

Helsinki University of Technology Signal Processing Laboratory

S-38.411 Signal Processing in Telecommunications I

Spring 2000 Lecture 2: Channel Capacity

Prof. Timo I. Laakso timo.laakso@hut.fi, Tel. 451 2473 http://wooster.hut.fi/studies.html

Timetable

- L1 Introduction; models for channels and communication systems
- L2 Channel capacity
- L3 Transmit and receive filters for bandlimited AWGN channels
- L4 Optimal linear equalizers for linear channels 1
- L5 Optimal linear equalizers for linear channels 2
- **L6** Adaptive equalizers 1
- L7 Adaptive equalizers 2
- L8 Nonlinear receivers 1: DFE equalizers
- L9 Nonlinear receivers 2: Viterbi algorithm
- L10 GL1: DSP for Fixed Networks / Matti Lehtimäki, Nokia Networks
- L11 GL2: DSP for Digital Subscriber Lines / Janne Väänänen, Tellabs
- L12 GL3: DSP for CDMA Mobile Systems / Kari Kalliojärvi, NRC
- L13 Course review, questions, feedback
- **E** 24.5. (Wed) 9-12 S4 **Exam**

Signal Processing Laboratory
© Timo I. Laakso

Contents of Lecture 2

Channel capacity

- I. Capacity of AWGN Channel
- II. Capacity of linear channel with coloured noise
- III. Capacity of multiuser channels
- IV. Other interference and effect on capacity

Signal Processing Laboratory
© Timo I. Laakso

Page 3

Helsinki University of Technology Signal Processing Laboratory

I. Capacity of AWGN Channel

Why capacity analysis?

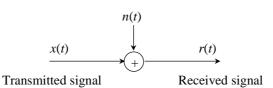
◆ To design practical communication systems, one needs to understand the theoretical limits of transmission

Measures for transmission capacity (= max bit rate):

- ◆ Shannon capacity
 - based on information theory
 - maximum transmission rate which enables error-free transmission (in theory)
- ◆ Outage capacity
 - transmission capacity (or no. of users) that is available e.g.
 95% of time (at prescribed error probability)
 - can be measured in practice
- ♦ Etc.

Signal Processing Laboratory
© Timo I. Laakso

Page 5


Helsinki University of Technology Signal Processing Laboratory

Capacity of AWGN Channel

Capacity of AWGN channel

Channel noise

Bandlimitation:

- ◆ Every channel uses limited frequency band
- ◆ Limits both the signal and noise bandwidth

Signal Processing Laboratory
© Timo I. Laakso

Page 7

Capacity of AWGN channel...

Power Spectral Density	$S_{x}(f)$	-
	$S_n(f)$	N /2
		$N_0/2$
-W	0	W f

Distribution of signal and noise power in frequency:

- ◆ Assume flat noise power spectrum (AWGN)
- ◆ Assume signal bandwidth of W Hz

Signal Processing Laboratory
© Timo I. Laakso

Symbol Rate Limitation

◆ Sampling theorem: in order to accurately represent a signal with max frequency component of *W* Hz, the sampling rate must be

$$f_s \ge 2W \tag{2.1.}$$

◆ Conversely: in the bandwidth of W Hz we can only represent a sampled signal of at most of the rate $R_{MAX} = 2W = maximum \ symbol \ rate$

Signal Processing Laboratory
© Timo I. Laakso

Page 9

Bits per Symbol Limitation

- ◆ How many bits can be loaded onto one symbol to be transmitted?
- Basic result from information theory (Shannon):

$$C_S = \frac{1}{2}\log_2\left(1 + \frac{P_x}{\sigma^2}\right) = \frac{1}{2}\log_2\left(1 + SNR\right) \quad \text{[bits/symbo 1]}$$

◆ Capacity per symbol in an AWGN channel depends on SNR only

Total Transmission Capacity

• Maximum bit rate in AWGN channel:

$$C = R_{MAX}C_S = 2W \cdot \frac{1}{2}\log_2(1 + SNR) = W\log_2(1 + SNR)$$

- ◆ Also called the *Shannon Limit*
- ◆ Transmission capacity is maximized by
 - using as high symbol rate as possible
 - using a dense symbol constellation (as many bits/symbol as possible)

Signal Processing Laboratory
© Timo I. Laakso

Page 11

Example: Telephone Channel Capacity

- ◆ Analog telephone lines use the frequency band of 300-3400 Hz and may have a typical SNR of 30 dB. Assuming ideal AWGN channel, what is the channel capacity?
- ◆ Solution:

$$SNR = 10^{30/10} = 1000$$

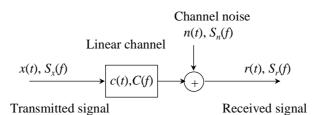
 $C = W \log_2(1 + SNR)$
 $= 3.1 \text{kHz} \times \log_2(1001)$
 $= 3.1 \text{kHz} \times \ln(1001) / \ln(2)$
 $\approx 30.8 \text{ kbit/s}$

♦ How transmission rates of several Mbit/s with DSL techniques can be possible?

Signal Processing Laboratory
© Timo I. Laakso

Helsinki University of Technology Signal Processing Laboratory

Capacity of Linear Channel with Colored Noise


Linear Channel

- ◆ AWGN channel model is not accurate for most channels
- Features to be added:
- 1) Linear distortion
 - different gain at different frequencies
 - pulse spreading in time domain (→ ISI, intersymbol interference)
- 2) Colored noise
 - non-flat noise power spectrum
- → Channel capacity is reduced

Signal Processing Laboratory
© Timo I. Laakso

◆ Autocorrelation function:

$$r_n(\tau) = E[n(t)n(t+\tau)]$$

◆ Power spectrum (Power Spectral Density, PSD):

$$S_n(f) = \int_{-\infty}^{\infty} r_n(\tau) e^{-j2\pi f \tau} d\tau$$

Signal Processing Laboratory
© Timo I. Laakso

Page 15

Linear Channel...

◆ How does linear channel affect power spectrum?

$$r(t) = c(t) * x(t)$$

• By its squared magnitude:

$$S_r(f) = \left| C(f) \right|^2 S_x(f)$$

• Consider the capacity of a small *slice* of linear channel (width Δf at frequency f_0):

$$C(f_0) = \Delta f \log_2 \left(1 + \frac{S_x(f_0) |C(f_0)|^2 \Delta f}{S_n(f_0) \Delta f} \right)$$

• Obtain total capacity by *integration*:

$$C = \int_{0}^{\infty} \log_{2} \left(1 + \frac{S_{x}(f)|C(f)|^{2}}{S_{n}(f)} \right) df = \frac{1}{2} \int_{-\infty}^{\infty} \log_{2} \left(1 + \frac{S_{x}(f)|C(f)|^{2}}{S_{n}(f)} \right) df$$

Signal Processing Laboratory
© Timo I. Laakso

Page 17

Linear Channel...

- ◆ Input PSD $S_x(f)$ needs to be known to evaluate capacity → $S_x(f)$ can be optimized to maximize capacity!
- ◆ Limited power constraint:

$$E[x^{2}(t)] = \int_{-\infty}^{\infty} S_{x}(f) df = P_{x}$$

- ◆ Constrained optimization via Lagrange multipliers
- ◆ Cost function:

$$g(S_x, \lambda) = C + \lambda \left\{ P_x - \int_{-\infty}^{\infty} S_x(f) df \right\}$$

Signal Processing Laboratory
© Timo I. Laakso

♦ Our cost function:

$$g(S_{x}, \lambda) = \int_{-\infty}^{\infty} \left\{ \frac{1}{2} \log_{2} \left(1 + S_{x}(f) |C(f)|^{2} / S_{n}(f) \right) - \lambda S_{x}(f) \right\} df + \lambda P_{x}$$

◆ Optimization: solve for zeros of the derivatives

$$\begin{cases}
\frac{\partial g}{\partial S_x} = \int_{-\infty}^{\infty} \left\{ \frac{1}{2\ln 2} \cdot \frac{1}{1 + S_x |C|^2 / S_n} \cdot \frac{|C|^2}{S_n} - \lambda \right\} df = 0 \\
\frac{\partial g}{\partial \lambda} = P_x - \int_{-\infty}^{\infty} S_x(f) df = 0
\end{cases}$$

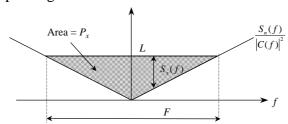
Signal Processing Laboratory
© Timo I. Laakso

Page 19

Linear Channel...

• Solving for optimum $S_x(f)$ gives

$$S_{x,opt}(f) = \begin{cases} L - \frac{S_n(f)}{|C(f)|^2}, & f \in F \\ 0, & \text{elsewhere} \end{cases}$$


where

$$L = \frac{1}{\lambda 2 \ln 2}$$

and F is the frequency region where $S_x(f)$ is positive

Water pouring theorem:

Where should Tx power be allocated to maximize capacity?

At frequencies where:

- ◆ Channel noise PSD is low
- ◆ Channel gain is large (low attenuation)

Signal Processing Laboratory
© Timo I. Laakso

Page 21

Example 1: AWGN Channel

◆ Consider AWGN channel of bandwidth *W*:

$$S_n(f) = P_n/W, \quad 0 \le f \le W$$

 $|C(f)| = 1$
 $S_x(f) = S_{x,opt}(f) = ?$

◆ Solve for optimal Tx spectrum:

$$S_x(f) = L - S_n(f) / |C(f)|^2$$
$$= L - P_n / W$$

Signal Processing Laboratory
© Timo I. Laakso

Example 1: AWGN Channel...

◆ Constrained total transmit power:

$$P_{x} = \int_{0}^{W} S_{x}(f) df = (L - P_{n} / W)W$$

$$\Rightarrow L = (P_{x} + P_{n})W$$

$$\Rightarrow S_{x,opt}(f) = P_{x} / W$$

◆ Hence, in the AWGN channel, the constant Tx power spectrum IS optimal!

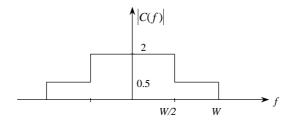
Signal Processing Laboratory
© Timo I. Laakso

Page 23

Example 1: AWGN Channel

◆ Total capacity:

$$C = \int_{0}^{W} \log_{2} \left(1 + \frac{S_{x}(f)|C(f)|^{2}}{S_{n}(f)} \right) df$$


$$= W \log_{2} \left(1 + \frac{P_{x}/W \cdot 1}{P_{n}/W} \right)$$

$$= W \log_{2} \left(1 + SNR \right)$$

• Gives the expected result!

Example 2: Two-band Channel

• Consider a two-band channel of bandwidth *W*:

$$S_{n}(f) = P_{n}/W \quad 0 \le |f| \le W/2$$

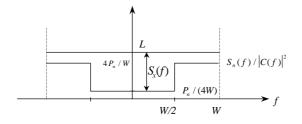
$$|C(f)| = \begin{cases} 2, & 0 \le |f| \le W/2 \\ 0.5, & W/2 \le |f| \le W \end{cases}$$

$$S_{x}(f) = S_{x,opt}(f) = ?$$

$$C = ?$$

Signal Processing Laboratory
© Timo I. Laakso

Page 25


Example 2: Two-band Channel...

• Optimal Tx power spectrum:

$$S_{x,opx}(f) = L - S_n(f) / |C(f)|^2 = \begin{cases} L - P_n / (4W), & 0 \le |f| \le W/2 \\ L - 4P_n / W, & W/2 \le |f| \le W \end{cases}$$

$$L = (P_x + 17P_n / 8) / W$$

Signal Processing Laboratory
© Timo I. Laakso

Example 2: Two-band Channel...

• With some elaboration, the capacity can be solved as

$$C = \int_{0}^{W} \log_{2}(1 + S_{x}(f)|C(f)|^{2} / S_{n}(f)) df$$

$$= \frac{W}{2} \left(\log_{2}\left(1 + \frac{P_{x} + \frac{15}{8}P_{n} \cdot 4}{P_{n}}\right) + \log_{2}\left(1 + \frac{P_{x} - \frac{15}{8}P_{n} \cdot \frac{1}{4}}{P_{n}}\right) \right)$$

$$= \dots = W \log_{2}(1 + SNR + \frac{9}{8})$$

- ◆ Compare with AWGN channel!
- ◆ Which one has higher capacity?

Signal Processing Laboratory
© Timo I. Laakso

Page 27

Helsinki University of Technology Signal Processing Laboratory

III. Capacity of Multiuser Channels

Capacity of multiuser channels

In many applications, multiple users share the same channel (= multiple-access channels)

- ◆ Mobile cellular communications systems
- ◆ Broadcast channels (TV, radio)
- ◆ Store-and-forward channels (satellite relays)

Signal Processing Laboratory
© Timo I. Laakso

Page 29

Capacity of multiuser channels...

Different channel sharing strategies

- ◆ FDMA = Frequency Division Multiple Access
- ◆ TDMA = Time Division Multiple Access
- ◆ CDMA = Code Division Multiple Access

All are based on some (almost-)orthogonal division of users

Signal Processing Laboratory
© Timo I. Laakso

Capacity of multiuser channels...

- ◆ With ideal orthogonality, the total channel capacity can be divided to the users without losses
- ◆ In practice, losses are caused by
 - nonideal bandpass filters in FDMA
 - nonideal timing and time overlapping in TDMA
 - nonorthogonal codes in CDMA
 - intersymbol interference (ISI) and adjacent channel interference (ACI) caused by channel
- ◆ Special problems with asynchronous transmission (need for traffic control!)

Signal Processing Laboratory
© Timo I. Laakso

Page 31

Capacity of multiuser channels...

- ◆ For single-user channels with ISI, optimal *maximum-likelihood sequence detection* (MLSD) techniques can be derived which give (close to) optimum capacity
- ◆ For multiple-access channels with ACI, analogous *multiuser detection* (MUD) techniques can be derived which give (close to) optimum capacity for each user
- ◆ Computationally very intensive!

Signal Processing Laboratory
© Timo I. Laakso

Capacity of multiuser channels...

Suboptimal techniques based on interference cancellation:

- ◆ Detect interfering signals
- ◆ Reconstruct signals (including channel effect)
- ◆ Subtract interfering signal
- ◆ Detect desired signal

Signal Processing Laboratory
© Timo I. Laakso

Page 33

Helsinki University of Technology Signal Processing Laboratory

III. Other interference and effect on capacity

Other interference and capacity

Communications systems often suffer from interference from other systems, like:

- ◆ 50 Hz power lines
- Radio amateurs (inductive coupling to telephone lines!)
- ◆ PCM systems to ADSL connections
- ◆ Household electric devices to cordless telephones
- etc. etc.

Signal Processing Laboratory
© Timo I. Laakso

Page 35

Other interference and capacity...

- ◆ If interference is treated as noise, it reduces the capacity in the worst way
- ◆ By employing information about the the structure of interference, better results are obtained
- General multiuser detection (interference cancellation)

Signal Processing Laboratory
© Timo I. Laakso

Summary

Today we discussed:

Channel capacity

- ◆ I. Capacity of AWGN Channel
- ◆ II. Capacity of linear channel with coloured noise
- ◆ III. Capacity of multiuser channels
- ◆ IV. Other interference and effect on capacity

Next week:

◆ Transmit and receive filters for a bandlimited AWGN channel

Signal Processing Laboratory
© Timo I. Laakso