Moving the Control from Senders to Receivers

S-38.4030 Postgraduate Course on Networking Technology, 4th of December, 2007

Teemu Rinta-aho <teemu@rinta-aho.org>
Contents

• Background
• Publish-Subscribe internetworking
• Prototype
• Conclusions
Background

• Most networks of today are built on the *send-receive* model
 – Sender selects the receiver (e.g. IP address)
 – Network helps the sender (routing by dst address)
• One alternative is the *publish-subscribe* (PubSub) model
 – Receiver selects what it wants to receive (data ID)
 – Network helps the receiver (routing by data IDs)
• The research question:
 – *Try to see if it is possible to implement an internetworking architecture on top of the publish-subscribe model instead of the send-receive model*
PubSub Internetworking: Why?

• Micro-economics: Prevents DDoS very effectively
 – sender does have incentive to send, always
 – receiver does not necessarily have incentive to receive
 – current networks help the sender
 • network forwards whatever senders send
 • “rendezvous” takes place at the receiver, with the receiver’s resources

• Fundamentals: How could the network help receiver?
 – by allowing the receiver to select what to receive

• Architecture: Unifies unicast and multicast from the beginning
 – unicast becomes a 1-recipient multicast
 – makes radio and wireline more similar

• Applications: More natural to many applications
 – content delivery networks
IP vs. PubSub Internetworking

In the IP network:
- Sender
- Receiver

SPAM!!!
DoS!!!

In the PubSub network:
- Publisher
- Sprouter
- Subscriber

Subscribe
Architectural Components

• Identifiers
• Primitives
• Publication metadata
• Compensation mechanisms
• Authentication mechanisms
• Rendezvous, routing and forwarding
Identifiers

• End-points are not identified, only data
 – Publisher may have an ID
 • Not bound to a location

• Publication ID
 – Private, a.k.a. ”The Private Key of the Publication”
 – E.g. a hash over the data+a public key+...

• Subscription ID
 – Public, a.k.a. ”The Public Key of the Publication”
 – E.g. a hash of the Publication ID
Primitives

• publish
 – Publish data and associated metadata
 – E.g. Publish a file or a stream
• subscribe
 – Subscribe to a publication
 – Breaks down to *publishing* a subscription
Publication Metadata

• Data needed to handle a publication
 – Not application data
 – Contains e.g.
 • Publication ID
 • Subscription ID
 • Scope
 • Related compensation mechanism
Compensation Mechanisms

• Needed to build a new marketplace where publishing and subscribing have a price
• In the core of the network, not a per-application solution
• Mechanism may vary from basic authentication (home WLAN) to business agreements (between ASes)
• Effective method to reduce the SPAM and DDoS problems?
Rendezvous, routing & forwarding

• Rendezvous
 – How subscription and publication are matched?
 – If IDs are flat, then maybe a DHT solution

• Routing
 – Based on multicast delivery trees that are pre-built

• Forwarding
 – Configured by routing
Functional model

Publish(Id_{Pub})

Subscribe(Id_{Sub})

Subscribe(Id_{Sub})
Three-layer architecture

Rendezvous: Maintain publication information, find the right publication when subscribed

Routing: Make routing decisions, how to build a route from the publications location to the subscriber

Forwarding: Efficiently deliver data from the current location to the subscriber.
Prototype

• A prototype implementing a publish-subscribe type of communication interface between applications
• Implemented completely in Linux userspace
• Everything above link layer implemented ”from scratch”
• Stack internally using pubsub-type approach
 – No ”vertical stack”: applications and network managers using the same ”blackboard”
• Currently running over Ethernet
 – Practical to implement
 – Ethernet addresses are ignored
 – Using Ethernet as a broadcast channel
Prototype (2)

• Currently implemented
 – Publishing and subscribing of static files
 – Simple rendezvous, routing and forwarding
 – Fragmentation support

• Future
 – Compensation mechanisms
 – Inter-domain RRF
 – Support for all types of applications (stream,...)
 – Unifying file system and networks
Prototype Architecture

```
<table>
<thead>
<tr>
<th>Application</th>
<th>PSD</th>
<th>libnet</th>
<th>libpcap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>liberator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Application</th>
<th>PSD</th>
<th>libnet</th>
<th>libpcap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>liberator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Ethernet

```
<table>
<thead>
<tr>
<th>Application</th>
<th>PSD</th>
<th>libnet</th>
<th>libpcap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>liberator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Application</th>
<th>PSD</th>
<th>libnet</th>
<th>libpcap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>liberator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Conclusions

• PubSub vs. send-receive
 – Huge change in *thinking* regarding networking
• PubSub internetworking architecture
 – First ideas
 – 1st prototype up and running
• PSIRP EU project starting in 2008
 – Publish-Subscribe Internet Routing Paradigm
 – 8 partners, 2.5 y, 335 MM, 2.6 M€ EU contribution
 – Everything from link layer to application layer
• The work has just begun...
 – More open questions than answers
Questions?
Thank you!