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MM SE equalization

0 Inthe previous lecture, we considered optimization of
transmit and receivefiltersin linear channels with noise
0 Remaining problems:
— usually only Rx filter can be optimized in practice

— simultaneous noise minimization (Matched filter) and ISl
elimination (Nyquist criterion) is not possible at the receiver

— Zero-forcing (ZF) equalizer removes ISl, but has noise
problems
0 A new design criterion needed which allows for a
compromise between ISl and noise
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MM SE equalization... C
0 System model:
n(t)
Tx Fixed /L Rx to be designed
ék 6k
—)A h(t) c(t) (+) he () T::;r _71_ |
A Y0
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MM SE equalization... O

0 Notation: x(t) = Z ao(t—KT), r(t)=h(t) Oc(t) Ox(t) +n(t)

y(t) = he (1) O (t) = he (£) () Ch (8) (1) + he (£) Ch(t)
= g(t) IX(t) +ng (1)

X(t) = input signa (symbol sequence)

h.(t), hg(t) = transmit and receivefilters

c(t) = channel impulse response

n(t) = additive Gaussian noise (colored): Sa(f)zl\zloﬁo(f)
Normalization: “

[Sa(Def =2
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MM SE equalization...

Assumptions:

0 Tx filter h(t) isfixed

0 Rx filter hg(t) isto be optimized

0 Optimization criterion: minimum total MSE

0 Channel c(t) and noise power spectrum S,(f) known at Rx
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MM SE equalization... O

0 ldeally, with no ISl and no noise, the signal after Rx isas
desired (at sampling instants). Otherwise there is an error:

&ft) = y(t) - X(t)
= [ (t) Ce(t) Che (t) - ()] X(t) + he (8) CN(t)

0o Minimize MSE:

Ele? )] = Elfh. () Co(t) Ch, () - SO} x(t) + he () Cnt)
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MM SE equalization... O
0 MSE viaerror power spectrum:
Ele*(t)] = [s.(ff, S(0)= [r(e""dr
0 Assume that signal and noise are independent
O S(f) =[H (F)CFHL(F) =TS (1) +HHe(F) S ()
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MM SE equalization... O

0 Combine Rx terms (to be solved!) and complete the square:
S() =S (HHa(H)-H(NS(D/S (B +8(NS(1)/S (F)

where

Hqc(F) =H.(T)C(T)

S (F) =[Hro(F) S () +S,(F)

0 How to minimizethe M SE?
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MM SE equalization...

0 Set first term to zero:
(» MSE=MIN at any frequency — totad MSE = MIN)

S (F)|Ha(f)=Hr()S()/S ()] =0
0 Optima MSE solution for Rx filter (= MM SE equalizer):

s.(f)
_ HIHCAHS (1)
HL(H)C(H)] 'S, () +8,(f)

He ()=
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MM SE equalization...

Observations on the MM SE solution:
1) High-noise case:

_ Hi(F)C(F)S,(f)

H,(f
(1) S.(f)

0 Matched filter!
2) High-ISl case:
1

D= (e

0 Zero-forcing equalizer!
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MM SE equalization...

The MM SE solution:

0 enables a good compromise between noise and 1Sl
minimization

O isrobust (avoids problems with channel zeroes)

0 iswidely used in practice

0 enables efficient adaptive implementations
(with discrete time FIR filters!)
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I1. Discrete-time FIR equalizers

Discrete-time FIR equalizers

The previous equalizers’ impulse response is

0 continuous-time

0 infinite-length

0 non-causal

Practical equalizer implemented almost always with
discrete-time Finite Impulse Response (FIR) filters
0 finite complexity

0 causal

0 can be made adaptive with simple methods
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Discrete-time FIR equalizers...

0 Discrete-time system model:
Sampling at symbol rate (fg = /T, x(K)=x(KT) etc.)

n(K)

J\ a8,
(+) 5a

hr(K)

7 hr(K) c(K)

X(K)=a,d y( K)
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Discrete-time FIR equalizers...

Discrete-time notation:
(9= a9,

r (k) = hy (k) (k) Ox(K) + n(k)

y(K) = g (k) Cr (K)
= hy (K) Cc(k) Ch, (k) * X(K) + hy, (k) On(k)
= g(K)* x(K) + N (K)

Note! Because of symbol-rate sampling some aliasing may
happen (excess bandwidth!)
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Discrete-time FIR equalizers... O

0 The previous continuous-time equalizers can be rederived
for discrete-time infinite-length filters

0 Instead, let us go directly for discrete-time FIR filters!
0 Receivefiltering:

y(K) =hg (k) Ur (k)

- ihRa)r(k—l)
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Discrete-time FIR equalizers...

o FIR filter structure:

r(k+M-1) r(k+M-2) r(k-M)
r(k+M) T T T| «au| T
hs (-M+1 4‘
(M) he (Mt NV (M)

y (%
y(k) = _ZMhR(l)r(k-l)

Signal Processing Laboratory
© Timo |. Laakso Page 20




Discrete-time FIR equalizers...

0 Convolution in vector notation:
M
y(k) = hg (k) Or (k) = thR(l)r(k =1) =hgr(k)
| ==
0 FIR coefficient and signal vectors:

he =[Me(-M) - he(M -1) h(M)]'

r@=[rk+M) - r(k-M+1) rk-M)|"

Sgnal Processing Laboratory

© Timo |. Laakso Page 21

Discrete-time FIR equalizers...

0 Consider kth error signal sample:
&(k) = y(k) —x(k) =hgr (k) - &,
0 The MSE in vector notation:

Ele? (k)] = E[lhir (0 - 2, ]
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Discrete-time FIR equalizers...

0 Elaborate the M SE:
Ele?()] = E|hIr () - a, |

= E[az]- 2nLE[r (K)a, |+ hLE[r (k)r " ()]
= E[az]- 2nIp +h1Rh,

o Define autocorrelation matrix:
R = E|r (k)r T (k)|

and crosscorrelation vector:

p = Elr(K)a,]
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Discrete-time FIR equalizers... O

0 Example: consider 1-tap FIR filter (1 coefficient only):

he =he(0) R=Er*(k)]=R, p=Eral=p,
0 Elaborate M SE (compl ete the square!):
Ele? ()] = E[az |- 2n. (@) p, + Ry1Z (0)
= E[ak2 _E2§+ ROE‘uR(O) —gzg

Signal Processing Laboratory Page 24

© Timo |. Laakso




Discrete-time FIR equalizers...

0 Optimal MM SE solution: set square term to zero:

he (0) = Po
(0) R

o Minimum MSE:

ele? 0] = ela] - 22

0
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Discrete-time FIR equalizers...

0 General caseof N-tap FIR filter:

Ele?(k)| = Ha?|-2hTp+hiRhy,

= E[af]—pTR'lp+(hR —R'lp)T R(hR —R‘lp).

o MMSE solution;
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Discrete-time FIR equalizers...

Properties of the MM SE solution:
0 autocorrelation matrix R always positive (semi)definite

=> unique minimum always exists (error surfaceis N-
dimensional paraboloid, ‘bowl’)

0 on-line solution requires estimationRfandp & matrix
inversion => computationally intensive, numerical problems

O iterative solutions for the matrix inversion
=> adaptive filter theory!
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Summary

Today we discussed:
Optimal linear equalizersfor linear channels 2

I. MMSE equalization
[1. Discrete-time FIR equalizers

Next week: Adaptive equalizers |
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