
Support for Feedback and Change in Self-adaptive
Systems

Dharini Balasubramaniam, Ron Morrison,
Kath Mickan, Graham Kirby

University of St Andrews
St Andrews

Fife KY16 9SS, UK
+44 1334 463253

{dharini, ron, kath, graham}@dcs.st-and.ac.uk

Brian Warboys, Ian Robertson, Bob Snowdon,
R Mark Greenwood, Wykeen Seet

University of Manchester
Oxford Road

Manchester M13 9PL, UK
+44 161 275 6154

{brian, ir, rsnowdon, markg,
seetw}@cs.man.ac.uk

ABSTRACT
Self-adaptive systems modify their own behaviour in response to
stimuli from their operating environments. The major policy
considerations for such systems are determining what, when and
how adaptations should be carried out. This paper presents
mechanisms for feedback and change that support policy
decisions for self-adaptation within a computationally complete
architecture description language based on the π-calculus. Our
contribution is support for feedback through software-encoded
probes, gauges and an event distribution network together with
support for change through decomposition, reification, reflection,
recomposition and hyper-code.

Categories and Subject Descriptors
D.2.11: Software Architectures – Data abstraction, Domain-
specific architectures, Languages

General Terms
Management, Measurement, Design, Languages.

Keywords
Adaptation, autonomics, composition, constraints, decomposition,
feedback, hyper-code, mechanism, policy, probes, recomposition,
reflection, reification, self-adaptive systems, software
architectures.

1. INTRODUCTION
1.1 Self-adaptive Systems
A self-adaptive system modifies its own behaviour in response to
changes in its operating environment [1, 2] with the motivation of
prolonging the usefulness of the executing software system.

A common approach for self-adaptation in control systems is to
insert a set of probes into an executing system to observe and

quantify significant events. Information gathered from the probes
is stored in gauges and at an appropriate time is sent to an
adaptation engine via an event distribution network. The
adaptation engine uses the input from the probes, together with its
model of system goals, usually expressed as constraints, to decide
when evolution is appropriate.
The major policy considerations for self-adaptation are deciding
what, when and how adaptations should be carried out. The
mechanisms required to support these policy decisions [3] include
facilities for defining constraints, feedback and change.

1.2 Our Approach
Software architectures [4, 5] describe systems in terms of
components and their interactions. In order to support and guide
self-adaptation within a unified framework, architectures need to
specify the behaviour of their components as well as constraints
on the structure and cardinality of their components and
interactions. We present a software architecture-based approach
for self-adaptation where policies may be encoded within
languages using mechanisms for supporting constraints, feedback
and change.

Constraints pertaining to an application are the conditions that
must hold at all times during its execution. We concentrate here
on the mechanisms for feedback and change within a
computationally complete architecture description language based
on typed higher-order polyadic π-calculus. Feedback is supported
through software probes, gauges and an event distribution
network and change through the adaptation engine using the
concepts of decomposition, reification, reflection, recomposition
and hyper-code.

2. RELATED WORK
Various frameworks, languages and methodologies have been
proposed for the construction of self-adaptive systems.

Containment Units are used to build adaptive systems that deal
with anticipated change in [6]. ArchStudio [7] is a tool suite
developed to support self-adaptation in the C2 architecture style.
Georgiadis et al [8] use specific component managers to identify
external architecture changes by listening to events, and then react
in order to preserve architecture constraints. Architecture styles,
augmented with adaptation operators and repair strategies, are
used as the basis for self-repair by Garlan et al [9]. IBM’s
autonomic computing initiative [10] aims for systems which are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSS’04, Oct 31–Nov 1, 2004 Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-989-6/04/0010…$5.00.

18

self-configuring, self-optimising, self-protecting, and self-healing.
Dearle et al [11] describe a framework for autonomic
management of component-based distributed applications using a
constraint solver and an autonomic deployment and management
engine. Java [12] provides facilities for observers to be notified
when an observable object changes its state.

Some of these approaches are designed for providing self-
adaptation to existing systems. Information gathered by inserting
a set of probes into an executing system is compared to a separate
architectural model, which is kept up to date with the
implementation. If constraints in the model are violated then one
of a set of adaptation algorithms is chosen to correct the anomaly.
These algorithms must have complementary methods in the
implementation so that changes can be made [6, 7, 8, 9]. The
advantage of our approach is that a single framework provides all
these facilities thus making it amenable to an integrated system of
checking.

3. MECHANISMS FOR FEEDBACK AND
CHANGE
Our facilities for feedback and change are implemented within the
ArchWare ADL [13, 14]. We provide a brief overview of some
relevant features of this language before describing the
mechanisms themselves.

3.1 The ArchWare ADL
The ArchWare ADL is a strongly-typed executable architecture
description language designed and implemented as part of the
EU-funded ArchWare project [15]. It extends an expression
language with typed higher-order polyadic π-calculus [16] and
constructs to support composition, decomposition, dynamic
evolution and recomposition of systems.

Hyper-code technology [17, 18] is used to support the ArchWare
ADL. A hyper-code program is an active executing graph linking
source code and existing values. By unifying the concepts of
source code, executable code and data, hyper-code provides a
single representation (as a combination of text and hyperlinks) of
software throughout its lifecycle. Sharing is represented by
multiple links to the same value. Hyper-code also allows state and
shared data to be preserved during evolution. Thus at any point
during the computation the state of the execution may be
inspected by viewing the hyper-code. In the following examples
hyperlinks are shown as underlined identifiers.

Components are modelled by behaviours which communicate via
connections using send and receive actions. Behaviours can be
collaboratively and hierarchically composed to form a system.
Abstractions abstract over behaviours just as functions abstract
over expressions.

Figure 1 illustrates some of the above features. Connections
request and reply are defined to communicate integers as
messages. The abstraction server_abs repeats the following
actions whenever a message arrives on connection request: it
receives a value, implicitly declared as x, via request, increments
a location count, defined in the global scope and represented as a
hyperlink, and sends double the value of x via reply. Applying
server_abs, with any parameters (in this case none) enclosed in
brackets, yields an executing behaviour.

value request = connection(integer)
value reply = connection(integer)
value server_abs = abstraction()
{ replicate{
 via request receive x
 count := ‘ count + 1
 via reply send 2 * x }
}
server_abs()

Figure 1: Components and interactions
A compose operator (akin to “|” in the π-calculus) creates a single
handle to a number of executing behaviours. Figure 2 shows how
a system may be defined by composition using server_abs from
Figure 1 and a client_abs abstraction defined elsewhere and
represented here as a hyperlink. The identifier preceding the as
keyword allows a unique label to be given to each behaviour. The
value server_2clients is a composite component with one server
and two clients as its constituents.

value server_2clients = compose{
 s as server_abs()
 and c1 as client_abs(256)
 and c2 as client_abs(400)
 }

Figure 2: Composition
For later use we introduce the ADL’s infinite union type, any,
along with inject and project operations over it. Values of any
type can be injected into an any and then projected back on to the
original type.
For building self-adaptive systems, the ADL supports facilities for
specifying constraints, providing feedback and effecting change.
Constraints on structure, cardinality and dynamic behaviour of
components can be specified in the style layer of the ArchWare
ADL [19]. Styles have been described elsewhere and are not
included in this paper. In the following sections, we concentrate
on feedback and change.

3.2 Feedback
Feedback acts as a trigger for change in self-adaptive systems. A
component may receive feedback from any of the following
sources:
� another component written in the ADL
� the execution engine on which the ADL is being evaluated
� the environment external to the ADL
We define a uniform mechanism to deal with feedback from all
these sources. The feedback mechanism is structured as follows:
� a component which requires feedback (feedback sink)
� a feedback source and its interface
� a software probe defined by the feedback sink
� a probe connection to send the probe from the feedback sink

to the source, published as part of the source interface
� a feedback connection to send the feedback from the probe

to the feedback sink
Each feedback source is designed to publish its feedback interface
consisting of observations available to probes, accept an
observation name and function from the probe connection,
interpret the function as a probe, bind it internally and invoke it at

19

the appropriate time. The events of interest are updates to the state
of the source, modelled as assignments to locations defined within
the source.
Feedback sinks are structured to define a software probe, send it
to the source via the appropriate probe connection, receive the
feedback via the feedback connection and take appropriate action
to correct any anomalies.
Software probes are defined by functions using application
constraints and hyperlinks to the observable features published by
the target feedback source. The function body consists of an if-do
clause with the if-part representing the negation of a constraint
and the do-part the feedback to generate if the condition is true.
Software probes can perform the duties of both probes and gauges
by generating and storing feedback.
Connections for communicating probes and feedback are defined
differently for each type of feedback source but once created can
be used identically. The feedback connection acts as the event
distribution network.
Within each source a register of received probes and the
observations required by them is maintained. After each update
all probes registered for that location are executed. A feedback
register is used for storing the feedback interfaces of all sources at
a well-known place such as a published location in the persistent
store.
The advantages of this approach are:
� it provides a uniform mechanism to deal with feedback from

different types of sources
� feedback sources do not require knowledge of constraints

driving the sinks as this information is encapsulated within
probes

� probes are specialised to the requirements of feedback sinks
which receive only the feedback relevant to them

3.2.1 Feedback from another Component
Receiving feedback from another component written in the ADL
requires no special provision from the language. Feedback sink A
may send the name of an observation and a probe to component B
via a connection of message type (string, function[]). Component
B is designed so that it recognises the function as a probe, stores it
in its probe register and calls it at the appropriate time. The probe
can then generate and send the specified feedback via another
connection to the originator if the condition becomes true. Since
both components are in the ADL domain, there is no restriction on
the type of feedback generated and hence on the type of feedback
connection.

3.2.2 Feedback from Execution Engine
Feedback from the execution engine provides information on
significant features of system execution, not normally available to
programs written in the language. The execution engine
implements a published interface of observations which can be
used by probes. Two special functions, execution_probe and
execution_feedback, are used to create connections of message
types (string, function[]) and any respectively. The former allow
probes to be sent by a feedback sink to the execution engine while
the latter enable feedback to be sent to the feedback sink from the
execution engine. The engine is designed so that it treats
messages from connections defined by execution_probe as

probes. Since pre-defined connections created by
execution_feedback are the only means of getting feedback from
the execution engine to an ADL component, all feedback
messages are typed as any.

3.2.3 Feedback from External Environment
Feedback from external environment requires communication
with sources outwith the ArchWare ADL domain. The ADL
supports I/O connections created by a special function called stdio
using well-known connection names. A list of well-known
connection names is published to all tools and clients wishing to
communicate with the ADL system. Messages sent through I/O
connections are typed as string.

Since communication in this case is with an agent, probes are not
sent to external sources. However feedback can still be sent to an
ADL component by the external source using an agreed message
format.

3.2.4 An Example
The feedback register can be modelled as a list in the ArchWare
ADL as shown in Figure 3. Each element of the list consists of a
name for the source, a probe connection on which the source will
receive probes sent by sinks and the feedback interface for the
source. The interface itself is a list containing a descriptive name
and value (injected into an any) of observable locations defined
by the source. We assume the definition of two functions over
these lists. Function generate_interface takes a source name and a
probe connection and creates an entry in the feedback register
while publish_observation adds an entry to a given interface.

recursive type feedback_interface_type is view[
 observation_name : string,
 observation_val : any,
 next : location[feedback_interface_type]]
recursive type feedback_register_type is view[
 source_name : string,
 probe_conn : connection[string, function[]],
 feedback : location[feedback_interface_type],
 next : location[feedback_register_type]]

Figure 3: Definition of feedback register
The probe register within each source may be defined as shown in
Figure 4. It is a list containing pairs of observations and probes.
Three functions are defined to manipulate probe registers.
generate_probe_register creates an empty probe register,
add_probe adds an observation name and a probe to the register
and execute_probe takes an observation name and executes all
probes registered for it.

recursive type probe_register_type is view[
 observation_name : string,
 probe : function[],
 next : location[probe_register_type]]

Figure 4: Definition of probe register
Figure 5 shows the definition and use of a software probe by
means of a simple example. Consider a system in which a
component monitor_clients (feedback sink) monitors the number
of clients processed by another component process_clients
(feedback source).

20

value client_conn = connection(string)
value process_clients = abstraction()
{ value pc_probe_conn = connection(string, function[])
 value pc_interface = generate_interface(“process_clients”,
 pc_probe_conn)
 value pc_probes = generate_probe_register()
 value count = location(0)
 publish_observation(pc_interface, “count”, any(count))
 compose{
 b1 as { replicate{
 via client_probe_conn receive obs, probe
 add_probe(pc_probes, obs, probe) } }
 and
 b2 as { replicate{
 via client_conn receive request
 count := ’count + 1
 execute_probes(“count”)
 process_request(request) } }
 }
}
value monitor_clients = abstraction()
{ value feedback_conn = connection(integer)
 value client_probe = function()
 { if (’(count) mod 10) = 0 do
 via feedback_conn send 10 }
 via client_probe_conn send “count”, client_probe
 replicate{
 via feedback_conn receive client_count
 record_clients(client_count) }
}

Figure 5: Feedback from another component
In Figure 5, connection client_conn is used for interacting with
clients. Component process_clients defines a probe connection
pc_probe_conn for receiving probes and creates an entry in the
feedback register for its feedback interface using a hyperlink to
the pre-defined function generate_interface. It defines a register
for holding the probes it receives. It initialises the location count
which is used to keep track of the number of clients processed and
publishes the name and value of count as observable in
pc_interface. It then initiates two behaviours in parallel using the
compose construct. For every message received on
client_probe_conn, the first behaviour updates the probe register
using add_probe. For each request received on client_conn
connection, the second behaviour increments count, executes all
probes associated with count and processes the request.
Component monitor_clients defines connection feedback_conn to
be used for feedback and a probe client_probe as a function
referencing the published count. client_probe contains a hyperlink
to the value count from pc_interface in the feedback register and
specifies that if the value contained in count is a multiple of 10
then 10 should be sent on connection feedback_conn. Once the
probe is defined, monitor_clients sends it via client_probe_conn,
also linked to from the pc_interface. Every time a value is
received via feedback_conn it records the value.
In this simple example the feedback could have been
communicated to the monitor without a probe. However in larger
and more complex systems, a mechanism which permits
component A to plant a probe in component B is useful as it
separates the concerns of functionality and feedback.

3.3 Change
Mechanisms for change in the ArchWare ADL have been
described elsewhere [13]. We present a summary of these
mechanisms here.
We consider the following kinds of change for self-adaptive
systems:
� replacement
� static and dynamic generation of new components
� dynamic evolution (decomposition, reification, reflection,

recomposition)
All language mechanisms required to support the above changes
maintain type safety in the ArchWare ADL.
Replacement of statically defined components is supported by
assigning a new component to a location containing the old one.
There are two ways of generating new instances of component
types. If the number of components and time of creation are
known statically then abstraction definition and application can be
used as shown in Figure 1. If component creation depends on
some dynamic input then replication (“!” in the π-calculus) is
suitable as illustrated in Figure 5.
A more challenging adaptation is where part of a system has to be
(partially) disassembled, changed and put back together to create
an evolved system while the unaffected part still executes. This
change requires support for decomposition, reification, reflection
and recomposition.
Decomposition [14, 20] takes (part of) an executing system,
breaks it up into its constituent components and returns them in a
partially suspended state. The ADL supports a decompose
operator which takes a composite component and returns a
sequence of its constituent components (behaviours).
Reification allows introspection of a component so that its
specification can be used as a basis for any change. The
specification of a component is always available including during
execution and after decomposition via the ArchWare ADL hyper-
code system [21]. The hyper-code system can be invoked from
within ADL by the edit function which takes as a parameter and
returns as result values of type any.
The specification of a component can be edited using the hyper-
code system to produce an evolved specification. Using
hyperlinks to denote existing values allows us to preserve shared
data through this evolution. The new specification has to be
brought into the execution domain by dynamic compilation. A
callable compiler, invoked as function compile, is provided by the
ADL to implement reflection.
Recomposition takes the evolved set of components and
composes them together to form a new system. The compose
operator provided by the ADL can be used to achieve this.

4. CONCLUSIONS AND FUTURE WORK
We have presented a software architecture based approach to
building self-adaptive systems. The novelty of this approach is the
combination of feedback and change mechanisms within a π-
calculus based strongly typed executable ADL. We described a
generic mechanism for feedback from different sources using
software probes and connections. Decomposition, reification,
reflection and recomposition form part of the change mechanism.

21

The ArchWare ADL hyper-code system used in the examples has
been implemented. It is currently being evaluated by academic
and industrial partners of the ArchWare project.

One of the areas for further research is support for transformations
from one hyper-code program to another. Research into
programmable interfaces to the ADL hyper-code system [22] for
achieving such transformations is ongoing.

A framework for self-adaptation can be provided by combining
architecture and language support with a development
methodology. We have identified process for process evolution
(P2E) [23] as a suitable methodology for developing self-adaptive
systems. P2E requires an evolver component to be produced for
every functional component of the application at construction
time. This ensures that systems are built with evolution in mind in
addition to achieving an elegant separation functionality and
change.

Most solutions for self-adaptation deal with a pre-defined set of
constraints, triggers and adaptations but do not address issues
arising from the need to evolve potentially every part of the
system. As business and application requirements evolve, all
aspects of a system including constraints, architecture, feedback
and change mechanisms may need to evolve to keep in step. A
framework combining P2E with the software architecture based
approach presented in this paper will enable all these aspects
including the framework itself to evolve.

5. REFERENCES
[1] Kephart, J, Chess, DM. The Vision of Autonomic Computing.

In: IEEE Computer Journal, 2003.
[2] Oreizy, P, Gorlick, MM, Taylor, RN, Heimbigner, D,

Johnson, G, Medvidovic, N, Quilic, A, Rosenblum, DS,
Wolf, AL. An Architecture-based Approach to Self-adaptive
Software. In: IEEE Intelligent Systems and Their
Applications, 1999.

[3] Morrison, R, Balasubramaniam, D, Greenwood, RM, Kirby,
GNC, Mayes, K, Munro, DS, Warboys, BC. A Compliant
Persistent Architecture. In: Software - Practice and
Experience, Special Issue on Persistent Object Systems,
2000.

[4] Perry, D, Wolf, A. Foundations for the Study of Software
Architecture. In: ACM SIGSOFT Software Engineering
Notes, 1992.

[5] Garlan, D, Shaw, M. An Introduction to Software
Architecture. In: Advances in Software Engineering and
Knowledge Engineering, 1993.

[6] Cobleigh, J, Osterweil, LJ, Wise, A, Lerner, BS.
Containment Units: A Hierarchically Composable
Architecture for Adaptive Systems. In: Proc.10th ACM
SIGSOFT Symposium on Foundations of Software
Engineering. 2002. Charleston, SC, USA.

[7] Oreizy, P, Medvidovic, N, Taylor, RN. Architecture-Based
Runtime Software Evolution. In: IEEE, 1998.

[8] Georgiadis, I, Magee, J, Kramer, J. Self-Organising Software
Architectures for Distributed Systems. In: Proc.1st ACM

SIGSOFT Workshop on Self-Healing Systems. 2002.
Charleston, SC, USA.

[9] Garlan, D, Cheng, S-W, Schmerl, B. Increasing System
Dependability through Architecture-based Self-repair. In:
Architecting Dependable Systems. 2003: Springer-Verlag.

[10] IBM Autonomic Computing. http://www-
306.ibm.com/autonomic/index.shtml.

[11] Dearle, A, Kirby, GNC, McCarthy, A. A Framework for
Constraint-based Deployment and Autonomic Management
of Distributed Applications. 2004. Technical Report,
University of St Andrews.

[12] Liskov, B, Guttag, J. Program Development in Java. 2001:
Addison-Wesley.

[13] Balasubramaniam, D, Morrison, R, Kirby, GNC, Mickan, K,
Norcross, S. ArchWare ADL - A User Reference Manual.
2004. ArchWare Project Report.

[14] Morrison, R, Kirby, GNC, Balasubramaniam, D, Mickan, K,
Oquendo, F, Cimpan, S, Warboys, BC, Greenwood, RM.
Support for Evolving Active Architectures in the ArchWare
ADL. In: Proc.WICSA 2004. 2004. Oslo, Norway.

[15] Oquendo, F, Warboys, BC, Morrison, R, Dindeleux, R,
Gallo, F, Occhipinti, C. ArchWare: Architecting Evolvable
Software. In: Proc. First European Workshop on Software
Architecture (EWSA'04). 2004. St Andrews, UK. Springer-
Verlag.

[16] Milner, R. Communicating and Mobile Systems: The Pi-
Calculus. 1999: Cambridge University Press.

[17] Zirintsis, E. Towards Simplification of the Software
Development Process: The Hyper-code Abstraction. 2000.
PhD Thesis, University of St Andrews.

[18] Zirintsis, E, Kirby, GNC, Morrison, R. Hyper-code
Revisited: Unifying Program Source, Executable and Data.
In: Proc. 9th International Workshop on Persistent Object
Systems. 2001. Lillehammer, Norway. Springer-Verlag.

[19] Cimpan, S, Oquendo, F, Balasubramaniam, D, Kirby, GNC,
Morrison, R. ArchWare ADL:Definition of Textual Concrete
Syntax. 2002. ArchWare Project Report.

[20] Warboys, BC, Balasubramaniam, D, Greenwood, RM,
Kirby, GNC, Mayes, K, Morrison, R, Munro, DS.
Collaboration and Composition: Issues for a Second
Generation Process Language. In: Proc. 7th European
Software Engineering Conference (ESEC'99). 1999.
Toulouse, France: Springer-Verlag.

[21] Mickan, K, Morrison, R, Kirby, GNC, Balasubramaniam, D,
Zirintsis, E. Using Generative Programming to Visualise
Hyper-code in Complex and Dynamic Systems. In: Proc.
27th Australasian Computer Science Conference
(ACSC2004). 2004. Dunedin, New Zealand.

[22] Mickan, K. Hyper-code for Evolution. To be completed in
2005. PhD Thesis, University of St Andrews.

[23] Warboys, BC, Kawalek, P, Robertson, I, Greenwood, RM.
Business Information Systems: A Process Approach. 1999:
McGraw-Hill.

22

http://www-306.ibm.com/autonomic/index.shtml
http://www-306.ibm.com/autonomic/index.shtml

	INTRODUCTION
	Self-adaptive Systems
	Our Approach

	RELATED WORK
	MECHANISMS FOR FEEDBACK AND CHANGE
	The ArchWare ADL
	Feedback
	Feedback from another Component
	Feedback from Execution Engine
	Feedback from External Environment
	An Example

	Change

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

