

1

Abstract—Internetworking in the current form provides a

possibility for all hosts connected to the Internet to send data to

any other host by using the destination host’s IP address as the

destination address of the IP packet. This send-receive paradigm

is not only the base for IP networks, but also for most other

current network technologies, such as the Ethernet. The publish-

subscribe networking is a completely different paradigm, which

can be used to design a network architecture. It is based on the

idea that data is more important than the network end-points. By

selecting the publish-subscribe paradigm instead of the send-

receive, the control of what is being transmitted in the network is

moved from the sender to the receiver.

Index Terms—Future Internet, Post-IP, Publish-Subscribe,

Network architectures

I. INTRODUCTION

nternet is facing several problems. One major problem is the

shortage of available IP addresses in IPv4. A solution to that

is to upgrade the IP protocol from version 4 to version 6.

Another huge problem is the unwanted traffic – not only the

unwanted SPAM e-mail, but also the unwanted IP packets sent

by e.g. DDoS attackers. Solutions to these problems include

SPAM filtering with different methods and installing firewalls

that block IP packets with certain rules.

Many, if not all, of these problems are caused by the fact that

the IP network is designed by the send-receive model. In send-

receive the sender has the control: it can select when and

where to send a message and the network is designed to help

the sender to reach its goal – to get the message to the

specified destination. As the sending is cheap, this attracts

some people to send messages to recipients who are not

willing to receive such data.

There are many efforts on various fields of research and

engineering to overcome the shortcomings in the IP

architecture. On one hand IP is extended or patched with

several new protocols and extensions to support the changed

computing and communication environment, such as Mobile

IP [1] and firewalls. On the other hand, there are more radical

efforts that extend the networking architecture, such as HIP

[2] and DONA [8].

This paper examines a completely different model that looks a

promising choice to build internetworking upon, which is

called Publish-Subscribe (later „PubSub‟) model. This new

Manuscript received November 22, 2007. Presented on “Postgraduate

Course on Networking Technology” (S-38.4030), Networking laboratory,
Department of Electrical and Communications Engineering, Helsinki

University of Technology.

T. Rinta-aho is with Ericsson Research, Oy L M Ericsson Ab, 02420
Jorvas, Finland. E-mail: teemu.rinta-aho@ericsson.com.

model is essentially moving the control from the sender to the

receiver, and keeping in mind that “the receiver is the king”

and the data is more important than the end-points.

The section II of the paper will provide a brief look on the

background of PubSub, in section III some ideas for the

PubSub internetworking architecture are presented, in section

IV are some first prototyping results, and in section V the

paper is concluded.

II. BACKGROUND

A. The Publish-Subscribe Paradigm

Publish-Subscribe (PubSub) is an asynchronous messaging

paradigm where publishers of data don‟t send the data

(publications) to specific subscribers. Actually the publishers

don‟t even necessarily know if there are any subscribers to the

publications they publish. Each publication has an identifier

and the subscriber can subscribe to such a publication using

the identifier even without knowing if the publication has yet

been published or by whom it is or will be published. This is

called space decoupling [3].

Subscribers and publishers do not need to participate in the

publish-subscribe process at the same time. A publisher may

create a publication, and then go off-line, and assuming that

the network is storing the publication, the publication may be

subscribed by a subscriber any time. This is called time

decoupling.

Similarly, if there are many publishing and subscribing events

in the network, they don‟t need to be synchronized, i.e. the

subscriber doesn‟t need to block if it has subscribed something

that is not yet published, nor has the publisher need to wait for

the publication to be “consumed” before publishing the next

message. This is called synchronization decoupling.

While the space, time and synchronization decoupling add

flexibility into the network, they are only desirable for

applications without real-time constraints on data delivery,

such as file transfer or e-mail, but not for e.g. VoIP.

As the subscribers usually don‟t want or can‟t be provided

with all the publications in the network, the publications need

to be filtered. There are two ways to do this: topic-based or

content based.

In content-based PubSub the filtering of messages delivered to

a subscriber has a wider filter, i.e. the publishers can publish

many types of data, and if the publication matches the

attributes of the filter, the message is delivered to the

subscriber. It is up to the publisher to classify the attributes of

the publication so that the subscriber gets the correct data.

Moving the Control from Senders to Receivers

Teemu Rinta-aho

I

mailto:teemu.rinta-aho@ericsson.com

2

In topic-based PubSub the filtering is narrower; the

publications are filtered by their name. It is up to the

subscriber to find out the names of the publications it wants.

B. Related Research

Most research efforts so far have been concentrating on the

content-based PubSub such as the JEDI [4] and the Java

Message Server [5], and like them, many are assumed to be

run on top of the current Internet protocols.

Some examples of protocols or architectures that use some

PubSub-like ideas and are used in practice are mostly in the

field of P2P file sharing, for example Kazaa [6] or BitTorrent

[7]. First of all, in those systems, the content of the data is the

most important thing. Data is not identified by the file name or

location, but an ID, which is usually a hash of the data.

Receiving the hash and the data the receiver can check that the

data has been received correctly. Secondly, it is of no interest

to the subscribers of the data who is or was the publisher, as

long as they get what they wanted. Using these principles, it is

possible to share the storage and/or transmission costs

between the nodes participating in the P2P network.

Data Oriented Network Architecture [8] is a clean slate

redesign of the naming architecture of the Internet. It provides

persistence, availability, and authenticity to the data allowing

the data to be cached, or moved without changes to the

method that can be used to reach it.

The names in DONA are self-certifying and of the form P:L,

where P is a cryptographic hash of the principal's (publisher's)

public key, and L is a string chosen by the principal. The

architecture supports two primitives: FIND(P:L) and

REGISTER (P:L). When a client sends a FIND(P:L) request,

the DH either locates the location of the nearest copy of the

publication in its registration table and forwards the request to

it, or forwards the request to its provider DH. When a DH

receives a REGISTER(P:L) it puts the location information in

its cache and forwards the request to its provider and peers.

Thus, the DH of tier 1 AS will have location information of all

registered publications.

III. A PUBSUB INTERNETWORKING ARCHITECTURE

The PubSub architectures proposed so far are assumed to be

run on top of current IP networks. The goal of the upcoming

EU 7
th

 FP project PSIRP, however, is to replace the IP with a

clean slate PubSub architecture. This requires rethinking of

everything that forms an internetworking architecture: naming,

routing and forwarding. Besides internetworking, we feel that

it is worthwhile to use PubSub also on local links and even in

the node-internal architecture. This will require a new way to

attach to the network, new security mechanisms and, most

importantly, it requires a new way of thinking. In this section

some of the preliminary thoughts that could be used as the

basis for the new architecture are presented.

A. Motivation

One of the biggest problems today is the unwanted traffic at

the receiving nodes. This is traditionally counterattacked by

installing firewalls that filter the traffic with certain rules.

However, this only blocks some of the unwanted traffic, for

example DDoS on IP layer for certain port numbers. It is still

possible to DDoS a web server, for example, because it is not

possible to block TCP port 80 to a publicly available server,

e.g. www.cnn.com.

Another observation that can be made in current wireless and

wireline network technologies today, is that many of them are

basically shared broadcast mediums with a MAC protocol on

top providing a virtualization of a per-node resource. When

one node is transmitting, others have to wait for their time slot

Instead of just waiting they might receive the data being

transmitted by other nodes. Could the PubSub model help

increase the total capacity of a network?

If the API needs to be rewritten due to a radical change in the

way applications will use the network, should we also rethink

other operating system components and their role in the

future? It might be feasible to put e.g. network and local disk

behind the same API?

B. Architecture

1) Identifiers

Our proposed architecture falls into the topic-based PubSub

category. A publication has two identifiers: a public

Subscription ID (SubID) and a private Publication ID

(PubID). They are bound to each other by some cryptographic

(hash) function. The PubID is only known by the publisher

(the owner) of a publication, and the SubID is publicly known

ID that can be used to subscribe to the publication. If the

PubID depends on the content of the publication, then it is

possible to form self-certifying publications where the

subscriber can check that the publication originated from a

legitimate publisher and that the data has not been tampered

during the transport. With self-certifying publications it

doesn‟t matter anymore where the data is received from.

Remember that the application subscribed to data, and there is

no need for an end-to-end connection.

It is left for further research what is/are the exact method(s) to

form the PubID, and if PubID has any structure or is it a flat

naming space.

2) Primitives

There are only two primitives: publish and subscribe.

Actually, it can be argued that there is only one primitive:

publish, and subscribe is built on top of it – subscribing means

publishing a subscription.

The publish primitive is a process of binding publication

metadata to the actual published data. Publish has a scope

which defines the metadata and the required compensation

mechanisms.

3) Publication Metadata

Publication metadata contains information required to store,

transmit and authenticate a publication, such as type, PubID,

SubID, lifetime and scope. A publisher may use e.g. PKI to

bind the metadata to the application data presented by a

publication so that it can prove the ownership of the metadata

during the lifetime of a publication.

http://www.cnn.com/

3

4) Compensation Mechanisms

If a publisher wants to publish in the network, it needs to

compensate for the resources needed for the publication. If the

scope of the publication is node-local, then obviously a

compensation mechanism is not needed – the publish

operation will succeed if there is enough free memory or disk

space to use for storing. Publishing in your own (home)

network is a bit more complex, but in most cases it is adequate

to just be authenticated to the network. Publishing outside

your own network or globally requires more complex

compensation mechanisms depending on the business models

used. For example, if you want to publish a web page through

your ISP, your monthly rate may cover certain amount of

storage in the ISP network, and then this business agreement

for network usage needs to be somehow referred in the

publication process for it to succeed. If you publish the web

page on your own home server but want it to be available

outside your home network, then you only need to publish the

related metadata through your ISP and compensate for its

storage and possible routing and directory service costs.

5) Authentication Mechanisms

Because the data is the main identifiable object, it is often

enough to authenticate data. In some cases, however, a node

publishing metadata needs to be authenticated. This can be

done with PKI, but it may become too heavy for publications

that update frequently. An option to PKI could be e.g. TESLA

[9]. TESLA could be used for example to authenticate

periodic link information sent by the local router.

6) Functional Model

The PubSub internetworking architecture consists of three

different roles that a node may have: a publisher, a subscriber

and a sprouter. The name sprouter is chosen to differentiate

the node from an IP router.

When a publisher publishes, it announces to the local sprouter

that it has a certain publication (assuming the publication is

not of local scope only). The sprouter stores the metadata and

if it receives subscriptions, it will send the data to the

subscribing subscriber or sprouter (see Figure 1). If the local

sprouter is caching the publication, then further subscriptions

to the same publication will be served directly from the cache

without consulting the publisher. It is possible that the

publisher doesn‟t even know of the subscribers.

The network architecture consists of three separate functions:

rendezvous, routing and forwarding. Rendezvous is the

function where the subscription and publication‟s location

information meet. Once the origins of the subscription and the

publication are known, the routing function is consulted for a

route between these two locations. After that the forwarding

path is set up and the forwarding plane takes care of the actual

transmission of the data.

Figure 1: PubSub functional model

C. Use Cases

File sharing is the simplest application for the PubSub

internetworking architecture. While the data itself is identified

and self-certifying, the network can use caching to reduce

load. Because the data is being self-certified, there is no need

to receive the data from a specific node. There are problems to

be solved, though. One of them is the fragmentation of large

publications. In our current thinking the link layer frames

themselves are publications with a maximum size, there needs

to be a way to group several frames together which would then

represent the “higher layer” publication. Another problem

which is not really specific to the file sharing use case is the

implementation of rendezvous and routing, i.e. how to do file

sharing in large scale networks.

Two-way connections can be constructed by using two

publications, one to each direction. An application that wants

to listen for incoming connections can periodically publish an

“invitation publication”. Anyone can subscribe this invitation,

containing a puzzle. Solving the puzzle reveals the actual

channel which will lead to the listening application. The

channel is the SubID that the “listening” host is subscribing

and where data can be published by the initiating host.

Connecting application can send the SubID of the other

direction during the connection setup. Using a puzzle is

necessary to prevent DoS attacks.

Streaming brings transport issues into the PubSub

architecture: how to support versioning of application data,

how to do congestion control, how to implement a reliable

transport over unreliable links. As we envision that all

transport is multicasting, these problems are common with the

current multicast transport research and not all are “caused”

due to the PubSub. These issues are considered in the ongoing

and future research.

IV. PROTOTYPE

We have implemented a PubSub prototype in our lab. It is

running on Linux and it is implemented completely in user

space. Everything above the link layer is implemented “from

scratch”, i.e. no existing protocols are being used. The

prototype consists of a library implementing the PubSub API,

a PubSub daemon and some test applications written in C and

Java (see Figure 2). The daemon is using libpcap and libnet to

receive and send Ethernet frames. However, the source and

H

H

H

H

R
R

R R

Pu

b

Sub

Sub

Publish(IdPub) Subscribe(IdSub)

Subscribe(IdSub)

4

destination fields of the Ethernet frame are ignored, and all

sent frames use the broadcast address as the destination.

A. Architecture

The internal architecture of a node itself is also following the

PubSub paradigm. The components of the protocol stack are

not in a stack in the traditional sense, but they use a

blackboard approach to access the publications. The

blackboard in this case is a common directory which holds the

stored publications. The directory can be a memory file

system to prevent delays introduced by frequent disk accesses.

Figure 2: Prototype Architecture

B. Operation

When an application publishes a file, it calls a library function

create that creates two files per publication: one for metadata

and one for the data coming from the application. It maps

these files to the memory space of the calling process and fills

in the metadata and data. Once ready, the call to the publish

function will bring the new publication visible to other

applications and the PubSub daemon. Depending on the

metadata, a special publication called publication list may be

updated. This publication list is periodically broadcast on the

Ethernet link so that other nodes are aware of the available

publications.

When an application calls subscribe function with the SubID

of the subscribed publication, the library either maps the

cached publication (if it is already available) and returns a

pointer to the caller process or it creates a new publication of

type subscription into the disk. PubSub daemon will notice

this subscription and broadcasts it to the Ethernet link(s).

When receiving a publication from the network, the daemon

checks whether it is a subscription or subscribed data. If it is a

subscription, it will broadcast the publication back if the

publication is stored locally. If the received publication is data,

it will be stored on the disk and it becomes available for the

application.

In a sprouter node, the daemon is run with ”sprouter” flag set.

In this case, it will store subscriptions sent by other nodes. If

the subscribed data is already cached locally at the sprouter, it

will be delivered to the subscriber. Otherwise the sprouter

subscribes to the data on other links and after the data has

been received, it forwards the data to the original subscriber. It

will also forward the broadcasted publication lists on other

links, so that all nodes in the connected networks are aware of

the available publications. The nodes, however, are not aware

of the presence of the sprouter; it is basically a transparent

proxy.

The actual forwarding of a large publication may require

fragmentation. An Ethernet frame can hold up to 1540 bytes of

data. Our PubSub header currently occupies 32 bytes (1 byte

for publication type and 31 bytes for SubID). In the current

prototype the fragmentation is solved by introducing a new

type of publication: fragment list. A fragment list publishes

the SubIDs of fragments (see Figure 3). When a subscriber

receives a fragment list, it needs to subscribe to all fragments.

After receiving all fragments, the daemon on the receiving

side can create a copy of the original data from the fragments.

There is a simple re-subscribe timer to recover from lost

fragments and a simple rate limiting timer to prevent from

causing too many collisions on the Ethernet.

Figure 3: Fragment list

C. First Test Results

The prototype has been run with the following setup: two

Ethernet links which are connected by a sprouter. On Link 1

there are two subscribers and on Link 2 there is one publisher

(see Figure 4). All nodes are using a picture sharing

application which can be used to publish and subscribe e.g.

JPEG files. Currently we can publish and subscribe to a

number of files and the sprouter is supporting links with

different MTUs by creating separate fragment lists on each

link. We also have caching function on the sprouter: once the

file has been published on Link 2 it will be forwarded to the

subscribers on Link 1 from the sprouter cache – even if the

original copy is lost at the publisher.

Ethernet

disk

Application PSD

liberator

R W

libnet libpcap

NIC

disk

Application PSD

liberator

R W

libnet libpcap

NIC

Data

MD

Data

Data

MD

Data

MD

Original data

Publication

Fragment list

Data

MD

Data

MD

Data

MD

Data

MD

Fragments

5

Figure 4: Prototype network

D. Next Steps

Next steps in the prototype development will include support

for streaming applications, networks of multiple sprouters,

network attachment, protection of metadata and self-certifying

data.

V. CONCLUSION

This paper provided an overview of the Publish-Subscribe

networking paradigm, which is a radically different approach

to solve the shortcomings of the current Internet architecture.

After some initial thinking and prototyping in our lab we have

not faced any problems that would seem a reason to stop

developing the initial thoughts towards a more refined

proposal.

The proposal for a project Publish-Subscribe Internet Routing

Paradigm (PSIRP), has been accepted in the first call of the

ICT programme of EU's 7th Framework Programme. The

project will launch in the beginning of 2008 and it will be a

joint effort of eight partners for two and a half years.

ACKNOWLEDGMENT

I would like to thank Pekka Nikander, Petri Jokela, Mikko

Särelä, Christian Vogt, Jan Melén and Jukka Ylitalo. Their

work and many of our discussions have been an invaluable

input to this paper.

REFERENCES

[1] D. Johnson, C. Perkins and J. Arkko, “Mobility Support in IPv6”, RFC
3775, IETF, June 2004

[2] R. Moskowitz and P. Nikander, “Host Identity Protocol (HIP)

Architecture”, RFC 4423, IETF, May 2006
[3] P. Eugster, P. Felber, R. Guerraoui and A. Kermarrec, “The Many Faces

of Publish/Subscribe”, ACM Computing Surveys, Vol. 35, No. 2, June

2003, pp. 114–131.
[4] G. Cugola, E. Di Nitto and A. Fuggetta, “The JEDI Event-Based

Infrastructure and Its Application to the Development of the OPSS

WFMS”, IEEE Transactions on Software Engineering, Vol. 27, No. 9,
September 2001, pp. 827-850

[5] Java Message Server, http://java.sun.com/products/jms

[6] Kazaa, http://www.kazaa.com/us/index.htm
[7] BitTorrent, http://www.bittorrent.com/

[8] T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. H. Kim, S.

Shenker, and I. Stoica, “A Data-oriented (and Beyond) Network
Architecture”, In Proceedings of SIGCOMM '07.

[9] A. Perrig, D. Song, R. Canetti, J. D. Tygar and B. Briscoe, “Timed

Efficient Stream Loss-Tolerant Authentication (TESLA)”, RFC 4082,
IETF, June 2005.

http://java.sun.com/products/jms

