
AUTONOMIA: An Autonomic Computing Environment*

Xiangdong Dong, Salim Hariri, Lizhi Xue, Huoping Chen,
Ming Zhang, Sathija Pavuluri, Soujanya Rao

{nansheng, Hariri, lzxue, hpchen, mingz, pavuluri, soujanya} @ece.arizona.edu
Autonomic Computing Laboratory

Department of Electrical and Computer Engineering
University of Arizona

Tucson, AZ 8572 1
www. ece.arizona. edd-hpdc

ABSTRACT

The prolifeation of Internet technologies, services
and devices, have made the current networked system
designs, and management tools incapable of designing
reliable, secure networked systems and services. In fact,
we have reached a level of complexity, heterogeneity, and
a rapid change rate that our information infiastructure is
becoming unmanageable and insecure. This had led
researchers to consider alternative designs and
management techniques that are based on strategies used
by biological systems to deal with complexity,
heterogeneity and uncertainty. The approach is referred
to as autonomic computing. An autonomic computing
system is the system that has the capabilities of being sev-
defining, self-healing, self-configwing, self-optimizing,
etc. In this paper, we present our approach to implement
an autonomic computing infastructure, Autonomia that
provides dynamically programmable control and
management services to support the development and
deployment of smart (intelligent) applications. The
A UTONOMIA environment provides the application
developers with all the tools required to specifj, the
appropriate control and management schemes to maintain
any quality of service requirement or application
attribute/firnctionality (e.g., perjormance, fault, security,
etc.) and the core autonomic middleware services to
maintain the autonomic requirements of a wide range of
network applications and services. We have successfully
implemented a proof-of-concept prototype system that can

support the self-configuring, self-deploying and self-
healing of any networked application.

1. Introduction

The wide deployment of Internet technology has
resulted in exponential growth in Internet application
services (e.g., content hosting for data with web-based
access, shared payroll applications, firewall-based security
services, email and shared file services). The management
and control of these application services is a challenging
research problem due to the huge amount of data that
needs to be collected and coordinated, the heterogeneity
and the independence of resources and components [IO]
required by these services and the fact that they run under
different organizations and administration policies.

Further this problem is exacerbated with the
proliferation of computer devices that has grown at
exponential rates. In addition, demand is already
outpacing supply when it comes to managing complex,
and even simple computer systems. As access to
information becomes omnipresent through PC's, hand-
held and wireless devices, the stability of current
infrastructure, systems, and data is at an increasingly
greater risk to suffer outages and general disrepair. In the
process, the systems have become increasingly difficult
to use. This complexity has led to a situation where the
cost to manage such systems is actually a lot more than
the actual systems themselves [3]. Consequently, the
growing complexity of the IT infrastructure threatens to

The work presented here was supported by the National Science Foundation via grants numbers ACI 9984357 (CA-REERS), EIA 0103674 (NGS) and
by DOE ASCVASAP (Caltech) via grant number PC295251.

0-7803-7893-8/03/$17.00 0 2003 IEEE 61

mailto:ece.arizona.edu

undermine the very benefits information technology aims
to provide.

A potential solution to these challenging research
problems can be drawn from biological systems which
have been very successful in controlling and managing
complex, interactive, constrained systems. This solution
approach is known as the Autonomic Computing that calls
for designing distributed information systems that can
automatically configure, deploy, secure, tolerate faults,
optimize, and anticipate loads by themselves without the
manual involvement of human administrators.

In this paper, we present an autonomic architecture to
achieve automated control and management of networked
applications and their infrastructure. We have successfully
implemented a proof-of-concept prototype, referred to as
AUTONOMIA, that implements two important properties
of autonomic systems: self-configuring and self-healing.

The organization of this paper is as follows. In
Section 2, we give a brief overview of autonomic
computing and its main properties. In Section 3, we
present a brief overview of related approaches and
techniques. In Section 4, we give an overview of our
approach to implement an autonomic computing system.
In Section 5 , we present in W h e r detail our
implementation approach and the technologies used to
implement the proof-of-concept prototype
“AUTONOMIA”. In Section 6, we conclude the paper
and discuss our future research activities.

2. Autonomic Computing: The next era of
computing

IBM has recently launched a major research effort
toward the development of autonomic computing systems
and services [3]. The basic approach is to build computing
systems that are capable of managing themselves; that can
anticipate their workloads and adapt their resources to
optimize their performance. This approach has been
inspired by the human autonomic nervous system that has
the ability to self-configure, self-tune and even repair
themselves without any human conscience involvement.
The concept of developing the next era of computing
systems is driven by the convergence between the
biological systems and the digital computing systems. To
demonstrate the inefficiency of our approach to build the
next generation of networked systems, just imagine if we
apply our current design and management tools of
distributed systems to implement the human central
nervous system. That means, when a person jogs, helsh
needs to continuously monitor and adjust as appropriate
the heart rate, the body temperature, blood pressure, send
appropriate messages to selected areas of human body,

etc. It is clear that it is almost impossible to do all these
functions while a person is jogging; the person needs to
focus on jogging rather than monitoring and adjusting a
wide range of neurons and their systems.

Paul Hom [l] in his pioneering article on autonomic
computing has identified a set of eight key elements or
characteristics that form the criteria for a system to be
classified as being an Autonomic Computing system.
While the defintion of autonomic computing will likely
transform as contributing technologies mature, the
following list suggests eight defining characteristics of an
autonomic system: Self-Defining, Self-Protecting, Self-
Optimizing, Self-Healing, Self-Configuring, Contextually
Aware, Open and Anticipatory.

3. Related Works

There are several projects that are aimed at
developing high performance programming models to
develop large-scale distributed applications (Grid
computing) that seamlessly allocate and obtain resources
from the Grid infrastructure. Javelin of UCSB [I l l ,
Charlotte [22] of NYU, and Bayadan [20] of MI”, allow
clients to define components as Java Applets to be used in
applications. Project Ninflet [12][23] intends to hamess
abundant idle computing power into a seamlessly
integrated global as well as local parallel distributed
computing environment. Another approach at University
of Columbia aims at automating legacy systems and
assembling autonomic systems of systems [4]. Other
research projects like Recovery Oriented Computing
(ROC) have emphasized the recovery and reliability of
systems rather than performance [5][7], in which systems
use excess computing, memory, storage, and other
resources to improve the over-all system behavior and
reliability.

In this paper, we present our approach to develop an
autonomic computing infrastructure that supports
complete control and management service in our
prototype system, which we refer to as Autonomiu.
Autonomiu will essentially provide dynamic
programmable control and management services to
support the development and deployment of smart
applications, automate performance and fault tolerant
support for smart applications, provide automated
deployment, registration, discovery of components, allow
automated configuration of applications and system
resources and finally provide a secure, open computing
environment.

4. Autonomia Design Approach

62

The objective of this project is to automate
deployment of mobile agents that have self-manageable
attributes. The architecture of Autonomia is based on two
previous projects: Adaptive Distributed Virtual
Computing Environment (ADViCE) and CATALINA - A
Proactive Application Control and Management System

The Autonomia environment provides application
developers with all the tools required to specify the
appropriate control and management schemes, deploy and

[61[271.

confgure the required software and hardware resources,
run application, provide on-line monitoring and
management to maintain desired autonomicity. The
architecture of Autonomia is shown in Figure 1. The main
modules include Application Management Editor (AME),
Application Delegated Manager, Autonomic Middleware
Services (AMs), Java Space and Java Message Service. In
this subsection, we will briefly discuss the functionality of
the AME and the AMs. The other modules will be
discussed further in the implementation section. - 7 I

Figure 1 : AUTONOMIA system architecture

4.1. Application Management Editor (AME)

It provides application developers with the services
required for specifying an application’s autonomic
requirements (e.g. self-optimizing and self-healing) and
also specifies the appropriate autonomic schemes to
maintain the application requirements. The main hnctions
of the editor are controlling the application editor
workplace and storing the application management
requirements in the component repository.

4.2. Autonomic Middleware Service (AMs)

Once the application management requirements are
defined using the AME, the next step is to utilize the AMs
services to build the appropriate application execution
environment that can dynamically control the allocated
resources to maintain the application requirements during
application execution.

In what follows, we highlight how this architecture
can achieve self-healing and optimizing properties for a
given networked system or application.

Our methodology to achieve self-control and
management of any functionality or property of an
application service is based on three procedures:
Monitoring, Analysis and Verification, and Adaptation
procedures

1. Self Healing
For each fault type (system, component or agent), we

will have a software agent (fault handler) that is
responsible for executing the procedures. During the
monitoring phase, the appropriate fault handler focuses on
detecting faults once they occur. For example, for
component fault detection, an agent continuously
monitors the execution of the component and its
consumption of CPU time. Once the component stops its
execution, its execution status will be detected by the fault
handler, which executes the next procedure (Analysis and

63

Verification). Then the self-healing handler will analyze
and verify it in order to identify the fault type and what it
is required to recover from that fault. Once that is done,
the fault handler, will select and run the appropriate
recovery procedure (Adaptation procedure). In case of
host failure, the fault handler will consult with the
Application Delegated Manger (ADM) to identify another
machine to run all the affected components by the host
failure.

2. Self Optimizing Handier
In a similar approach as in self-healing, there will be

a software agent that we refer to as the Self-optimizing
Handler that is responsible to optimize the application as
well as system performance at runtime. The self-
optimization handler selects the appropriate mechanism to
optimize application performance (by migrating
application components, re-mapping the application
components to resources, etc.), change the overall
resource allocation and load balancing, just to name a few.

5. Autonomia Implementation Approach

In this section we discuss in detail our
implementation of the main modules of Autonomia and
focus on the implementation of the self-healing
functionality of the system.

5.1. Mobile Agent System

The mobile agent system (MAS) for Autonomia is
designed to provide mobile agents a uniform execution
environment independent of the underlying hardware
architecture and operating system. It provides functions to
receive agents, start execution of agents, monitor
execution state of agents, and transfer agents from host to
host. It also provides facilities to enable Autonomia to
keep track of the joining and withdrawal operations of
hosts in the environment. In the mobile agent system, we
define a component - Agent Transport Protocol, to act as
the access point of the MAS. It is in charge of receiving
agents from other remote hosts, either agent enabled or
non-agent systems, and sending agents to other agent-
enabled hosts.

Our mobile agent system is based on JavdJini
technologies. The appropriateness of using Jini
technologies was discussed in [15][171. The component
Agent Transport Protocol (ATP) is implemented as a Jini
service, which implements the interface
AgentProtocolInterface that defines the behaviors of the
protocol. During the installation of a mobile agent
system, its Agent Transport Protocol is published with a
Jini Lookup Service - Resource Repository (RR), through

which the clients can query the host. To publish the
service, a Jini service item of the Agent Transport
Protocol is created. After registration, the proxy of the
Agent Transport Protocol service as well as the host
information is uploaded to RR. Meanwhile, a unique
service ID is assigned to the Agent Transport Protocol
service. We use this ID as the mobile agent system
identifier. A Jini Lease Renewal Manager is used in the
mobile agent system, which keeps renewing the lease of
the registration with the RR. When a client wants to send
agents to a host, it queries the Resource Repository for the
proxy of the mobile agent system on that host. In our
implementation, the proxy of the Agent Transport
Protocol service is a Java RMI stub. Our implementation
of the Mobile Agent System uses multithread
programming. For each agent, MAS spawns a new thread
to activate it. Thus the MAS has control of these threads
and is capable of detecting their status by polling.

5.2. Application Management Editor (AME)

A user can develop an application by selecting
components from a well-defmed library or libraries of
components that are registered in the Component
Repository (see Figure l), and how the components are
interconnected; the application development involves
constructing application flow graphs from the components
registered in the component repository. In addition to
developing the application flow graph, the AME enables
the user to specify the management requirements for each
component that are needed to control and manage the
required autonomic properties for that component.

For each application to be registered in Autonomia
environment, an Application Service Template (AST) is
created and stored in the component repository. The AST
provides a uniform format for representing all the
management and control attributes associated with that
application using an application template class. The
control and management information is stored in the
application template class and consists of name,
description, dependencies (properties of every application
template object), attributes (lists all application-specific
properties), fault tolerance, security, monitoring
techniques, and monitoring parameters. The AST is
described using the Extensible Makeup Language (XML).

5.3. Autonodc Middleware Service

The AMs provides the core autonomic management
services required to achieve an autonomic computing
environment. The services offered by the Ah4S are
implemented using mobile agents. The main services

64

offered by the AMs are Component Repository, Resource
Repository, JavaSpaces, JMS, and the Fault and Security
Performance Handlers. Furthermore, each AMs service
can be implemented using one or more algorithms that can
be selected dynamically at runtime based on the current
application state as well as the system state.

5.3.1. Component Repository (CR). Component
Repository is a Jini Lookup Service named
“Components”. It contains a collection of components that
are currently available to the users to develop their
applications. A component registers with the CR if it
wants to provide its service to an application. The
registration information cannot stay in the CR infinitely.
A lease indicating the duration of the component
registration is returned to the component provider when
the component registers with the CR. The component
provider needs to renew the registration before its lease
expires if it wants to continue to provide its component
service. A component will be eliminated from the CR if it
stops renewing the lease.

In our implementation, components are implemented
as Jini Services. For each component, there is a
corresponding service wrapper class that is responsible for
publishing the component as a Jini service. The
components developed by different component providers
can be published in our environment at any time and
plugged in anywhere. They can be deployed to the
appropriate hosts automatically without pre-installing.
53.2. Resource Repository (RR). Resource
Repository is a Jini Lookup Service, named “Resources”.
It keeps track of all host registrations that are currently
registered in the environment. The registration is made for
a specific time period and a lease is returned to the host.
Resources can be added or discovered in a similar
approach to the component publishing and discovering
techniques that were discussed in the previous subsection.
5.3.3. Control and Data Message Center. There are
two message centers: Control and Management Message
Center and Data Message Center, which were
implemented using JavaSpaces and Java Message Service
(JMS) respectively.

5.4. Application Delegated Manager

The Application Delegated Manager plays the role of a
broker between components and resources. In addition,
the ADM will have the responsibility of supervising the
application execution at runtime to make sure we achieve
all the required autonomic properties identified in the
application service template as discussed in the
Application Management Editor subsection. The main
fbnctions of ADM can be outlined as follows:

Maintain an up-to-date list of resources as well as
available components that can participate in executing
a given application.
Select the set of resources that can meet the
autonomic requirements of an application.

0 Dispatch the appropriate number of mobile agents to
deploy, configure, perform on-line monitoring,
analysis, and adaptation when the application cannot
meet its requirements.

5.5. Fault handler

There are three types of fault handlers: System Fault
Handler, Component Fault Handler and Agent Fault
Handler. They deal with system fault, component fault
and agent faults, respectively. These handlers are created
by the ADM and they share the component deployment
information. The ADM registers with the Coordinate
Space (CS) that it is interested in the presence of the fault
entries in the Coordinate Space. The fault handlers are
designated as event listeners once the fault entries appear.
In the next subsections, we discuss the fault-detection and
recovery schemes adopted to achieve self-healing. We
also show the dumpscreens of our proof-of-concept
prototype implemented based on Autonomia architecture.

5.5.1. Fault Detection and Recovery Scheme. This
implementation has the capability to handle three different
kinds of faults defined as Component fault, Agent System
fault and Node fault. In our environment, the ADM
creates a Node Fault Handler, Component Fault Handler,
and Agent Fault Handler, which register with the
JavaSpaces their interest in the presence of the node fault
entry, the component fault entry and the agent fault entry,
respectively. The JavaSpaces will notify the appropriate
fault handler when a fault entry is written in the space.
Then, the fault handler will spawn a thread to recover that
fault using checkpointinglmigrating mechanism [25].

In Autonomia, whenever a fault is detected, the
corresponding fault entry is created and is then written to
the JavaSpaces. The lease of staying in the JavaSpaces for
the entry is renewed by a global Lease Renewal Manager
service. Any fault entry should stay in the JavaSpaces
until a fault handler takes it out and deals with the fault
even after their creators have crashed.
5.5.2 Component fault detection and recovery. Here we
will focus on component fault detection and recovery
mechanisms to illustrate the key aspect of our
implementation of the self-healing property.

Our recovery scheme is based on rolling back the
application execution to a previous error-free state that we
refer to as a checkpoint state. In our implementation, the
checkpoint data is written to JavaSpaces as a checkpoint

65

entry object. When a component is failed and needs to be component to resume its execution, all what it needs are
migrated to another host. The mobile agent will not only the checkpoint parameters and the executable file for the
deploy the component to the selected host, but it also selected computing platform. Consequently, if a
downloads its related checkpoint data entry from the component needs to resume its execution on another
JavaSpaces. To enable components to migrate and resume machine, its proxy will fetch the checkpoint entry from
execution on heterogeneous computing resources, we the JavaSpaces and the checkpoint parameters in order to
store the checkpoint data as a set of parameters. For any resume its execution from the latest checkpoint.

Figure 2: Component Fault Recovery

Create an empty vector;
boolean continueflag = true;
Do {

Create a new transaction;
Try to take out a component fault entry from JavaSpace under the transaction;
if (the fault entry exists) {

Create a new agent and set old component to it;
for each available host {

successStatus = deploy agent on the host
if (successStatus is true) transaction.commit(); break;

if (successStatus is false) {add the transaction to the vector; 1
1

1
else continuefiag = false;

}while (continueflag)
for each transaction in vector { trasaction.abort(); }

Figure 3: Component Fault Recovery Algorithm

Figure 2 shows the main steps involved in detecting
and recovery from a component failure. The component
periodically writes the check pointing parameters to the
JavaSpaces (step 1 of Figure 2). When a component
fails, the agent detects its failure by intercepting the
return value from the component execution and then
reports a component fault entry to the JavaSpaces (step 3
of Figure 2). The registration of a fault entry will then
trigger an event message that is sent to the appropriate
component fault handler (step 4 of Figure 2). The fault
handler will attempt to process all the component fault
entries currently stored in the JavaSpaces. To guarantee
an atomic processing of the recovery procedure, it is
executed as a transaction. Under the recovery transaction
shown in Figure 3, the component fault handler takes out
one component fault entry at a time and then creates a

new mobile agent with the same agent ID in the fault
entry. In steps 5 and 6, the fault handler searches the
Deploy information and Resource Repository for a
suitable host other than the old one and gets the
appropriate proxy of the mobile agent system for the
selected host. In Step 7, the agent is dispatched to the
selected host. In Steps 8 and 9, the MAS on the new host
will read the checkpoint information from the
JavaSpaces and resumes the component execution. If the
dispatch fails on the selected host, the handler interacts
with all other available hosts until the recovery
transaction is successful. Then the recovery transaction
commits and the component fault entry is removed from
the JavaSpaces. The new location of the component will
be recorded in the deployment information table. If no
host can accept the agent, the transaction is aborted, and

66

the component fault entry is left in the JavaSpaces. The
self-healing procedures associated with host and agent
failures follow similar steps to those shown in Figure 2.

In what follows, we show a few dump screens from
our current implementation prototype of Autonomia
system. In the execution environment, there are four
workstations, three of them called Catalinal, Catalina2
and Catalina3 running WindowsXP, and the fourth one
called Nimue running RedHat Linux 7. The Agent
System browser in Figure 4 shows that there are two
mobile agent systems, alpha and beta, that are currently
running and monitoring the execution of the components
on Catalinal and Nimue, respectively. In this
experiment, we show how Autonomia can achieve self-
healing for component running a matrix multiplication
(MM). The MM component is running on Catalina 2.
All the component executables are stored in the Code
base repository that is running an HTTP server to
process client requests to download the appropriate code
to any machine. The Jini services, Lookup Service,

JavaSpaces, Transaction Manager Service, as well as the
ADM are running on Catalina 3.

Then, the proxy of the MM component that is
running on Catalinal multiplies two matrices. The on-
line monitoring of that component execution is
performed by the mobile agent system alpha, which
writes the checkpoint parameters to JavaSpaces after the
multiplication of a given set of rows as shown in Figure
5 . In Figure 5 , we show the partial multiplication results
after completing two rows of multiplications. Let us
assume that after two rows of multiplication, Catalinal
failed. The System Fault Handler will detect the system
failure and it migrates the MM component to the MAS
beta where it resumes its execution at Nimue (Linux)
fiom that of the failed host (WindowsXP). Figure 6
shows that the matrix multiplication restarts on Nimue
fiom where it stopped due to the host failure; i.e. it
restarts execution of the matrix multiplication from row
2 rather than starting fiom the beginning.

S.

tel 2l2 21e
169 206 221
134 205 P7
217 209 280

Figure 6: MM proxy resumes component execution from row 2.

67

6. Conclusions and Related Works

In this paper, we presented a novel architecture to
implement an autonomic computing environment
(Autonomia). Our implementation approach and services
will make the control and management of large-scale
parallel and distributed applications autonomic. We
discussed in detailed OUT implementation approach in
general to Autonomia and showed how we can achieve
the self-healing when components, agents, and or systems
fail. We are currently implementing other autonomic
attributes to make our environment self-optimizing and
self-protecting .

7. References

[I] Paul Hom, Autonomic Computing: IBM's perspective on the
State of Information Technology
http://researchweb.watson.ibm.com/autonomic/
[2] Autonomic Distributed Computing in Scientific
Applications. Intemational Workshop on Future Directions in
Distributed Computing. 3-7 June 2002, Bertinoro, Italy.
[3] http://www.research.ibm.com/autonomic.
[41 Gail Kaiser, Phil Gross, Gaurav Kc, Janak Parekh, Giuseppe
Valetto: An Approach to Autonomizing Legacy Systems; IBM
Almaden Institute Symposium, 412002
[5] David Patterson, Aaron Brown, et al, Recovery Oriented
Computing (ROC): Motivation, Definition, Techniques, and
Case Studies, Computer Science Technical Report UCBIICSD-
02-1 175, U.C. Berkeley March 15,2002
[6] Salim Hariri, C.S. Raghavendra, Yonhee Kim, Rinda P.
Nellipudi, et al; CATALINA: A Smart Application Control and
Management.Active Middleware Services Conference, 2000.
[7] Brown, A. and D. A. Patterson. Embracing Failure: A Case
for Recovery-Oriented Computing (ROC). 200 1 High
Performance Transaction Processing Symposium, Asilomar, CA,
October 2001.
[SI S. Hariri, Y. Kim, M. Djunaedi. Design and Analysis of a
Proactive Application Management System. Proc. of
NOMS2M)O; April 2000.
[9] R. Koa, S. Toueg. Checkpointing and Recovery-Rollback for
Distributed Systems. IEEE Transactions on Software
Engineering; Vol. SE-13, No. 1; pp. 23-31; 1987.
[lo] M. A. Iverson, F. Ozguner, L. C. Potter. Statistical
Prediction of Task Execution Times through Analytic
Benchmarking for Scheduling in a Heterogeneous Environment.
Eighth Heterogeneous Computing Workshop (HCW'99).

[I I] Michael 0. Neary, Bemd 0. Christiansen, Peter Cappello,
and Klaus E. Schauser: Javelin: Parallel Computing on the
Intemet. Future Generation Computer Systems. October I 999.
[12] Hiromitsu Takagi, S. Matsuoka, H. Nakada, et al, Ninflet A
Migratable Parallel Objects Framework using Java, In proc. of
the ACM 1998 Workshop on Java for High Performance
Network Computing, 1998.
[I31 Michael 0. Neary, Alan Phipps, Steven Richman, and Peter
Cappello, Javelin 2.0 Java-Based Parallel Computing on the
Intemet, In Euro-Par 2000.
[14] Adam J. Ferrari, Process Introspection: A Checkpoint
Mechanism for High Performance Heterogeneous Distributed
Systems. Technical Report CS-96- 15, Department of Computer
Science, University of Virginia, Charlottesville, VA, October 10,
1996.
[IS] Nathalie Furmento, Anthony Mayer, Stephen McGough, et
al, Optimisation of Task-based Applications within a Grid
Environment, SuperCOmuting 2001
[I61 R. Armstrong, D. Gannon, A. Geist, et al, Toward a
Common Component Architecture for High-Performance
Scientific Computing. In Proc. of the 8th High Performance
Distributed Computing, 1999.
[171 K.A.Hawick and H.A.James, Dynamic Cluster
Configuration and Management using JavaSpaces, 2001 IEEE
Intemational Conference on Cluster Computing, 200 I .
[1 81 http://java.sun.com/products/jmd
[19]http://java.sun.com/producWjinil
[20] Luis F. G. Sarmenta, Satoshi Hirano, Bayanihan: Building
and Studying Web-Based Volunteer
Computing Systems Using Java.
[2 11 F.Cristian, Understanding Fault Tolerant Distributed
System, Communication on ACM, ~0134, 199 1.
[22] A. Baratloo, M. Karaul, Z. Kedem, P. Wyckoff, Charlotte:
Metacomputing on the Web. In proc. Of the
9" Intemational Conference on Parallel and Distributed
Computing Systems, 1996.
[23] Hiromitsu Takagi, S. Matsuoka, H. Nakada, et al, Ninflet: A
Migratable Parallel Objects Framework
[24] Michael 0. Neary, Alan Phipps, Steven Richman, and Peter
Cappello, Javelin 2.0: Java-Based Parallel Computing on the
Intemet, In Euro-Par 2000
[25] A.Beitz, S.Kent, and P.Roe. Optimizing Heterogeneous
Component Migration in the Gardens Virtual Cluster Computer.
In Heterogeneous Computing Workshop, May 2000.
[26] A. Baratloo, M. Karaul, H. Karl, Zvi M. Kedem. An
Infrastructure for Network Computing with Java Applets. In
Proceedings of ACM workshop on Java for High Performance
Network Computing, February 1998.
1271 H. Topcuoglu, S. hariri, D. Kim, Y. Kim, X. Bing, B. Ye, I.
Ra, J. Valente, The Design and Evaluation of a Virtual
Distributed Computing Environment", The Joumal of Networks,
Software Tools and Applications(C1uster Computing), 1998.

68

http://researchweb.watson.ibm.com/autonomic
http://www.research.ibm.com/autonomic
http://java.sun.com/products/jmd

