Ethernet nodes in terabit backbones

Heikki Almay
30.11.2007
Typical (small) IP/MPLS backbone network
Typical (Carrier) Ethernet backbone network?
Ethernet nodes in terabit backbones

- Are Ethernet switches and cross connects likely to replace core routers in the backbone networks the same way ATM replaced Frame Relay and IP replaced ATM?

- What features and capabilities are required from Ethernet switches or cross-connects when they are introduced to the terabit backbone?

- Under what circumstances is it justified to use Ethernet switches or cross-connects as building blocks of a terabit backbone?
Backbone technology evolution since the 1980’s

- From X.25 to Frame Relay
 - Link speeds (no ack)
 - Optical networks, low BER
- From Frame Relay to ATM
 - Link speed, DLCI space
 - B-ISDN
- From ATM to IP over SDH
 - Link speed
 - Data is now IP
- From IP over SDH to …
 - Link speed should be nx100Gbit/s
 - Should outperform current solution (price ?)
 - Breaking current L1 - L3 functional division

Maximum interface speeds

- Currently high end platforms carry 40 Gbit/s per slot
 - Routers and Switch/Routers
 - 4 x 10GE and STM-256
- No higher speed interfaces standardised yet
Cost of Ethernet and IP over SDH

- Ethernet interfaces are much lower priced than SDH (or PDH)
- Cost difference between Ethernet switching and routing is unclear
 - Cost of route processor vs cost of central management (for Carrier Ethernet)
- Backbone router vendors enjoy great margins today

Relative prices of different interface technologies in a switch/router
Are Ethernet switches and cross connects likely to replace core routers in the backbone networks the same way ATM replaced Frame Relay and IP replaced ATM?

- Not because of capacity or interface speed. Switches and routers have currently same restrictions.
- Price may be a reason for network operators to select switches instead of routers.
 - Cost difference is clear
 - Router vendors do have the possibility to adopt their pricing
- There are examples of backbone like applications implemented with Ethernet switches
Protocol options in a fiber based backbone

- ATM
- TDM
- FR
- MPLS
- Ethernet
- WDM
- SDH
- Fiber

IP based applications: TCP/UDP/SCTP
What features and capabilities are required from Ethernet switches or cross-connects when they are introduced to the terabit backbone?

- **With existing Ethernet switch features / planned PBB-TE features**
 - Can be built using current Ethernet Switches but the solution will not scale
 - Spanning tree size
 - Multicast domain
 - Can be built using Carrier Ethernet (PBB-TE) but the solution is not mature
 - Provisioning (manual provisioning does not scale)
 - Topology changes (resilience of management and management connections)
 - Loop protection (if you can have a loop you will eventually have one)

- **Additional requirements (mostly because of missing TDM network)**
 - Fast failover (can be implemented with BFD in PE routers)
 - Link quality monitoring (in PE router or Ethernet nodes)
 - Clocking (needed by some applications)
Under what circumstances is it justified to use Ethernet switches or cross-connects as building blocks of a terabit backbone?

- WDM, dark fiber or NG-SDH is available for Ethernet wide area transport
- Number of adjacent routers does not grow too big (additional requirements)
- Price
 - Price per bit for Ethernet transport interfaces is significantly lower than for SDH
 - The cost differences between switching and routing unclear
- Expansion of established wireline service provider backbones
 - High capacity needs
 - Own fiber and WDM
 - Technical skills
- Small greenfield backbone
 - Transport capacity from other players?
 - Competences?
Additional thoughts

- Ethernet will replace SDH first
 - This will take a long time
 - SDH … dead but growing
 - Over time functionality redistributed over L1 - L3

- Clear technology transition happening
 - like C. Christensen described for disk drive industry
 - But more complex with many technologies involved

- Further work
 - technology transitions in multilayer networks