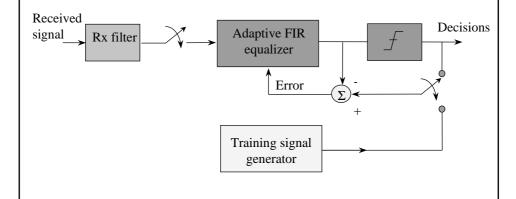
Improve the MSEG algorithm to eliminate separate estimation of autocorrelation matrix and crosscorrelation vector

Signal Processing Laboratory
© Timo I. Laakso

Page 5

Estimation of autocorrelation matrix...

◆ System model:



Signal Processing Laboratory
© Timo I. Laakso

Estimation of autocorrelation matrix...

- ◆ Consider estimation of autocorrelation matrix
- ◆ Diagonal term:

$$R_0 = E[r^2(k)] \approx \frac{1}{L} \sum_{l=0}^{L-1} r^2(k-l) = \hat{R}_0$$

♦ Whole matrix:

$$\hat{\mathbf{R}} = \frac{1}{L} \sum_{l=0}^{L-1} \mathbf{r}(k-l) \mathbf{r}^{\mathrm{T}}(k-l)$$

◆ Crosscorrelation vector:

$$\hat{\mathbf{p}} = \frac{1}{L} \sum_{l=0}^{L-1} \mathbf{r}(k-l) a_{k-l}$$

Signal Processing Laboratory
© Timo I. Laakso

Page 7

Estimation of autocorrelation matrix...

Problems with averaging estimation:

- ◆ Choice of averaging window *L*
 - long averaging window adds delay and degrades tracking capability
 - short window gives noisy estimates
- ◆ Solution: *integrate* estimation and adaptation into one algorithm

Signal Processing Laboratory
© Timo I. Laakso

Helsinki University of Technology Signal Processing Laboratory

II. Stochastic Gradient Algorithm

Stochastic Gradient Algorithm

◆ General MSE expression:

$$E[e^{2}(k)] = E[\mathbf{h}_{R}^{T}\mathbf{r}(k) - a_{k}]^{2}$$

$$= E[a_{k}^{2}] - 2\mathbf{h}_{R}^{T}E[\mathbf{r}(k)a_{k}] + \mathbf{h}_{R}^{T}E[\mathbf{r}(k)\mathbf{r}^{T}(k)]\mathbf{h}_{R}$$

$$= E[a_{k}^{2}] - 2\mathbf{h}_{R}^{T}\mathbf{p} + \mathbf{h}_{R}^{T}\mathbf{R}\mathbf{h}_{R}$$

- ◆ Problem: evaluating the expectations
- ◆ Solution: forget the expectation and use *instantaneous* error instead

Stochastic Gradient Algorithm...

◆ Instantaneous squared error (ISE):

$$e^{2}(k) = (\mathbf{h}_{R}^{T}\mathbf{r}(k) - a_{k})^{2}$$

$$= a_{k}^{2} - 2\mathbf{h}_{R}^{T}\mathbf{r}(k)a_{k} + \mathbf{h}_{R}^{T}\mathbf{r}(k)\mathbf{r}^{T}(k)\mathbf{h}_{R}$$

♦ Gradient:

$$\nabla_{\mathbf{h}_{R}} \left[e^{2}(k) \right] = 2\mathbf{r}(k)\mathbf{r}^{\mathrm{T}}(k)\mathbf{h}_{R} - 2\mathbf{r}(k)a_{k}$$

 ◆ Gradient of ISE can be viewed as stochastic estimate for the exact MSE gradient

Signal Processing Laboratory
© Timo I. Laakso

Page 11

Stochastic Gradient Algorithm...

◆ From ISE, the stochastic estimates for the autocorrelation matrix and crosscorrelation vector are:

$$\hat{\mathbf{R}} = \mathbf{r}(k)\mathbf{r}^{\mathrm{T}}(k)$$

$$\hat{\mathbf{p}} = \mathbf{r}(k)a_{k}$$

• Simplified form for stochastic gradient:

$$\nabla_{\mathbf{h}_{R}} \left[e^{2}(k) \right] = -2\mathbf{r}(k)(a_{k} - \mathbf{r}^{T}(k)\mathbf{h}_{R}) = -2\mathbf{r}(k)e(k)$$

◆ Use gradient of ISE to construct a stochastic gradient (SG) algorithm

Signal Processing Laboratory
© Timo I. Laakso

Stochastic Gradient Algorithm...

◆ Stochastic gradient (SG) algorithm:

$$\mathbf{h}_{R}(k+1) = \mathbf{h}_{R}(k) - \frac{\beta}{2} \nabla_{\mathbf{h}_{R}} e^{2}(k)$$
$$= \mathbf{h}_{R}(k) + \beta e(k) \mathbf{r}(k)$$

- ♦ Also known as Least Mean Squares (LMS) algorithm
- Steps of filtering and adaptation:

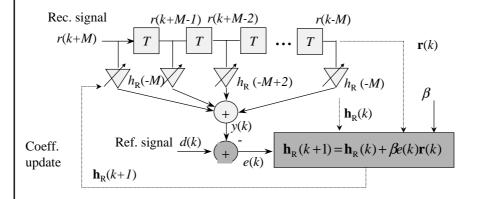
$$y(k) = \mathbf{h}_{R}^{T}(k)\mathbf{r}(k)$$
$$e(k) = d(k) - y(k) = a_{k} - y(k)$$
$$\mathbf{h}_{R}(k+1) = \mathbf{h}_{R}(k) + \beta e(k)\mathbf{r}(k)$$

Signal Processing Laboratory
© Timo I. Laakso

Page 13

Stochastic Gradient Algorithm...

◆ Computations for SG algorithm:



Signal Processing Laboratory
© Timo I. Laakso

Stochastic Gradient Algorithm...

Properties of SG algorithm:

- ◆ No separate estimation needed: all signals of coefficient update equation are known
- ◆ Continuous averaging of channel data integrated in the algorithm
- lacktriangle Iteration index and time index k are the same
- Noisy gradient estimate → convergence is stochastic (the result can sometimes get worse!)

Signal Processing Laboratory
© Timo I. Laakso

Page 15

Helsinki University of Technology Signal Processing Laboratory

III. Analysis of SG algorithm

Analysis of SG algorithm

◆ Let us study *coefficient error vector*:

$$\Delta \mathbf{h}_{R}(k) = \mathbf{h}_{R}(k) - \mathbf{h}_{R, \text{opt}}$$

◆ SG update equation:

$$\mathbf{h}_{R}(k+1) = \mathbf{h}_{R}(k) + \beta e(k)\mathbf{r}(k)$$

• Elaborate *coefficient error update* equation as:

$$\Delta \mathbf{h}_{\mathrm{R}}(k+1) = \left(I - \beta \mathbf{r}(k)\mathbf{r}(k)^{\mathrm{T}}\right) \Delta \mathbf{h}_{\mathrm{R}}(k) + \beta e_{\mathrm{opt}}(k)\mathbf{r}(k)$$

where the error of the optimal solution is $e_{\text{opt}}(k) = a_k - \mathbf{r}^{\text{T}}(k)\mathbf{h}_{\text{R,opt}}$

Signal Processing Laboratory
© Timo I. Laakso

Page 17

Analysis of SG algorithm...

• Define squared norm for coefficient error vector:

$$\left\|\Delta \mathbf{h}_{R}(k)\right\|^{2} = \Delta \mathbf{h}_{R}^{T}(k)\Delta \mathbf{h}_{R}(k)$$

- ◆ When small, the solution is close to optimum!
- Relation between MSE and coefficient error:

$$E[e^{2}(k)] = E_{\text{MIN}} + (\mathbf{h}_{R} - \mathbf{h}_{R,\text{opt}})^{T} \mathbf{R} (\mathbf{h}_{R} - \mathbf{h}_{R,\text{opt}})$$
$$= E_{\text{MIN}} + \Delta \mathbf{h}_{R}^{T} \mathbf{R} \Delta \mathbf{h}_{R}$$

Signal Processing Laboratory
© Timo I. Laakso

Analysis of SG algorithm...

◆ Take expectation w.r.t. the coefficient process:

$$E[e^{2}(k)] = E_{\text{MIN}} + E[\Delta \mathbf{h}_{R}^{T} \mathbf{R} \Delta \mathbf{h}_{R}]$$
$$= E_{\text{MIN}} + E_{\text{EX}}$$

- ◆ The latter term is called *Excess MSE*:
- ◆ Excess MSE tells how much error is caused by the adaptation process

Signal Processing Laboratory
© Timo I. Laakso

Page 19

Analysis of SG algorithm...

- ◆ In general, the Excess MSE is hard to analyze exactly
- Study white noise input: $\mathbf{R} = R_0 \mathbf{I}$, $R_0 = \mathbf{E}[r^2(k)]$
- ◆ Now the Excess MSE is

$$E[e^{2}(k)] = E_{MIN} + R_{0}E[\|\Delta\mathbf{h}_{R}\|^{2}]$$

◆ Following result can be obtained (see Lee-Messerschmitt, Appendix 11-A):

$$E\left[\left\|\Delta\mathbf{h}_{R}\left(k+1\right)\right\|^{2}\right] = \gamma E\left[\left\|\Delta\mathbf{h}_{R}\left(k\right)\right\|^{2}\right] + \beta^{2}NR_{0}E_{\min}$$

where $\gamma = 1 - 2 \beta R_0 + \beta^2 N R_0^2$

Signal Processing Laboratory
© Timo I. Laakso

Analysis of SG algorithm...

◆ Condition for convergence:

$$\left|\gamma\right| < 1$$

$$\Leftrightarrow -1 < 1 - 2\beta R_0 + \beta^2 NR_0^2 < 1$$

◆ This is equivalent to requiring

$$0 < \beta < \frac{2}{NR_0}$$

◆ Compare with MSEG criterion:

$$0 < \beta < \frac{2}{\lambda_{\text{MAX}}} = \frac{2}{R_0}$$

Signal Processing Laboratory
© Timo I. Laakso

Page 21

Analysis of SG algorithm...

- The max step size of SG algorithm is proportional to 1/N
 (N = no. of filter coefficients)
- ◆ Extra tolerance is needed because of the stochastic nature of the algorithm

Summary

Today we discussed:

Adaptive equalizers 2

- I. Estimation of autocorrelation matrix
- II. Stochastic Gradient algorithm
- III. Analysis of SG algorithm

Next week: Decision-feedback equalizers

Signal Processing Laboratory
© Timo I. Laakso