

Understanding the role, the limits and the basic techniques of DSP in practical telecommunication systems

- Models for *communications systems* and *physical channels*
- Channel capacity and the limits for DSP
- *Tx&Rx filtering:* matched filter, Nyquist criterion
- Adaptive filters & equalizers: principles, implementation
- ◆ Echo cancellation
- Optimal nonlinear receivers (Viterbi algorithm)
- Practical DSP systems: 3 guest lectures from industry

```
January 25, 2000
```

Signal Processing Laboratory © Timo I. Laakso

Teaching

- Lectures: Tuesdays 12-14 in S5 (prof. Timo Laakso)
- *Exercise sessions:* (MSc Stefan Werner, stefan.werner@hut.fi)
 - ca. 5 sessions (time & place to be notified later)
 - additional homework problems (improve the grade)
- ♦ MATLAB Project:
 - implementation of a simple adaptive equalizer for a communication link
 - detailed written instructions will be provided and most of the MATLAB code
 - live demonstration will be arranged
 - affects the final grade

January 25, 2000

Signal Processing Laboratory © Timo I. Laakso

Final grade

- Passed exam *and* project required for passing the course
- Final grade formula:

$$A_{tot} = 0.8 \times A_{exam} + 0.2 \times A_{project}$$

- Exam structure: 5 problems/essays/sets of small questions of 6p each
- ◆ Grading: 14=1, 18=2, 22=3, 26=4, 30=5
- Solved homework can gain *extra* ca. 5p for the exam

```
January 25, 2000
```

Signal Processing Laboratory © Timo I. Laakso

Lecture Plan and Timetable							
Changes possible!							
L1	1.2.	Introduction; models for channels and communication systems					
L2	8.2.	Channel capacity					
L3	15.2.	Transmit and receive filters for bandlimited AWGN channels					
L4	22.2.	Optimal linear equalizers for linear channels 1					
L5	29.2.	Optimal linear equalizers for linear channels 2					
L6	7.3.	Adaptive equalizers 1					
L7	14.3.	Adaptive equalizers 2					
January 25, 2000		Signal Processing Laboratory © Timo I. Laakso Page 11					

Lectu	re Pla	an and Timetable	
L8	21.3.	Nonlinear receivers 1: DFE equalizers	
L9	28.3.	Nonlinear receivers 2: Viterbi algorithm	
L10	4.4.	Guest lecture 1: DSP for Fixed Networks	
		Lic. Tech. Matti Lehtimäki, Nokia Networks	
L11	11.4.	GL2: DSP for Digital Subscriber Lines	
		Dr. Janne Väänänen, Tellabs	
L12	18.4.	GL3: DSP for CDMA Mobile Systems	
		Dr. Kari Kalliojärvi, Nokia Research Center	•
L13	9.5.	Course review, questions, feedback	
Ε	24.5.	(Wed) 9-12 S4 Exam	
January 25, 2000		Signal Processing Laboratory © Timo I. Laakso	Page 12

Examples of Communication Systems...

- Mobile communications
 - 2nd generation markets growing fast:
 - GSM = Global System for Mobile Telecommunications
 - speech services + little data
 - 3rd generation in development:
 - UMTS = Universal Mobile Telecommunication System
 - WCDMA= Wideband Code Division Multiple Access
 - much improved data services and terminals (?)
 - multimode terminals and networks

January 25, 2000

Signal Processing Laboratory © Timo I. Laakso

2. Linear Filter Channel...

• The received signal can be expressed with *convolution*

$$r(t) = \int_{-\infty}^{\infty} c(\tau)x(t-\tau)d\tau + n(t)$$

= $x(t) * c(t) + n(t)$ (1.2)

• In the frequency domain:

$$R(f) = C(f)X(f) + N(f)$$
(1.4)

$$C(f) = \int_{-\infty}^{\infty} c(t)e^{-j2\pi f t} dt \qquad (1.3)$$

Page 23

January 25, 2000

Signal Processing Laboratory © Timo I. Laakso

