
Agent based auto-configuration of OSPF networks

Visa Holopainen

TKK Helsinki University of Technology

Networking Laboratory

P.O. Box 3000, FI-02015 TKK, Finland

visa.holopainen@netlab.tkk.fi

Abstract

This paper introduces an auto-configuration system that

is intended to enable people with very basic computer

networking skills to set up a router network from open-

source software and commodity PC hardware. Our system

is composed of three subsystems: Operating System auto-

installation subsystem, IP address auto-assignment subsys-

tem, and OSPF auto-configuration subsystem. We have im-

plemented the last one these subsystems, and present its per-

formance test results. We find that the execution time of the

subsystem largely depends on Perl’s SSH-module.

1. Introduction

As complexity of networks constantly increases, auto-

configuration is seen as a necessary step towards disruption-

free communications [1]. The rising need for auto-

configurable networks has manifested itself into many re-

search papers presenting high-level auto-configuration ar-

chitectures. However, only few of those papers properly

evaluate feasibility of the architectures they present. That is,

if the architectures can be implemented into real networks,

and under which pre-conditions.

The goal of this paper is to stray from this ”high-level

research path” by introducing and evaluating a practical

auto-configuration system, by which computer networking

novices can easily convert a network of commodity PCs into

a router network without any manual configuration.

The system is composed of three subsystems: Operating

System (OS) auto-installation subsystem, IP address auto-

assignment subsystem, and OSPF auto-configuration sub-

system. Each of the subsystems works by its own ”flood-

ing principle”. The OS auto-installation system floods

OS from PC to PC, IP address auto-assignment subsystem

floods IP configuration from PC to PC, whereas OSPF auto-

configuration subsystem floods OSPF protocol configura-

tion.

Routing protocol auto-configuration has received little

attention in previous work. Hence we discuss the OSPF

auto-configuration subsystem in more detail, and present

performance test results regarding that subsystem.

The rest of this paper is organized in the following way:

Section 2 presents related work that helps to put this pa-

per into context. Section 3 gives a high-level conceptual

overview of our system, whereas Section 4 describes it in

detail. Section 5 presents performance test results of our

system. Based on test results, Section 6 concludes our work.

2 Related work

Lehtihet at al. present a goal-based autonomic config-

uration and optimization architecture [2]. The architecture

introduces self-organizing capabilities into the network, so

that the aggregate behavior of autonomic elements (routers)

satisfies high-level operational goals defined by network’s

administrator. The authors focus more on architecture de-

scription, and it remains somewhat unclear how the auto-

configuration process actually works in the context of their

paper. Hereby it is difficult to evaluate the feasibility of their

approach.

Bullot and Gaiti describe an architecture of collabora-

tive and autonomic software agents [3]. The agents are em-

bedded inside routers. The role of agents is to share local

and situated knowledge, in order to control and optimize

the existing control mechanism of the router. Although the

authors present simulation results, a working prototype is

not described. Also, protocol auto-configuration is not dis-

cussed in the paper.

Zeroconf [5] or Zero Configuration Networking is a set

of techniques that automatically create a usable LAN net-

work. Zeroconf is especially concerned in making devices

like network printers, cameras and PCs interwork on a LAN

without manual configuration. Zeroconf does not support

router configuration.

Akinlar et al. review IPv4 auto-configuration algorithms

for hosts and single-router zeroconf networks, and propose

auto-configuration algorithms for multi-router zeroconf net-

works [12]. However, no prototype implementation is de-

scribed in the paper.

Arai et al. propose a novel method for auto-configuration

of power-line and coaxial cable modems [8]. Their system

does not support routers either.

Fully Automatic Installation (FAI) [4] is an automated

installation tool for Debian Linux and other distributions. It

can be used to install Linux on a cluster of PCs.

Many papers, for example [6], [7], [9], [13] and [15],

discuss IP (v4/v6) router IP address auto-configuration and

distribution. However, routing protocol auto-configuration

is out of their scope.

To summarize the previous work, it is evident that a lot

of work has been done in the field of auto-configuration:

currently one can install Linux-PCs automatically, config-

ure IPv4 and IPv6 addresses automatically, set up LAN-

networks automatically, and configure modems automati-

cally. There are also many high-level architectures and al-

gorithms for auto-configuration of router networks.

However, to the best of our knowledge, there are no prac-

tical systems that would enable automatic installation, con-

figuration, and startup of an OSPF-router network. We in-

tend to fill this gap.

3 System overview

One possible way to convert a PC network into an OSPF

network would be to use portable media, like a CD or an

USB stick, and run the required auto-configuration software

from that on each of the network’s PCs. However, this may

be logistically complicated if the PCs are in separate phys-

ical locations. Another problem may arise if computer dis-

play or keyboard is not available in some of those physical

locations.

The conversion would still be relatively easy if every PC

in the network could initially be connected from a single

management point. This would be possible if a separate

management LAN, that would extend to every PC in the

network, were available. However, in many cases, estab-

lishment of such a LAN will not be possible.

Hence we propose the following solution to the prob-

lem: once certain pieces of software have been installed on

a ”master PC”, that will most likely be a laptop computer, a

networking novice can take the master PC, plug it into one

of the network PCs, and run a script, which converts the PC

network into an OSPF-network.

Our solution is based on the idea of incrementally in-

creasing the range of connectivity until all PCs in the net-

work have been configured to run OSPF. Figure 1 illustrates

this concept.

In the figure, ”master” refers to an auto-configuration

master PC. This PC has been configured beforehand to man-

Connectivi ty at

first phase

Connectivi ty at

second phase

Connectivi ty at

third phase

Master

Figure 1. Connectivity expands in the net-

work as the routing protocol is flooded.

age the installation and configuration of network. Subsec-

tion 4.1 presents details of the master PC. All that is needed

in order to convert the PC network into a router network is

to plug the master PC to one of the PCs in the network, run

a script, and wait.

Our system is composed of the following three subsys-

tems:

• Operating System (OS) auto-installation subsystem

(presented in subsection 4.2)

• IP address auto-assignment subsystem

(presented in subsection 4.3)

• OSPF auto-configuration subsystem

(presented in subsection 4.4)

The OS auto-installation subsystem, as its name sug-

gests, installs Linux operating system to every PC that has

been physically connected to the network with an ethernet-

cable. The IP address auto-assignment subsystem dis-

tributes IP addresses to every PC in the network. Finally

the OSPF auto-configuration subsystem takes care of rout-

ing software installation, configuration and start-up.

Based on the previous work done within the field

it seems clear that the last subsystem (OSPF auto-

configuration subsystem) has received least attention.

Hence we will describe it in more detail than the other two

subsystems.

The benefit of the subsystem separation is that it allows

the use of three different levels of control in the network

PCs:

• Completely empty PCs in the network (minimum con-

trol)

• PCs that have an OS installed but no interface IPs con-

figured (medium control)

• PCs that have OS installed and manually configured

interface IPs (maximum control)

Master

A

B C

Figure 2. Simple example network.

We tested the last one of these scenarios. In other words,

we installed OS and entered IP addresses to the network PC

manually. We then connected the master PC to one of the

network’s PCs, and executed the OSPF auto-configuration

subsystem.

Throughout the paper we will use an example network

that is presented in Figure 2. While describing the system,

we assume that nodes A, B and C are empty PCs in the

beginning; in other words, nothing has been installed to A,

B or C.

4 System details

4.1 Master PC

Main purpose of the master PC is to initiate and control

each of the mentioned subsystems (OS auto-installation, IP

address auto-assignment, and OSPF auto-configuration).

Master PC should have Linux operating system installed.

We have tested the system with Ubuntu 6.06 distribution.

The master should also contain latest version of Perl, which

was 5.8.7 during our tests. The master PC should also con-

tain the following pieces of software relating to the subsys-

tems:

• OS auto-installation:

OS mirror, FAI-server, TFTP-server, auto-installation

master and agent scripts

• IP address auto-assignment:

Auto-assignment master and agent scripts

• OSPF auto-configuration:

Routing software (Quagga) tarball [10], Auto-

configuration master and agent scripts

• Additionally:

Perl Net::SSH::Expect-, Net::SCP::Expect-, and

Net::DHCP-modules and all their perquisite modules

Normally perl modules are installed via the procedure

described in [11]. However, this would have been impossi-

ble in our system. Hence we downloaded all of the required

Master A B C

install OS

<set up

OS mirror and

FAI server>

<set up

OS mirror and

FAI server>

install OS

install OS

no installation candidates

no installation

candidates

<done>

no installation

candidates

auto-

installation

agent

auto-

installation

agent

Figure 3. Flowchart of the OS auto-
installation subsystem in the example

network.

modules, and placed them on the master PC to the same

directory where the master-scripts are located, under lib-

subdirectory. We then advised the master and agent scripts

to use this newly created library:

use lib ’lib/’;

This way the scripts can use SSH-, SCP-, and DHCP-

modules without the need to install anything, and the newly

created library can be easily sent to other PCs in tar-format

(tarball).

It should be noted that this approach may not work with

all versions of Perl.

4.2 OS auto-installation subsystem

A conceptual illustration of the OS installation subsys-

tem logic is presented in Figure 3. The illustration is based

on network of Figure 2.

The Network Interface Cards (NICs) of the PCs must

support Preboot Execution Environment (PXE) in order for

the OS installation subsystem to work. Most modern NICs

support this.

In the beginning, the master PC contains both a mirror

of the operating system that is going to be installed, as well

as a FAI install server. At this stage PC A is an install client

(a host that will be installed using FAI and a whose config-

uration will be provided by the install server).

PC A is booted via NIC. It gets an IP address from install

server (master PC) and boots a Linux kernel, which mounts

its root file system via NFS from the install server.After the

kernel is loaded, FAI startup script performs automatic OS

installation for A, which does not require any interaction.

Auto-installation master located at the master PC trans-

fers OS mirror, FAI-server, and an auto-installation agent.

to A. Once the OS has been installed to A, Auto-installation

agent located at A sets up OS mirror and FAI server locally,

and executes the same process for B and C. This is done

recursively until all PCs have OS installed.

In the end, the auto-installation agents notice that there

are no more installation candidates left, and deliver this in-

formation to the master. At this point the IP address auto-

assignment subsystem may be executed.

4.3 IP address auto-assignment subsys-
tem

A simplified illustration of the IP address auto-

assignment subsystem logic is presented in Figure 4. The

illustration is also based on network of Figure 2.

The auto-assignment master located at master PC

implements a DHCP-server. A pre-requirement for

a DHCP-server to work is a route to IP address

255.255.255.255. If, for instance, the DHCP-server

should give IP addresses to hosts behind NIC eth0, the

following command needs to be issued at command line:

sudo route add -net 255.255.255.255 \

netmask 255.255.255.255 dev eth0

In the beginning, all network PCs must contain a

Perl-script that checks once in a minute if interfaces

have been configured, and if they have not, sends out a

DHCPDISCOVER-message out of all network interfaces.

This script may be placed to the PCs either manually during

their installation or during OS auto-installation subsystem

execution.

When the auto-assignment subsystem is run, the auto-

assignment master gives an IP address to any PC that asks

for it (A in the example case). This is done by standard

DHCP-procedure.

When PC A has received IP address, the master can send

/etc/network/interfaces-file to it. This file de-

scribes the IP configuration that the PC should use. Format

of the file is following:

iface eth0

inet static

address 10.0.1.1

Master A B C

DHCP

DISCOVER
DHCP

DISCOVER
DHCP

DISCOVER
DHCP

DISCOVER

DHCP

OFFER

DHCP

REQUEST

DHCP

ACK

/etc/network/

interfaces

reboot

< w a i t >

auto-

assignment

agent

DHCP

OFFER

DHCP

REQUEST

DHCP

ACK

/etc/network/

interfaces

< r e b o o t >

< w a i t >

< r e b o o t >

< r e b o o t >

reboot

<no new

DHCP

DISCOVERIES>

<no new

DHCP

DISCOVERIES>

done

done

done

< d o n e >

<no new

DHCP

DISCOVERIES>

auto-assignment

agent

.

.

.

.

.

.

Figure 4. Flowchart of the IP auto-assignment
subsystem in the example network.

netmask 255.255.255.0

iface eth1

inet static

address 10.0.2.1

netmask 255.255.255.0

...

The addresses in the /etc/network/interfaces-

file can be either user-specified or automatically generated

(if the network is behind NAT). Also if the network is not

behind NAT, but the routers do not need to be reached from

Internet, the router-router interface IPs can be automatically

generated, and only user interface IPs entered manually.

Next the master takes SSH-connection to A and tells it

to reboot. During the reboot, A reads the IP configura-

tion from /etc/network/interfaces-file, and con-

figures interfaces according to it.

When A has rebooted, the master sends an auto-

assignment agent to it. Master takes an SSH-connection

to A and starts the agent. The agent then executes the same

process for B and C. This is done recursively until all PCs

have IP addresses configured.

It should be noted that it is not possible to run DHCP

sever on multiple interfaces simultaneously. Hereby a

hack is needed in order for the auto-assignment agent

to work. One possibility is to always create the route

entry for IP address 255.255.255.255 whenever a

DHCPDISCOVER-message is received from some neigh-

bor, and delete it after DHCPACK is sent to that neighbor.

Once the Interfaces’ IPs have been configured, the cor-

rectness of configuration should naturally be verified (for

instance with ping-tool).

4.4 OSPF auto-configuration subsystem

At this stage we assume that Linux operating system

with SSH- and SCP-daemons has been installed to each of

the PCs. This could have been done manually or by us-

ing the OS auto-installation subsystem. We also assume

that correct IPs have been configured to the PCs’ interfaces.

Again, this could have been done manually or by using the

IP auto-assignment subsystem.

Every PC that is physically connected to the network

and has correct IP address configuration when the auto-

configuration starts, will be configured to run OSPF-

protocol according to a user-defined policy.

The policy is described in a text file at the master PC. The

policy file will be used by auto-configuration agents in the

auto-configuration process. Most attributes in the policy-

file have suitable default values, and the user should not be

required to alter them. However, for instance, a default gate-

way should be entered manually to the policy file, if one is

supposed to be configured for the network. The policy file

has the following simple format:

default-internet-gateway-IP-address="10.0.0.1"

MD5-authentication = "yes"

permit-router-remote-configuration = "no"

load-balancing-for-equal-cost-paths = "no"

...

We have not yet implemented many policy features to

the system. However, additional features are easy to add.

Basically a new feature requires just one if-block to the con-

figuration agent that will be described in subsection 4.4.4.

Our goal is that even a person with very limited computer

networking skills will be able to fill in the necessary values

to the policy file.

4.4.1 OSPF Auto-configuration process

When the OSes have been installed to the PCs, the PC net-

work has been physically connected, and interface IPs con-

figured, the OSPF auto-configuration master is started with

the following command:

sudo perl autoconfiguration_master.pl

From there on, the procedure is fully automatic up to the

point when the OSPF network is up and running.

A slightly simplified illustration of the OSPF auto-

configuration subsystem logic is presented in Figure 5.

Again, the illustration is based on network of Figure 2.

It should be noted that the ”Autoconfig package” pre-

sented in Figure 5 contains: 1) auto-configuration agent

Perl-script, 2) routing software tarball, 3) a file that contains

IP addresses of interfaces that have already been configured

to run OSPF (the master script maintains this file), and 4)

the policy file.

When the auto-configuration master script is started it

executes as follows:

• The master probes for neighboring PCs by sending

ICMP echo requests to each possible IP in the range

of its interfaces (Broadcast pings could not be used for

neighbor discovery, since the operating system did not

reply to them).

• At this stage the master should receive one neighbor

reply (from PC A). The IP that sent this reply will be a

candidate.

• The master creates a default route towards A, and uses

SCP to send required Perl-library (lib.tar.gz) to A.

• The master sends Autoconfig package to A and starts

the agent at A (via SSH).

At this stage the agent is running at PC A. The agent

located at A executes as follows:

• The agent checks all configured IPs from the file that

was included in the Autoconfig package. Only the

master IP should be in the file.

• The agent discovers neighboring PCs by sending

ICMP echo requests to each possible non-configured

IP in the range of its interfaces (the agent does not send

request to master).

• The agent should receive two neighbor replies (from B

and C). The IPs that replied will be new candidates.

• The agent uses SCP-tool to send required Perl-library

(lib.tar.gz) to B and C.

• The agent takes SSH-connection to B and C, decom-

presses Perl-library, and configures a default route to

them via itself; in other words, at B and C the agent

essentially says ”route add default gateway A”. This is

done to enable master to communicate with new can-

didates.

• The agent installs, configures and starts OSPF locally.

• Finally the agent sends its own interface IPs (newly

configured) and candidate interface IPs to the master.

At this stage A is the only running OSPF-router in the

network. Now the master updates configured IPs, sends Au-

toconfig package to candidate B, and starts the agent at B.

The newly started agent located at B executes as follows:

• The agent opens the file that contains already-

configured IPs, and finds out that A has already been

configured, so it will not send Perl-library to A.

• The agent sends Perl-library to C.

• The agent then takes SSH-connection to C, and finds

out that the Perl-library has already been decom-

pressed. This means that B should not configure a de-

fault route to C, since someone (A in this case) has al-

ready done it. This means that B has ”0 un-configured

neighbors” as is stated in the figure.

• The agent logs out from C and decompresses, installs,

configures and starts OSPF locally, and finally sends

its newly configured interface IP addresses and neigh-

bor (candidate) interface IP addresses to the master.

Next the master updates configured IPs, sends Autocon-

fig package to candidate C, and starts the agent at C.

Master A B C

Neighbor

discovery

(ICMP)

Neighbor

reply

Autoconfig

package
Neighbor

discovery

(ICMP)

Neighbor

reply

Perl-

l ibrary

Default

route

Perl-

l ibrary

<router SW

instal lat ion &

conf ig +

s tar t -up>own + neigh-

bor ifaces

Autoconfig

package

<router SW

instal lat ion &

conf ig +

s tar t -up>

own + neigh-

bor ifaces

no new

neighbors

-> done

Neighbor

discovery

(ICMP)

Neighbor

discovery

(ICMP)

<router SW

instal lat ion &

conf ig +

s tar t -up>

Autoconfig

package

Neighbor

discovery

(ICMP)

own + neigh-

bor ifaces

Perl-

l ibrary

<2 un-

configured

neighbors>

Neighbor

replyNeighbor

reply

Neighbor

reply

<0 un-

configured

neighbors>

<0 un-

configured

neighbors>

Figure 5. Flowchart of the OSPF auto-
configuration subsystem in the example net-

work.

The newly started agent located at C executes as follows:

• The agent opens the file that contains already-

configured IPs, and finds out that A and B have al-

ready been configured, so it will not send Perl-library

to them.

• The agent decompresses, installs, configures and starts

OSPF locally, and sends its newly configured interface

IP addresses to the master (at this stage there were no

new candidates).

Now the master notices that there are no candidates left

and the process stops. All of the PCs in the network are now

running OSPF.

4.4.2 Additional features of OSPF auto-configuration

In addition to what was presented in the example, the auto-

configuration system can currently handle broadcast net-

works (hubs/switches) and stubnets.

A broadcast network that contains more than two routers

does not cause any changes to configuration syntax com-

pared to a network that has only two connected routers.

We define stubnet to be a network from which there is no

neighbor reply even when its IP is configured to the router.

Our system interprets the corresponding interface to be a

customer-interface, and hereby it is configured to be pas-

sive. This means that the router does not send or accept

OSPF packets on that interface, but advertises the inter-

face as a stub link in its router Link State Advertisements

(LSAs).

4.4.3 OSPF auto-configuration master

The auto-configuration master is about 500 lines long Perl-

script. The script is located on the master PC. The main

purpose of the auto-configuration master is to send auto-

configuration agents to each of the PCs in the network.

The following is a slightly simplified pseudo-code pre-

sentation of the OSPF auto-configuration master.

function autoconfiguration_master {

// initializations

candidate_IPs = ();

configured_IPs = ();

candidate_IPs <- enqueue (discover_IPs());

// first time there should be 1 candidate

while(candidate_IPs != empty)

{

IP = dequeue (candidate_IPs);

if (IP exists in configured_IPs)

next;

send_configured_IPs_to (IP);

send_policy_file_to (IP);

send_routing_software_tarball_to (IP);

send_configuration_agent_to (IP);

if (first_time)

send_perl_library (IP);

start_configuration_agent_at (IP);

configured_IPs <- feedback_from_agent;

candidate_IPs <- feedback_from_agent;

}

}

First the master initializes candidate IPs and configured

IPs as empty queues. Then it discovers IP address of the

neighboring PC by sending an ICMP echo request to every

possible IP in range of its interfaces. The master should

receive exactly one response (if the PC that is connected

to it has correct IP configuration). The master puts the IP

address from which it received the response to queue (en-

queue). The main loop of the master is following: First

the master extracts an IP address from candidate queue (de-

queue). It checks if the IP in question has already been

configured. If it has not, the master sends 1) a file contain-

ing already-configured IPs, 2) the policy file, 3) the routing

software tarball, and 4) the configuration agent to the PC. In

the first time the master also sends Perl-library tarball, that

contains Perl-modules needed by agent, to the PC. Next the

master takes SSH-connection to the PC and starts the agent.

In Linux the agent can be started to the background (so that

it will not terminate when SSH-connection is terminated)

with the following command:

sudo screen perl autoconfiguration_agent.pl

At the end of loop the master waits for the agent to send

newly configured and candidate IP addresses to it.

4.4.4 OSPF auto-configuration agent

The auto-configuration agent is another, also about 500

lines long, Perl-script. The agent is also initially located

at the master PC. Whenever an agent is sent to a network

PC it takes care of:

• Discovery of neighbor PCs.

• Preparation of neighbor PCs (default route configura-

tion).

• Decompression, installation, configuration, and start-

ing of routing software.

• Informing the master about own (configured) and

neighboring IPs.

The agent could also remain running at the PC and mon-

itor user-defined parameters. However, we have not yet im-

plemented this feature.

The following is a slightly simplified pseudo-code pre-

sentation of the OSPF auto-configuration agent.

function autoconfiguration_agent {

// initializations

stubs = ();

candidate_IPs = ();

own_IPs = discover_own_IPs();

interfaces = discover_own_interfaces();

configured_IPs <- read_from_file();

for each interface in interfaces

{

response = 0;

for each IP in range of interface

{

if IP exists in configured_IPs

next IP;

if (icmp_reply(IP))

{

response = 1;

candidate_IPs <- IP

prepare_candidate (IP);

}

}

if (! response)

passive_interfaces <- interface;

}

send_to_master (own_IPs);

send_to_master (candidate_IPs);

extract_configure_and_install_routing_software

(own_IPs, passive_interfaces);

start_routing ();

}

First the agent initializes stub networks and candidate IPs

as empty lists. Then it discovers own interfaces, own IP

addresses, and reads already configured IP addresses from

the file that the master sent along with the agent.

For each interface, the agent sends two ICMP echo re-

quests to every non-configured IP address within the range

of the interface (for instance, there are 253 possible IP ad-

dresses in class C networks). It should be noted that this

could not be done in threads, since the Perl threads-module

caused segmentation faults. It takes about one second to

check one IP address, so a class C network would take about

253 seconds to check.

If the agent gets an ICMP echo reply from some IP, that

IP is added to candidates. The agent ”prepares” each can-

didate, in other words, sends Perl-library to the candidate,

and installs a default route to the candidate.

If there is no reply from any IP address of an inter-

face, say eth3, that interface is configured to be pas-

sive (customer interface). In practise this means that

the agent will write the following to OSPF configuration

file: passive-interface eth3. It should be noted

that the actual configuration syntax is always platform de-

pendent, so if one wishes to extend our system beyond

PC/Quagga environment, platform detection and adaptation

needs to be implemented.

The agent sends own (configured) IP addresses and can-

didate IP addresses to master and finally extracts, installs,

configures, and starts routing software that the master sent.

The agent writes configuration files for the routing soft-

ware based on the policy file that the master sent. For exam-

ple, if the agent notices that one of the interfaces on the PC it

is running on has the IP address of default gateway specified

in policy file, the agent writes the following to configuration

file: default-information originate.

Each ethernet-interface that the agent detects (using

ifconfig-tool) will cause the agent to write the following

line to configuration file: network X.Y.Z.V/N area

0. Here X.Y.Z.V/N is the IP network configured for the

interface.

The following list presents two examples of

policy→configuration conversions that the agent may

perform:

• policy:

permit-router-remote-configuration =

"no"

configuration:

access-list acl1 permit 127.0.0.1/32

access-list acl1 deny any

line vty

access-class acl1

• policy:

MD5-authentication = "yes"

configuration:

under each interface <ifname> line:

ip ospf authentication

message-digest

ip ospf message-digest-key 1 md5

<KEY>

under router ospf line:

area <AREA> authentication

message-digest

The first example policy states that routers should not

allow configuration connections coming from the network

(only local configuration should be allowed). The corre-

sponding configuration commands create an access list that

allows connections coming from loopback IP address, and

denies all other connections. Finally the access list must be

taken into use (last two configuration lines).

The second example policy states that routers should use

MD-5 authentication. The corresponding configuration is

even more complicated than in the first example. The con-

figuration file must explicitly enable MD-5 on every inter-

face and create a key for the interfaces. Finally the authen-

tication must be taken into use (last configuration line).

More information about Quagga configuration can be

found at [14].

5 Tests of the OSPF auto-configuration sub-

system

A

B

C

D

Figure 6. The first test network.

A

B

C

D

Figure 7. The second test network.

In our testbed network, each of the PCs contained 256

MBs of RAM and 1300 MHz CPUs, as well as 3com 3c905

NICs. The master PC had 516 MBs of RAM and 1600 MHz

CPU. We installed Ubuntu 6.06 operating system to each of

the PCs beforehand. This is a very easy task and can be

completed by computer novices. We also installed SSH-

and SCP-daemons to each of the PCs. This can be done

from the console with command:

sudo apt-get install openssh-server

We used Quagga routing software [10] version 0.98.6 in

our system. We downloaded Quagga tarball to the same di-

rectory where the master (and agent) script is located. We

also downloaded all required Perl-libraries to the same di-

rectory under lib-subdirectory, and created a tarball of this

library with the following command.

tar -cvzf lib.tar.gz lib/

Our two test networks are presented in Figures 6 and 7.

We used the auto-configuration system to install, con-

figure, and start OSPF routing in both networks. The tests

done in the networks are referred to as ”Test 1” and ”Test

2”. Results from both tests are presented in the table 1.

The routers were configured in the same order (A, B, C,

D) in both tests. This is because the interfaces are always

processed in the same order, and the A→D interface became

Table 1. Test results.
Test 1 Test 2

Test started 0 sec 0 sec

Sent agent to A 291 sec 292 sec

A is running OSPF 1799 sec 2401 sec

Sent agent to B 1978 sec 2579 sec

B is running OSPF 2969 sec 3844 sec

Sent agent to C 3147 sec 4022 sec

C is running OSPF 3788 sec 4663 sec

Sent agent to D 3967 sec 4842 sec

D is running OSPF 4298 sec 5172 sec

after A→B and A→C -interfaces (so the last candidate that

auto-configuration master put to queue was D in both tests).

It can be seen that the installation, configurations and

startup of the four-node network takes about 1,2 hours in

the first test, and about 1,4 hours in the second test. It usu-

ally takes about 10 minutes for an agent to decompress the

Perl-library sent to its neighbor and to install default route

to it over SSH. For example, in Test 2 it took 1720 sec-

onds for the agent located at PC A to finish all three SSH-

connections, which is roughly three times the 10-minute pe-

riod.

0

500

1000

1500

2000

2500

agent A agent B agent C agent D

E
x

e
c

u
ti

o
n

 t
im

e
 o

f
a

g
e

n
t

(s
e

c
o

n
d

s
)

Test 1

Test 2

Figure 8. Execution times of agents.

The same observation can be made from Figure 8, which

presents execution times of agents that were located in PCs

A, B, C and D. Based on the figure, it is clear that agent exe-

cution time mostly depends on the number of neighbors that

the agents needs to connect via SSH. For example, in test 2,

agent located at A needs to take three SSH-connections (to

B, C and D), agent located at B two (to C and D), agent

located at C one (to D), and agent located at D zero.

It should be noted that in our system the master checks if

an agent has completed at 300 second intervals. This means

that the execution times presented in Figure 8 are estimates.

The actual execution times of agents may be several minutes

shorter. An estimate of agent’s minimum execution time is

the time it takes for an agent to extract, install, configure and

start the routing software. This time is about 150 seconds

on the PCs we used.

6 Conclusions

Auto-configuration is seen as a necessary step towards

disruption-free communications. However, most published

research papers in the field describe only high-level archi-

tectures, and give superficial (if any) descriptions of proto-

type implementations.

In this work we have developed a practical auto-

configuration system that converts back-to-back connected

commodity PCs into an OSPF-network. The system is

composed of three subsystems: Operating System auto-

installation subsystem, IP address auto-assignment subsys-

tem, and OSPF auto-configuration subsystem.

We have implemented the last subsystem and tested its

performance. The results show that the subsystem’s exe-

cution time mostly depends on the total number of SSH-

connections the auto-configuration agents need to take dur-

ing the auto-configuration process.

During the implementation we encountered many

problems. For example, we noticed that the Perl

Net::SCP::Expect-module may cause race conditions. For

instance, if an agent located at a PC, say A, tries to send a

file to another PC, say B, that already has an agent running,

then the script located at A dies. This is why the configura-

tion is currently done sequentially.

Another problem we encountered was that

SSH-connections taken from a script using the

Net::SSH::Expect-package are very slow. For instance, it

takes about 10 minutes for an agent located at PC A to send

Perl-libraries and configure default route on B. However,

this does not stop our system from working.

Our main future research topics are performance im-

provement of the auto-configuration subsystem and imple-

mentation of the other two subsystems.

References

[1] A. G. Ganek, T. A. Corbi: The dawning of the auto-

nomic computing era. IBM Systems Journal, Volume

42, Number 1, 2003.

[2] E. Lehtihet, H. Derbel, N. Agoulmine, Y. Ghamri-

Doudane, S. van der Meer: Initial Approach Toward

Self-configuration and Self-optimization in IP Net-

works. Management of Multimedia Networks and Ser-

vices, Volume 3754/2005, October 2005.

[3] T. Bullot, D. Gaiti: Towards autonomic networking

and self-configurating routers. Network Control and

Engineering for Qos, Security and Mobility, V, Vol-

ume 213/2006, Pages: 127-142, January 2007.

[4] FAI-tool: http://www.informatik.

uni-koeln.de/fai/, 2007.

[5] Zero Configuration Networking, http://www.

zeroconf.org, 2007.

[6] A. Dimitrelis, A. Williams: Autoconfiguration of

routers using a link state routing protocol. Internet

Draft, October 2002.

[7] D. Braun, S. Mukherjee, C. Akinlar: Zero configura-

tion networking. United States Patent 7002924, Filed

in February 2001.

[8] D. Arai, K. Yoshihara, A. Idoue, H. Horiuchi: Server

Support Approach to Zero Configuration of Power

Line Communication Modems and Coaxial Cable

Modems. Proc. APNOMS 2007, Pages 92-101, Oc-

tober 2007.

[9] S. Thomson, T. Narten: IPv6 Stateless Address Auto-

configuration. RFC 2462, December 1998.

[10] Quagga routing software: http://www.quagga.

net, 2007.

[11] Perl module installation: http://www.cpan.

org/modules/INSTALL.html, 2007.

[12] C. Akinlar, A. Udaya Shankar: IPv4 Auto-

Configuration of Multi-router Zeroconf Networks

with Unique Subnets. Networking - ICN 2005, Vol-

ume 3421/2005, April 2005.

[13] R. Oguz Altug, C. Akinlar: Unique Subnet Auto-

configuration in IPv6 Networks. IPOM 2006: 108-

119.

[14] G. W. Schmied: Integrated Cisco and UNIX Network

Architectures. Cisco press, 2004.

[15] G. Chelius, E. Fleury, L. Toutain: No administration

protocol (NAP) for IPv6 router auto-configuration.

Advanced Information Networking and Applications,

Volume: 2, Pages: 801- 806, March 2005.

http://www.informatik.uni-koeln.de/fai/
http://www.informatik.uni-koeln.de/fai/
http://www.zeroconf.org
http://www.zeroconf.org
http://www.quagga.net
http://www.quagga.net
http://www.cpan.org/modules/INSTALL.html
http://www.cpan.org/modules/INSTALL.html

	. Introduction
	Related work
	System overview
	System details
	Master PC
	OS auto-installation subsystem
	IP address auto-assignment subsystem
	OSPF auto-configuration subsystem
	OSPF Auto-configuration process
	Additional features of OSPF auto-configuration
	OSPF auto-configuration master
	OSPF auto-configuration agent

	Tests of the OSPF auto-configuration subsystem
	Conclusions

