# S-38.411 Signal Processing in Telecommunications I Exercise #1: Channel capacity

## February 18, 2000

The capacity of a linear channel with colored noise is given by

$$C = \int_0^\infty \log_2 \left( 1 + \frac{S_x(f)|C(f)|^2}{S_n(f)} \right) df = \int_{-\infty}^\infty \frac{1}{2} \log_2 \left( 1 + \frac{S_x(f)|C(f)|^2}{S_n(f)} \right) df$$
(1)

To calculate the capacity for a given channel C(f) and noise spectrum  $S_n(f)$  requires knowledge of signal spectrum  $S_x(f)$ . In Lecture 2 it was shown that for a given transmit power  $P_x$ , the maximum capacity is obtained when

$$S_{x,\text{opt}}(f) = L - \frac{S_n(f)}{|C(f)|^2}$$
(2)

where the L can be solved from the power constraint

$$P_x = \int_0^\infty S_x(f) \, df = \int_0^\infty \left( L - \frac{S_n(f)}{|C(f)|^2} \right) df \tag{3}$$

Note that the AWGN channel is a special case of the above (see Lecture 2).

### Recipe for solving capacity problems:

- 1. Solve for L using (3)
- 2. Calculate  $S_{x,opt}(f)$  using (2)
- 3. Calculate  $C_{\text{max}}$  using (1)

# Exercise 1:

Consider the constant gain channel of bandwidth W:

$$S_n(f) = \frac{P_n}{W}, \ 0 \le f \le W$$

$$C(f) = A, \ 0 \le f \le W$$
(4)

The channel above corresponds to the AWGN channel when A = 1. For a given transmission power  $P_x$ , calculate the maximum capacity  $C_{\text{max}}$  and  $S_{x,\text{opt}}(f)$ .

### Exercise 2:

This exercise considers a channel with a zero-gain in the low frequency band, and a constant gain in the high frequency band.

$$S_n(f) = \frac{P_n}{W}, \ 0 \le f \le W$$

$$C(f) = \begin{cases} 0, & 0 \le f < W_0 \\ A, & W_0 \le f \le W \end{cases}$$
(5)

For a given transmission power  $P_x$ , calculate for the maximum capacity  $C_{\text{max}}$  and  $S_{x,\text{opt}}(f)$ . Let  $W_0 \to 0$ . Is the result consistent with that of the AWGN channel?

# Exercise 3: (from Lecture 2)

Consider the two-band channel of bandwidth W:

$$S_n(f) = \frac{P_n}{W}, \ 0 \le f \le W$$

$$C(f) = \begin{cases} A, & 0 \le f < W_0 \\ B, & W_0 \le f \le W \end{cases}$$
(6)

Calculate for the maximum capacity  $C_{\text{max}}$  and  $S_{x,\text{opt}}(f)$ .

# Homework

The homework is to be returned to the course box *at latest* March 3, 15:00. The course box can be found near the course information board on the second floor in the G wing. Each set of homework can give up to 1 point on the final exam. Remember to motivate each step in your solution. Write your name and student number on each page.

- 1. Consider the channel in the figure below. Assume the transmitted power fixed to  $P_x$ .
  - a) Calculate the maximum capacity  $C_{\text{max}}$  and  $S_{x,\text{opt}}(f)$ .
  - b) Compare the capacity obtained here with that of an AWGN channel (|C(f)| = 1for  $0 \le f \le W$ ).

