
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005 2361

Semantics-Based Dynamic Service Composition
Keita Fujii, Student Member, IEEE, and Tatsuya Suda, Fellow, IEEE

Abstract—Complex services may be dynamically composed
through combining distributed components on demand (i.e., when
requested by a user) in order to provide new services without
preinstallation. Several systems have been proposed to dynam-
ically compose services. However, they require users to request
services in a manner that is not intuitive to the users. In order to
allow a user to request a service in an intuitive form (e.g., using a
natural language), this paper proposes a semantics-based service
composition architecture. The proposed architecture obtains
the semantics of the service requested in an intuitive form, and
dynamically composes the requested service based on the seman-
tics of the service. To compose a service based on its semantics,
the proposed architecture supports semantic representation of
components [through a component model named Component
Service Model with Semantics (CoSMoS)], discovers components
required to compose a service [through a middleware named
Component Runtime Environment (CoRE)], and composes the
requested service based on its semantics and the semantics of the
discovered components [through a service composition mechanism
named Semantic Graph-Based Service Composition (SeGSeC)].
This paper presents the design, implementation and empirical
evaluation of the proposed architecture.

Index Terms—Component model, dynamic service composition,
semantics, semantics-based service composition, service oriented
architecture.

I. INTRODUCTION

A. Dynamic Service Composition

The recent development of distributed component technolo-
gies such as CORBA and Web Service made it possible to com-
ponentize various software programs, devices, and resources
and to distribute them over a network. In such an environment
where a large number of various components are distributed,
it is possible to dynamically compose a service on demand,
i.e., composing a service upon receiving a request from a user,
through discovering, combining and executing necessary com-
ponents. Composing services on demand (i.e., dynamic service
composition) has various advantages. For instance, by dynami-
cally composing services on demand, services do not need to be
configured or deployed in advance. In addition, by composing
services based on requests from users, it is possible to customize
the services to individual user profiles.

Manuscript received October 1, 2004; revised June 24, 2005. This work was
supported in part by the National Science Foundation (NSF) under Grant ANI-
0083074 and Grant ANI-9903427, in part by the Defense Advanced Research
Projects Agency (DARPA) under Grant MDA972-99-1-0007, in part by the Air
Force Office of Scientific Research (AFOSR) under Grant MURI F49620-00-1-
0330, and in part by grants from the California MICRO and CoRe programs,
Hitachi, Hitachi America, Denso IT Laboratory, NTT Docomo, Nippon Tele-
graph and Telephone (NTT), Novell, Fujitsu, NS Solutions Corporation, and
NICT.

The authors are with School of Information and Computer Science, Uni-
versity of California, Irvine, Irvine, CA 92697-3425 USA (e-mail: kfujii@
ics.uci.edu; suda@ics.uci.edu).

Digital Object Identifier 10.1109/JSAC.2005.857202

To illustrate the advantage of dynamic service composition,
consider the following example scenario. Suppose Tom wants to
take his family to a new restaurant he recently found on the web,
so he wants to print out a map showing a direction to the restau-
rant from his house. Assume that: 1) the restaurant’s Web server
stores the restaurant’s information such as its address in a struc-
tured document (e.g., in XML); 2) Tom’s PC stores his personal
information such as his home address in a database; 3) there
is a Web Service which, given two addresses, generates a map
showing a direction from one address to the other; and 4) Tom
has a printer connected to his home network. In order to print
out the map showing the direction from his home to the restau-
rant with the technology currently available, Tom has to man-
ually perform the following steps: a) discover the restaurant’s
homepage and the Web Service that generates a map; b) obtain
the addresses of the restaurant and his home; c) invoke the Web
Service using the addresses obtained; and d) print out the map
generated by the Web Service. However, if Tom is not an experi-
enced PC user, it may be difficult for him to perform these steps.
For instance, he may not know how to input the restaurant’s ad-
dress to the Web Service that generates a map. Dynamic service
composition, on the other hand, will automatically compose the
direction printing service, upon Tom’s request, by discovering
the four necessary components, identifying the steps a)–d) and
executing them on Tom’s behalf. Since the direction printing
service is composed on demand, it is not required to be con-
figured or deployed in advance. Also, if Tom’s daughter, Alice,
requests for a direction to the restaurant, and if she carries a
PDA with her, the service may be customized for her such that
it shows the map on her PDA’s display instead of printing it out.

B. Existing Dynamic Service Composition Systems

Several dynamic service composition systems have been pro-
posed and implemented. However, most of the existing dynamic
service composition systems require a user to request a service
in a manner that may not be trivial and intuitive to the user.

Some of the existing systems (e.g., eFlow [1], ICARIS [2],
STONE [3], SELF-SERV [4], and those described in [5]–[8])
require a user to request a service by choosing or creating a
service template that describes the structure of the service in
a flowchart-like diagram. They compose the requested service
through discovering the components necessary to convert (or
instantiate) the template into an executable workflow. However,
choosing or creating service templates may not be trivial nor
intuitive as it requires knowledge on the format of a template.

Some existing systems (e.g., BU-Grid [9] and NinjaWorkflow
[10]) require a user to specify the inputs/outputs of the service
he/she requests. They compose the requested service through
connecting the inputs and outputs of the components such that
the execution of the components accepts the user-specified in-

0733-8716/$20.00 © 2005 IEEE

2362 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

puts and generates the user-specified outputs. This approach,
however, does not apply to services that do not generate any data
as output. For instance, a user may have difficulty in specifying
an output for a book purchase service since it may not generate
any data as output.

Some existing systems (e.g., SWORD [11], SHOP2 [12],
[13], and those described in [14]–[17]) require a user to request
a service using a logic language. For example, the system
described in [15] requires a user to choose a meta-program
described in Golog logic programming language. Similarly,
SWORD [11] requires a user to request a service by specifying
pre/post conditions of the service using first-order logics. These
systems compose the service requested in a logic language
through a form of planning. They have shown that service
composition is efficiently implemented by applying planning
techniques, and that logic languages (e.g., first-order logic
formulas) are useful in composing services that do not generate
any data as output (e.g., a book purchase service). However,
understanding logic programming languages may not be trivial
nor intuitive for nonexperts.

C. Semantics-Based Dynamic Service Composition
Architecture

In order to allow users to request services in an intuitive
manner, this paper proposes a semantics-based dynamic ser-
vice composition architecture [18]. The proposed architecture
assumes that a user requests a service in an intuitive form (e.g.,
using a natural language) and that the semantics of the requested
service (expressed by a user in an intuitive form) is converted
into a machine-understandable format (e.g., a semantic graph)
through existing technologies.1 Based on the semantics of
the requested service described in a machine-understandable
format, the proposed architecture composes a service.

The proposed architecture composes a service through
discovering the components necessary to compose the re-
quested service based on the semantics of the requested service,
creating a workflow of the requested service using the dis-
covered components, and executing the workflow. In order
to support discovering components based on the semantics
of the requested service, the proposed architecture contains a
semantics-aware component model named Component Service
Model with Semantic (CoSMoS) and a middleware named
Component Runtime Environment (CoRE). CoSMoS models
the semantics of the components using semantic graph rep-
resentation. CoRE provides the functionality to discover and
execute components that are modeled in CoSMoS. In order to
support creating and executing a workflow of the requested ser-
vice, the proposed architecture also contains a semantics-based
service composition mechanism named Semantic Graph-Based
Service Composition (SeGSeC). SeGSeC first instructs CoRE
to discover components based on the semantics of the requested
service. Next, SeGSeC creates a workflow using the discovered
components such that the workflow satisfies the semantics of
the requested service. Then, SeGSeC instructs CoRE to execute
the workflow.

1For instance, a natural language sentence may be converted into a semantic
graph through existing natural language analysis techniques (e.g., [28]).

The remaining sections of this paper are organized as follows.
Section II describes a detailed design of CoSMoS. Section III
describes the architecture of CoRE. Section IV describes the ar-
chitecture and empirical evaluation of SeGSeC. Section V con-
cludes the paper.

II. COMPONENT SERVICE MODEL WITH SEMANTICS

(COSMOS)

This section describes a semantics-aware component model,
CoSMoS.

A. CoSMoS Overview

Many existing component models (e.g., WSDL, JavaBeans/
EJB, COM, etc.) define a component by specifying the oper-
ations that the component performs and the properties of the
component. An operation is modeled as a pair of inputs to and
outputs from the component, and each input, output, and prop-
erty is modeled as a pair of a name and a data type. For ex-
ample, the existing component models define a component that
generates a joint photographic experts group (JPEG) image of a
map showing a direction from one address to another by using a
“generateDirection” operation with two inputs, “from: Address”
(i.e., an input named “from” with the data type “Address”) and
“to: Address,” and one output, “direction: JPEG.” Although the
names of operations, inputs, outputs and properties may imply
their semantics (e.g., the name of the input “from” may imply
that it is an origin), the existing component models do not ex-
plicitly represent the semantics information.

Similar to the existing component models, CoSMoS in the
proposed architecture defines a component by specifying its op-
erations and properties. In addition, in order to model the se-
mantics of a component, CoSMoS introduces concepts, entities
representing abstract ideas (e.g., “direction” and “restaurant”)
and actions (e.g., “print” and “generate”), and annotates the se-
mantics of the operations, inputs, outputs and properties of the
component using concepts. For instance, with CoSMoS, the se-
mantics of the direction generator component (i.e., a compo-
nent to generate a map showing a direction from one address to
another) may be modeled by specifying the concepts “origin,”
“destination” and “direction” as the semantics of the two ad-
dress inputs and the JPEG output, respectively. CoSMoS also
uses a concept to specify the relationship between two concepts.
For instance, a “from” concept may be used to specify the re-
lationship between the “origin” and “direction” concepts, that
is, to specify that a “direction” is “from” an “origin.” Although
this approach of modeling the semantics of a component using
concepts is similar to the approach proposed by the Semantic
Web Service standards such as OWL-S [19] and WSMO [20],
CoSMoS is unique in that it annotates the concept of an op-
eration of a component in addition to the concept of an input,
output, and property of a component, and that it distinguishes
the concept and the data type of an input, output and property.

In order to define a component using operations, properties
and concepts in a machine-understandable format, CoSMoS de-
scribes a component as a semantic graph that consists of nodes
and labeled links. Nodes in the semantic graph represent oper-
ations, inputs, outputs and properties of a component, as well

FUJII AND SUDA: SEMANTICS-BASED DYNAMIC SERVICE COMPOSITION 2363

Fig. 1. Direction generator component in CoSMoS.

as their data types and concepts. Labeled links in the semantic
graph represent the relationships among the nodes. For example,
Fig. 1 illustrates the semantic graph representation of the direc-
tion generator component in CoSMoS.

B. CoSMoS Design

In order to describe a component as a semantic graph,
CoSMoS defines the 18 classes illustrated in the UML class
diagram in Fig. 2. These classes are used to specify what
each node and labeled link in a semantic graph represents.
For example, CoSMoS uses the Operation class in Fig. 2 to
specify that the “generate: Operation” node (i.e., an instance
of the Operation class) in Fig. 1 represents an operation of a
component. There are four domains for the classes defined in
CoSMoS based on their roles, namely, component domain,
data type domain, semantics domain, and logic domain. The
following subsections explain these classes in each domain in
detail.

1) Component Domain: CoSMoS assumes that a compo-
nent may implement one or more operations and that each
operation accepts another component(s) as its input(s) and
generates another component(s) as its output(s). CoSMoS
specifies an operation of a component as an operation node
(an instance of the Operation class) with an “implements” link
connected to a component node (an instance of the Component
class). The inputs and outputs of an operation are specified as
component nodes (representing the input or the output) with
“inputs” and “outputs” links connected to an operation node.
For example, in Fig. 1, “DirectionGenerator: Component”
implements “generate: Operation,” which accepts two inputs,
“originComp: Component” and “destComp: Component,” and
generates two outputs, “dirImage: Component” and “dirText:
Component.” An operation may throw an exception, which is
specified as an exception node (an instance of the Exception
class) with a “throws” link connected to an operation node.

In order to support components (e.g., a microphone and a
printer) that accept or generate real objects (e.g., sound and a
paper) instead of digital data, CoSMoS defines the RealObject
class (a subclass of the Component class) and models the real

objects as realObject nodes (instances of the RealObject class).
Also, in order to support components that ask users for several
options (e.g., a printer that asks a user to choose different paper
sizes), CoSMoS defines two subclasses of the Component class,
namely, Literal and Choice, and uses a choice node (an instance
of the Choice class) grouping several literal nodes (instances
of the Literal class) to specify possible options. For example,
in CoSMoS, a printer component that asks a user to select the
paper size between Letter size and Legal size may have a choice
node consisting of the “Letter” and “Legal” literal nodes as an
input of its operation.

CoSMoS also assumes that a component may have one
or more properties and that each property is retrieved as
another component. CoSMoS specifies a property of a com-
ponent as a component node (representing the property) with
a “hasPropertyOf” link connected to another component
node (representing the owner of the property). For example,
Fig. 3 illustrates a restaurant component with its address (e.g.,
“RestAddress: Component”) as a property.

2) Data Type Domain: CoSMoS specifies the data type of
an input/output of an operation and the data type of a prop-
erty as a dataType node (an instance of the DataType class or
its subclass) with a “representedBy” link connected to a com-
ponent node (representing the input/output or the property). For
instance, in Fig. 3, the property “RestAddress: Component” is
represented by the structured data “Address: Structure.”

CoSMoS predefines several primitive nodes (instances of
the Primitive class, which is a subclass of the DataType class),
namely, “int: Primitive,” “string: Primitive,” “float: Primitive,”
and “Boolean: Primitive,” in order to support common prim-
itive data types, such as integer, string, float, and Boolean.
CoSMoS also predefines several subclasses (i.e., Array, Struc-
ture, Binary, and File) of the DataType class in order to
support common data structures, such as array, structured data,
binary data, and file types. CoSMoS also supports implemen-
tation-specific data types (such as Java collection library and
XML schema datatypes) by defining dataType nodes connected
by “compatibleWith” and “subTypeOf” links. For instance,
the implementation-specific data types “java.util.Map” and
“java.util.HashMap” in Java may be defined as two dataType
nodes, “java.util.Map: DataType” and “java.util.HashMap:
DataType,” connected by a “subTypeOf” link. Two data
types are compatible if they are linked by “equivalentTo” or
“subTypeOf” links. Two data types are also compatible if they
are both structured data types (i.e. instances of the Structure
class) and their member data types are also compatible (Fig. 4).

3) Semantics Domain: CoSMoS defines the Concept class
and its subclasses, Noun and Predicate, to support concepts (i.e.,
entities representing abstract ideas and actions).

CoSMoS models the semantics of an input/output of an op-
eration and the semantics of a property as a noun node (an in-
stance of the Noun class) with a “represents” link connected to
a component node (representing the input/output or the prop-
erty). For instance, in Fig. 3, the property “RestAddress: Com-
ponent” represents the concept “address: Noun.” Unlike OWL-S
and WSMO that define a concept by specifying its data type,
CoSMoS defines a concept and a data type separately in order

2364 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

Fig. 2. CoSMoS class diagram.

Fig. 3. Restaurant component in CoSMoS.

Fig. 4. Data type compatibility.

to support the inputs, outputs and properties that are represented
by different data types but represent the same concept.

CoSMoS models the semantics of an operation as a predi-
cate node (an instance of the Predicate class) with a “performs”
link connected to an operation node. For example, in Fig. 1,
“generate: Operation” performs “generate: Predicate.” Despite
its simplicity, the predicate-based semantics representation of
CoSMoS is suitable for the proposed architecture because pred-
icates may be easily obtained from an intuitive form (e.g., a nat-
ural language). In OWL-S, WSMO and other recently proposed
Semantic Web Service models such as WSDF [21], METEOR-S
[22], and SESMA [23], the semantics of an operation (e.g., a
book purchase operation provided by an online book store) is
modeled by its effect/postcondition (e.g., the ownership of the
book is transferred to the user) defined as a logic formula [e.g.,
“own(user, book)”]. Although logic formulas may support the
formal definition of the semantics of an operation, it may not be
trivial to obtain a logic formula [e.g., “own(user, book)”] from
an intuitive form (e.g., a sentence “purchase a book”). Using
predicates provide a valuable alternative to using logic formulas
in order to compose services requested in an intuitive form.

A concept node (an instance of the Concept class or its sub-
class) may set a Boolean flag named “wildcard” to indicate that
it is a wildcard concept. To illustrate how a wildcard concept

Fig. 5. Example of a wildcard concept.

Fig. 6. Concept compatibility.

is used, consider a text-to-speech converter component. If the
input text describes a direction to a restaurant, the output sound
data should also read out the direction. If the input text describes
a novel, the output sound should also read out the novel. A wild-
card concept is used to indicate that the input text and the output
sound data represent the same but arbitrary concept. (Fig. 5).

Two concept nodes may be connected with a “subConceptOf”
or “equivalentTo” link to model that one concept is a subtype
of (or equivalent to) another. For instance, a “print” predicate
node may have a “subConceptOf” link to an “output” predicate
node. Two concepts are compatible if they are linked by “equiv-
alentTo” or “subConceptOf” links. Two concepts are also com-
patible if either of them is a wildcard concept (Fig. 6).

CoSMoS also uses a concept to label a link in a semantic
graph. CoSMoS predefines several concepts to label links in a
semantic graph (such as “implements” and “inputs” shown as
the labels of the associations in Fig. 2). In addition, CoSMoS al-
lows arbitrary (nonpredefined) concepts to label links. In order
to distinguish the arbitrary link labels from the predefined ones,
the arbitrary link labels are depicted with an underbar (e.g.,
“from” and “to” in Fig. 1) in the figures in this paper.

4) Logic Domain: CoSMoS allows components to provide
some logics to specify that some fact (i.e., a condition) implies

FUJII AND SUDA: SEMANTICS-BASED DYNAMIC SERVICE COMPOSITION 2365

Fig. 7. Example of logic.

another fact (i.e., a consequence). CoSMoS supports logics in
order to allow users to request the same service in different
ways. For instance, a printer component may provide a logic
specifying that “a paper in grayscale” implies “a paper in mono-
chrome” so that a user can request monochrome printouts in
two ways: “in monochrome” and “in grayscale.” Details of how
logics are used in composing services are explained later in
Section IV.

CoSMoS defines a logic as an “implies” link, an instance of
the Logic class (a subclass of the Link class), connecting two
arbitrary links,2 one specifying the condition of the logic and
another specifying the consequence of the logic. Fig. 7 shows
an example logic specifying that “a paper in grayscale” implies
“a paper in monochrome.” CoSMoS also defines two concepts,
“and” and “or,” to support logical product and logical sum.

C. CoSMoS Implementation

In order to express a CoSMoS semantic graph in XML, an
XML-based description language named CoSMoS/XML has
been designed [24]. Also, in order to deploy CoSMoS onto ex-
isting Web Service technologies easily, an extension of WSDL
named CoSMoS/WSDL and an RDF schema-based description
language named CoSMoS/RDFS have been designed [24].

CoSMoS has also been implemented in Java [24]. The current
CoSMoS implementation consists of a package of Java classes
implementing the CoSMoS classes (in Fig. 2), a set of parsers to
parse a file described in CoSMoS/XML, CoSMoS/WSDL, and
CoSMoS/RDFS into a set of Java objects modeling a CoSMoS
semantic graph, and a set of generators to generate either a Java
source code template or a CoSMoS/XML file from the Java ob-
jects created by the parsers.

III. COMPONENT RUNTIME ENVIRONMENT (CORE)

This section describes CoRE, a middleware designed to sup-
port CoSMoS on various component technologies. Fig. 8 shows
the architecture of CoRE.

CoRE consists of two interfaces, the discovery interface
and the access interface, and three groups of modules, namely,
DiscoveryEngine, InvokerEngine, and PropertyAccessEngine.
The discovery interface provides an interface to discover a
component distributed in a network. The access interface
provides an interface to invoke an operation of a component
and to retrieve a property of a component. Upon receiving
a query from the discovery interface, the DiscoveryEngine
discovers a component(s) and provides a CoSMoS semantic
graph representation of the component(s) (e.g., by analyzing
the component’s metadata described in CoSMoS/XML) to the

2In CoSMoS, a link is to connect two nodes (i.e., instances of the resource
class), and the Link class is defined as a subclass of the resource class. Therefore,
CoSMoS allows a link to connect other two links.

Fig. 8. CoRE architecture.

discovery interface. Upon receiving a query from the access
interface, the InvokerEngine invokes an operation of a compo-
nent, and the PropertyAccessEngine retrieves a property of a
component.

DiscoveryEngine, InvokerEngine, and PropertyAccess
Engine may be implemented with various component technolo-
gies, such as Web Service, CORBA, Jini, or uPnP. For instance,
DiscoveryEngine and InvokerEngine may be implemented
using Web Service technologies, such as UDDI, WSDL (or
CoSMoS/WSDL), and SOAP. Those Engines may also be
implemented on a distributed mobile agent architecture, such as
the bio-networking architecture [25]–[27]. CoRE automatically
selects a proper engine for each component by identifying the
technology on which the component is implemented.

CoRE has been implemented in Java [24]. The current CoRE
implementation includes a DiscoveryEngine to discover compo-
nents stored on a local host, an InvokerEngine to invoke compo-
nents’ methods, and a PropertyAccessEnvine to retrieve compo-
nents’ properties. The CoRE implementation based on the Web
Service technologies is also under development.

IV. SEMANTIC GRAPH-BASED SERVICE COMPOSITION

(SEGSEC)

This section describes SeGSeC, a service composition mech-
anism to compose a service from multiple components based
on the semantics of the service requested by a user. SeGSeC as-
sumes that all components are modeled with CoSMoS. SeGSeC
also depends on CoRE to discover and execute components.
This section describes the architecture, implementation, and
empirical evaluation of SeGSeC.

A. SeGSeC Architecture

SeGSeC consists of four modules: RequestAnalyzer, Service
Composer, SemanticsAnalyzer, and ServicePerformer (Fig. 9).

When a user requests a service in a natural language [Fig. 9,
(1)], RequestAnalyzer parses the request in a natural language
into a CoSMoS semantic graph representation and, then, passes
the semantic graph (i.e., the user request) to ServiceComposer
[Fig. 9, (2)]. Upon receiving the user request from Request
Analyzer, ServiceComposer discovers components based on
the user request and creates a workflow using the discovered
components [Fig. 9, (3)]. ServiceComposer, then, passes the
workflow and the user request to SemanticsAnalyzer, which in

2366 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

Fig. 9. Modules in SeGSeC.

Fig. 10. Home component in CoSMoS.

Fig. 11. Printer component in CoSMoS.

turn examines if the semantics of the workflow satisfies the user
request [Fig. 9, (4)]. If SemanticsAnalyzer concludes that the
semantics of the workflow satisfies the user request, it notifies
the result to ServiceComposer. ServiceComposer then passes
the workflow to ServicePerformer, which in turn executes the
workflow [Fig. 9, (5)].

The following sections describe the details of Request
Analyzer, ServiceComposer, SemanticsAnalyzer, and Service
Performer using an example scenario of how the direction
printing service (described in Section I) is composed from four
components, Home (Fig. 10), Restaurant (Fig. 3), Direction
Generator (Fig. 1), and Printer (Fig. 11), when a user requests
the service by providing a sentence “print direction from home
to restaurant.”

1) RequestAnalyzer Module: When a user requests a service
in a natural language (e.g., “print direction from home to restau-
rant”), RequestAnalyzer parses the request in a natural language
into a CoSMoS semantic graph representation (e.g., Fig. 12).
SeGSeC requires that the request contains one predicate (e.g.,
“print”). Since the natural language analysis is a well established
area of research, SeGSeC assumes that RequestAnalyzer uses
existing techniques (e.g., [28]) for parsing a natural language
sentence into a semantic graph. After parsing a natural language
sentence into a semantic graph, RequestAnalyzer passes the se-
mantic graph (i.e., a user request) to ServiceComposer.

2) ServiceComposer Module: Upon receiving a user re-
quest (i.e., a semantic graph converted from a natural language
sentence), ServiceComposer discovers components based on

Fig. 12. User request converted into CoSMoS.

the user request and creates a workflow using the discovered
components.

In order to create a workflow based on the user request,
ServiceComposer first discovers an initial component whose
operation performs (i.e., has a “performs” link to) the predi-
cate specified in the user request, and creates a workflow that
only contains the initial component. In the example scenario
described in Section IV-A, ServiceComposer discovers the
printer component (Fig. 11) as the initial component because its
operation performs the “print” predicate. If ServiceComposer
fails to discover a component whose operation performs the
specified predicate, it tries to discover another component using
a predicate that is compatible with the specified predicate. For
example, if ServiceComposer does not discover any compo-
nent whose operation performs the “print” predicate, but if it
discovers a component specifying that the “output” predicate is
compatible with the “print” predicate, then ServiceComposer
tries to discover another component whose operation performs
the “output” predicate. If ServiceComposer still cannot discover
any component, it notifies the user that it failed to compose the
requested service.

After discovering an initial component and creating a work-
flow containing the initial component, ServiceComposer dis-
covers other components that provide the inputs of the operation
of the initial component, and expands the workflow by adding
those components into the workflow. This step is called Input
Complement. The input complement is implemented as a recur-
sive function (Fig. 13) with three arguments, an operation whose
inputs need to be discovered, a user request, and a workflow that
the function expands. ServiceComposer initiates the function by
providing the operation of the initial component, the user re-
quest, and the workflow containing the initial component as the
arguments.

In the input complement, ServiceComposer first identifies
the inputs of the operation given as an argument of the function
and discovers all the components whose outputs (of their oper-
ations) or properties are compatible with the inputs of the given
operation [Fig. 13(a)]. ServiceComposer considers that an
output and an input (or a property and an input) are compatible
if their data types and concepts are compatible. In the example
scenario described in Section IV-A, when ServiceComposer
is performing the input complement for the “generate” opera-
tion in the direction generator (Fig. 1), it discovers the home
(Fig. 10) and restaurant (Fig. 3) because their properties (i.e.,
“HomeAddress” and “RestAddress”) are compatible with the
two inputs (i.e., “originComp” and “destComp”) of the “gen-
erate” operation. If an input of the given operation is a choice
(i.e., an instance of Choice class), ServiceComposer uses the
literal values contained in the choice instead of the components
whose outputs or properties are compatible with the choice.

FUJII AND SUDA: SEMANTICS-BASED DYNAMIC SERVICE COMPOSITION 2367

Fig. 13. Input complement pseudocode.

After discovering the components that provide the inputs
of the given operation (i.e., components whose outputs or
properties are compatible with the inputs of the operation),
ServiceComposer next determines which components among
the discovered ones to add to the workflow [Fig. 13(b) and (c)].
In order to do so, ServiceComposer first considers all possible
combinations of the outputs, properties, and literal values of
the discovered components such that each of the combinations
provides all the inputs of the given operation [Fig. 13(b)].
In the example scenario described in Section IV-A, Service
Composer discovers that “HomeAddress” and “RestAddress”
properties are compatible with the two inputs, “originComp”
and “destComp” of the direction generator’s “generate”
operation. Therefore, ServiceComposer considers four combi-
nations, {“HomeAddress,” “HomeAddress”}, {“RestAddress,”
“RestAddress”}, {“HomeAddress,” “RestAddress”}, and
{“RestAddress,” “HomeAddress”}, because each of these
four combinations provides the two inputs of the Direction
generator’s “generate” operation. After considering all possible
combinations, ServiceComposer calculates the similarity value
of each combination. The similarity value of a combination is
calculated as the number of the concepts that appear in both
the user request and the semantic graph representations of the
components that provide the outputs and properties contained
in the combination. For example, in the example scenario,

the similarity value of the combination {“HomeAddress,”
“RestAddress”} is 2 because two concepts, “home: Noun” and
“restaurant: Noun,” appear in both the user request (Fig. 12)
and the semantic graph representations of the Home (Fig. 10)
and Restaurant (Fig. 3). After calculating the similarity values
of all the combinations, ServiceComposer selects the one
with the highest similarity value [Fig. 13(c)]. In the example
scenario, ServiceComposer selects either {“HomeAddress,”
“RestAddress”} or {“RestAddress,” “HomeAddress”} because
they have the highest similarity value of 2. Depending on which
combination it selected, ServiceComposer will create different
workflows.

After selecting a combination, ServiceComposer expands the
workflow by adding the components that provide the outputs
and properties in the combination to the workflow so that the
outputs and properties in the combination provide the inputs
of the given operation [Fig. 13(d)]. ServiceComposer iterates
the input complement, while the workflow contains an opera-
tion whose inputs need to be discovered [Fig. 13(e)]. In the ex-
ample scenario described in Section IV-A, ServiceComposer it-
erates the input complements twice to discover the inputs of the
“print” operation of the Printer (Fig. 11) and the inputs of the
“generate” operation of the direction generator (Fig. 1). Then,
ServiceComposer creates either of the two workflows shown in
Fig. 14(a) and (b). Note that the workflow in Fig. 14(a) provides
the requested service to print out the direction from home to the
restaurant, but the workflow in Fig. 14(b) does not provide the
requested service as it prints out the direction from the restaurant
(i.e., not from home) to home (i.e., not to the restaurant). After
creating a workflow, ServiceComposer passes the workflow and
the user request to SemanticsAnalyzer to examine whether the
semantics of the workflow satisfies the user request [Fig. 13(f)].

3) SemanticsAnalyzer Module: Upon receiving a workflow
and the user request from ServiceComposer, SemanticsAna-
lyzer performs a step called Semantic Matching and examines
whether the semantics of the workflow satisfies the user re-
quest or not. SemanticsAnalyzer examines the workflow by:
1) converting the workflow into a semantic graph; 2) adding
new links to the semantic graph such that the resulting semantic
graph models the semantics of the workflow; and 3) checking
whether all the links in the user request also appear in the
resulting semantic graph (i.e., the semantic graph that models
the semantics of the workflow). The detail of the semantic
matching is explained below in detail.

In the semantic matching, SemanticsAnalyzer first con-
verts the workflow into a semantic graph. A workflow
[e.g., Fig. 14(a)] consists of a set of components [e.g.,
“Home,” “Restaurant,” “DirectionGenerator,” and “Printer” in
Fig. 14(a)], each of which is modeled as a semantic graph [i.e.,
dotted boxes in Fig. 14(a)]. A workflow also specifies which
output or property of a component provides an input of another
component [shown as thick arrows in Fig. 14(a)]. If a workflow
specifies that an input of a component is provided by an output
(or a property) of another component, SemanticsAnalyzer con-
nects the input and the output (or the property) with a “usedBy”
link. This results in a single semantic graph consisting of
the components (modeled as semantic graphs) connected by
“usedBy” links. For instance, SemanticsAnalyzer converts the

2368 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

TABLE I
SEMANTICS RETRIEVAL RULES

Fig. 14. Workflows created after input complement. (a) Print direction from
home to restaurant. (b) Print direction from restaurant to home.

workflow in Fig. 14(a) into a semantic graph by connecting
{“HomeAddress,” “originComp”}, {“RestAddress,” “dest
Comp”}, and {“image,” “dirImage”} with “usedBy” links.

After converting the workflow into a semantic graph,
SemanticsAnalyzer then adds new links to the semantic graph
such that the resulting semantic graph models the semantics of

Fig. 15. Example of applying semantics retrieval rules (1).

Fig. 16. Example of applying semantics retrieval rules (2).

the workflow. More precisely, SemanticsAnalyzer applies the
predefined rules called semantics retrieval rules (Table I) onto
the semantic graph. The semantics retrieval rules retrieve the
semantics of the workflow by adding new links to the semantic
graph converted from the workflow. For example, Figs. 15
and 16 illustrate how the semantics retrieval rules add the
two links, “targets(‘print: Predicate,’ ‘direction: Noun’)” and
“from(‘direction: Noun,’ ‘home: Noun’),” onto the semantic

FUJII AND SUDA: SEMANTICS-BASED DYNAMIC SERVICE COMPOSITION 2369

Fig. 17. Components implemented in SeGSeC. (a) Microphone. (b) Speaker. (c) Color printer. (d) Business directory. (e) Text-to-sound converter. (f) Voice
recognition. (g) E-mail sender. (h) Tom. (i) Business card creator.

graph converted from the workflow shown in Fig. 14(a). In
addition, if a component in the workflow provides a logic (i.e.,
if the semantic graph representation of a component in the
workflow contains an “implies” link connecting two links that
specify the condition and the consequence of the logic), and if
the semantic graph converted from the workflow satisfies the
condition of the logic (i.e., if the semantic graph converted from
the workflow contains a link specified as the condition of the
logic), SemanticsAnalyzer adds a new link as specified as the

consequence of the logic onto the semantic graph. For example,
if a component in the workflow provides the logic “implies
[in(‘paper,’ ‘grayscale,’) in(‘paper,’ ‘monochrome’)],” shown in
Fig. 7, and if the semantic graph converted from the workflow
contains a link “in(‘paper,’ ‘grayscale’),” SemanticsAnalyzer
adds a new link “in(‘paper,’ ‘monochrome’)” in the semantic
graph.

After adding new links to the semantic graph converted from
the workflow, SemanticsAnalyzer checks whether all the links

2370 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

Fig. 18. User interface of the SeGSeC implementation.

in the user request also appear in the semantic graph (i.e., the
semantic graph that models the semantics of the workflow). If
all the links in the user request appear in the semantic graph,
SemanticsAnalyzer concludes that the semantics of the work-
flow satisfies the user request. In the example scenario described
in Section IV-A, if SemanticsAnalyzer receives the workflow
shown in Fig. 14(a) and the user request shown in Fig. 12,
SemanticsAnalyzer concludes that the semantics of the work-
flow satisfies the user request because all the links in the user
request [i.e., “targets(‘print: Predicate,’ ‘direction: Noun’),”
“from(‘direction: Noun,’ ‘home: Noun’),” and “to(‘direction:
Noun,’ ‘restaurant: Noun’)”] appear in the semantic graph
converted from the workflow. However, if SemanticsAnalyzer
receives the workflow shown in Fig. 14(b), it concludes that
the semantics of the workflow does not satisfy the user request,
because the semantic graph converted from the workflow does
not contain the “from(‘direction: Noun,’ ‘home: Noun’)” and
“to(‘direction: Noun,’ ‘restaurant: Noun’)” links.

If SemanticsAnalyzer concludes that the semantics of
the workflow satisfies the user request, it notifies the result to
ServiceComposer. ServiceComposer then asks the user whether
to execute the workflow or not. If the user replies positively,
ServiceComposer passes the workflow to ServicePerformer,
which in turn executes the workflow. If SemanticsAnalyzer
concludes that the semantics of the workflow does not satisfy
the user request, or if the user replies negatively, ServiceCom-
poser tries to create other workflows based on the user request.

4) ServicePerformer Module: Upon receiving a work-
flow from ServiceComposer, ServicePerformer executes the
workflow by invoking the operations of the components and
retrieving the properties of the components as specified in the
workflow.

B. SeGSeC Implementation

In order to demonstrate the feasibility of the proposed se-
mantic-based dynamic service composition, SeGSeC has been

implemented in Java.3 The SeGSeC implementation allows a
user to deploy components on a local host and request a service
using a natural language. The current SeGSeC implementation
can compose several services from various components such
as home (Fig. 10), restaurant (Fig. 3), direction generator
(Fig. 1), printer (Fig. 11), microphone [Fig. 17(a)], speaker
[Fig. 17(b)], color printer [Fig. 17(c)], business directory4

[Fig. 17(d)], text-to-sound converter [Fig. 17(e)], voice recog-
nition [Fig. 17(f)], e-mail sender [Fig. 17(g)], a component
modeling a person named Tom [Fig. 17(h)], and business
card creator5 [Fig. 17(i)]. For instance, it can compose the
direction printing service described in Section IV-A. Fig. 18
shows screenshots of the user interface of the current SeGSeC
implementation.

C. Empirical Evaluation

This section describes the empirical performance evaluation
of SeGSeC. The performance of SeGSeC is affected by the
number of components deployed. When a small number of
components are deployed, SeGSeC composes the requested ser-
vice in a short period of time because it only needs to discover
and identify necessary components among a small number of
components. However, as the number of components deployed
becomes larger, SeGSeC may require a longer period of time
for composing the requested service, as it needs to discover
and identify necessary component among a larger number of
components.

In order to examine how the performance of SeGSeC de-
pends on the number of components deployed, a series of
performance measurements have been conducted6 using the
current SeGSeC implementation, the 13 components described

3The current implementation is available for download at [24].
4Given a name of a person, the business directory provides the address, phone

number, homepage, and e-mail address of the person.
5Given a name, address, phone number, e-mail address and homepage of a

person, the business card creator creates an image of a business card of the
person.

6The measurement was conducted on a Pentium 4 1.7 GHz machine with
384 MB memory and J2SE ver.1.5.0.

FUJII AND SUDA: SEMANTICS-BASED DYNAMIC SERVICE COMPOSITION 2371

TABLE II
RESULTS OF THE FIRST SET OF MEASUREMENTS

in Section IV-B and the five example user requests: “print
direction from home to restaurant,” “play direction from home
to restaurant,” “print direction from restaurant to Tom,” “send
e-mail to Tom,” and “print businesscard of Tom.” In the first
set of measurements, the service composition time (i.e., the
time period from when a user requests a service to when the
user is asked whether to execute the composed service) was
measured for the case where only the components required
for composing the requested service are deployed. The second
set of measurements was then conducted after deploying
additional components to the configuration used for the first
set of measurements. In the second set of measurements, the
following metrics were measured: 1) the average time for Ser-
viceComposer to discover components necessary to compose
the requested service; 2) the average time for ServiceComposer
to perform the Input complement and create workflows; 3) the
average time for SemanticsAnalyzer to perform the semantic
matching and identify the workflow whose semantics satisfies
the user request; and 4) the average service composition time.
In addition to examining how these performance metrics de-
pend on the number of components deployed, the second set of
measurements also examined how these metrics depend on the
number of operations the deployed components implement and
the total number of the nodes7 in the CoSMoS semantic graph
representations of the deployed components. Table II shows the
results of the first set of measurements, and Fig. 19 shows the
results of the second set of measurements.

Table II shows the user requests used in the measurements,
as well as the components deployed and the service composi-
tion time for each of the user requests. Table II illustrates that
the current SeGSeC implementation composes services in a rea-
sonable time (i.e., less than a second) when only the components
required to compose the requested service are deployed.

Fig. 19 illustrates the breakdown of the service composition
time shown in Table II to investigate which step of SeGSeC
dominates the overall performance of SeGSeC in different
configurations. Fig. 19 illustrates that the semantic matching
performed by SemanticsAnalyzer dominates the overall service
composition time when the number of components [Fig. 19(a)],
operations [Fig. 19(b)], and nodes [Fig. 19(c)] is small, whereas
the overhead of discovering components becomes significant
as the number of components, operations, and nodes increases.
Fig. 19 also shows that the times required for the input comple-
ment and for the semantic matching remain relatively constant
even when the number of components, operations, and nodes
becomes large. This implies that the input complement and the

7For example, the number of nodes modeling the microphone component in
Fig. 17 is six.

Fig. 19. Results of the second set of measurements. (a) Number of
components. (b) Number of operations. (c) Number of nodes.

semantic matching scale to these factors and that the scalability
of SeGSeC primarily depends on whether ServiceComposer
scales in discovering components.

In summary, the series of measurements have shown that
SeGSeC performs efficiently when only a small number of
components are deployed and that SeGSeC scales to the number
of components deployed if it discovers components efficiently.

2372 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

V. CONCLUSION AND FUTURE WORK

This paper proposes the semantics-based dynamic service
composition architecture. The proposed architecture assumes
that a user requests a service in an intuitive manner (e.g., using a
natural language) and dynamically composes the requested ser-
vice based on its semantics. The proposed architecture consists
of a semantics-aware component model CoSMoS, a middleware
CoRE, and a semantics-based service composition mechanism
SeGSeC. This paper presents the design, implementation, and
empirical evaluation of the proposed architecture.

The empirical evaluation of the proposed architecture pre-
sented in the paper provides insights to the behavior of the
proposed architecture. It is still necessary to conduct further
empirical evaluation of the proposed architecture to investigate
its adaptability that is not investigated in this paper. In addition,
the proposed architecture may be extended to compose services
not only based on the semantics of the requested service but also
based on the user evaluation on the services composed in the past
in order to improve its adaptability. This awaits further research.

REFERENCES

[1] F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and M.-C. Shan,
“Adaptive and dynamic service composition in eFlow,” in Proc. Int.
Conf Advanced Inf. Syst. Eng., Stockholm, Sweden, 2000.

[2] D. Mennie and B. Pagurek, “An architecture to support dynamic com-
position of service components,” in Proc. 5th Int. Workshop Compo-
nent-Oriented Program., Sophia Antipolis, France, 2000.

[3] M. Minami, H. Morikawa, and T. Aoyama, “The design and evalua-
tion of an interface-based naming system for supporting service syn-
thesis in ubiquitous computing environment,” Trans. Inst. Electron., Inf.
Commun. Eng., vol. J86-B, no. 5, pp. 777–789, May 2003.

[4] Q. Z. Sheng, B. Benatallah, M. Dumas, and E. Mak, “SELF-SERV: A
platform for rapid composition of web services in a peer-to-peer envi-
ronment,” in Proc. 28th Very Large Database Conf., Hong Kong, China,
Aug. 2002.

[5] P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma, “Dynamic workflow
composition using Markov decision processes,” in Proc. 2nd Int. Conf.
Web Serv., San Diego, CA, Jul. 6–9, 2004, pp. 576–582.

[6] M. Marazakis, D. Papadakis, and C. Nikolaou, “The aurora architecture
for developing network-centric applications by dynamic composition of
services,” FORTH/ICS, Tech. Rep. TR 213, 1997.

[7] P. Pires, M. Mattoso, and M. Benevides, “Building Reliable Web
Services Compositions,” in Lecture Notes in Computer Science. New
York: Springer-Verlag, 2003, vol. 2593, Web, Web-Services, and
Database Systems 2002, pp. 59–72. ISBN 3-540-00745-8.

[8] P. Traverso and M. Pistore, “Automated composition of semantic web
services into executable processes,” in Proc. 3rd Int. Semantic Web
Conf., Hiroshima, Japan, Nov. 7–11, 2004.

[9] W. Cheung, J. Liu, K. Tsang, and R. Wong, “Toward autonomous service
composition in a grid environment,” in Proc. IEEE Int. Conf. Web Serv.,
San Diego, CA, Jul. 2004.

[10] S. Chandrasekaran, S. Madden, and M. Ionescu, “Ninja workflows: An
architecture for composing services over wide area networks,” Univ.
California, Berkeley, CA, CS262 class project writeup, 2000.

[11] S. R. Ponnekanti and A. Fox, “SWORD: A developer toolkit for web
service composition,” in Proc. 11th World Wide Web Conf. (Web Eng.
Track), Honolulu, HI, May 7–11, 2002.

[12] E. Sirin and B. Parsia, “Planning for semantic web services,” in Proc.
Semantic Web Services Workshop 3rd Int. Semantic Web Conf., 2004.

[13] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau, “Automating
DAML-S web services composition using SHOP2,” in Proc. 2nd Int.
Semantic Web Conf., Sanibel Island, FL, Oct. 2003.

[14] B. Limthanmaphon and Y. Zhang, “Web service composition with
case-based reasoning,” in Proc. 14th Australasian Database Conf.,
K.-D. Schewe and X. Zhou, Eds., Adelaide, Australia, 2003, pp.
201–208.

[15] S. McIlraith and T. Son, “Adapting Golog for composition of semantic
web services,” in Proc. 8th Int. Conf. Knowl. Representation Reasoning,
Apr. 2002, pp. 482–493.

[16] M. Sheshagiri, M. desJardins, and T. Finin, “A planner for composing
services described in DAML-S,” in Proc. Workshop Planning Web Ser-
vices, Jul. 2003.

[17] J. Rao, P. Kungas, and M. Matskin, “Logic-based web service compo-
sition: From service description to process model,” in Proc. IEEE Int.
Conf. Web Serv., San Diego, CA, Jul. 6–9, 2004, pp. 446–453.

[18] K. Fujii and T. Suda, “Dynamic service composition using semantic
information,” in Proc. 2nd Int. Conf. Service Oriented Comput., Nov.
2004.

[19] OWL-S 1.0 release. [Online]. Available: http://www.daml.org/services/
owl-s/1.0/

[20] Web service modeling ontology. [Online]. Available: http://www.wsmo.
org/

[21] A. Eberhart, “Ad hoc invocation of semantic web services,” in Proc.
IEEE Int. Conf. Web Serv., Jul. 2004, pp. 116–123.

[22] METEOR-S: Semantic web services and processes. [Online]. Available:
http://lsdis.cs.uga.edu/Projects/METEOR-S/

[23] J. Peer. Semantic service markup with SESMA version 0.8. [Online].
Available: http://elektra.mcm.unisg.ch/pbwsc/

[24] K. Fujii. Dynamic service composition. [Online]. Available: http://ne-
tresearch.ics.uci.edu/kfujii/dsc/

[25] T. Nakano and T. Suda, “Self-organizing network services with evolu-
tionary adaptation,” IEEE Trans. Neural Netw. (Special Issue on Adap-
tive Learning Systems in Communication Networks), vol. 16, no. 5, pp.
1269–1278, Sep. 2005.

[26] J. Suzuki and T. Suda, “A middleware platform for a biologically-in-
spired network architecture supporting autonomous and adaptive appli-
cations,” IEEE J. Sel. Areas Commun. (Special Issue on Intelligent Ser-
vices and Applications in Next Generation Networks), vol. 32, no. 2, pp.
249–260, Feb. 2005.

[27] M. Wang and T. Suda, “The bio-networking architecture: A biologi-
cally inspired approach to the design of scalable, adaptive, and surviv-
able/available network applications,” in Proc. 1st IEEE Symp. Appl. In-
ternet (SAINT), 2001.

[28] G. A. Mann, “BEELINE—a situated, bounded conceptual knowledge
system,” Int. J. Syst. Res. Inf. Sci., vol. 7, pp. 37–53, 1995.

Keita Fujii (S’04) received the B.E. and M.S. de-
grees in computer science from Waseda University,
Tokyo, Japan, in 1999 and 2001, respectively. He is
currently working towards the Ph.D. degree at the
School of Information and Computer Science, Uni-
versity of California, Irvine.

His main research interests span various
areas in computer communication networks,
including distributed computing, ubiquitous com-
puting, agent-based computing, and middleware
technologies.

Tatsuya Suda (S’80–M’82–SM’97–F’01) received
the B.E., M.E., and Dr.E. degrees in applied math-
ematics and physics from Kyoto University, Kyoto,
Japan, in 1977, 1979, and 1982, respectively.

From 1982 to 1984, he was with the Department of
Computer Science, Columbia University, New York,
as a Postdoctoral Research Associate. Since 1984,
he has been with the Department of Information and
Computer Science, University of California, Irvine,
where he is currently a Professor. He has also served
as a Program Director of the Networking Research

Program, National Science Foundation from October 1996 to January 1999. He
was a visiting Associate Professor at the University of California, San Diego,
a Hitachi Professor at the Osaka University, and currently is a NTT Research
Professor. He is an Area Editor of the International Journal of Computer and
Software Engineering. He is a member of the Editorial Board of the Encyclo-
pedia of Electrical and Electronics Engineering, Wiley. He has been engaged in
research in the fields of computer communications and networks, high-speed
networks, multimedia systems, ubiquitous networks, distributed systems,
object oriented communication systems, network applications, performance
modeling and evaluation, and application of biological concepts to networks
and network applications.

Dr. Suda is a member of the Association for Computing Machinery (ACM).
He received an IBM Postdoctoral Fellowship in 1983. He was the Conference
Coordinator from 1989 to 1991, the Secretary and Treasurer from 1991 to
1993, the Vice Chairman from 1993 to 1995, and the Chairman from 1995 to
1997 of the IEEE Technical Committee on Computer Communications. He was
also the Director of the U.S. Society Relations of the IEEE Communications
Society from 1997 to 1999. He is an Editor of the IEEE/ACM TRANSACTIONS

ON NETWORKING, a Senior Technical Consultant to the IEEE TRANSACTIONS

ON COMMUNICATIONS, and a former Editor of the IEEE TRANSACTIONS ON

COMMUNICATIONS. He was the Chair of the 8th IEEE Workshop on Computer
Communications and the TPC Co-Chair of the IEEE INFOCOM 1997.

	toc
	Semantics-Based Dynamic Service Composition
	Keita Fujii, Student Member, IEEE, and Tatsuya Suda, Fellow, IEE
	I. I NTRODUCTION
	A. Dynamic Service Composition
	B. Existing Dynamic Service Composition Systems
	C. Semantics-Based Dynamic Service Composition Architecture

	II. C OMPONENT S ERVICE M ODEL W ITH S EMANTICS (C O SM O S)
	A. CoSMoS Overview

	Fig.€1. Direction generator component in CoSMoS.
	B. CoSMoS Design
	1) Component Domain: CoSMoS assumes that a component may impleme
	2) Data Type Domain: CoSMoS specifies the data type of an input/
	3) Semantics Domain: CoSMoS defines the Concept class and its su

	Fig.€2. CoSMoS class diagram.
	Fig.€3. Restaurant component in CoSMoS.
	Fig.€4. Data type compatibility.
	Fig.€5. Example of a wildcard concept.
	Fig.€6. Concept compatibility.
	4) Logic Domain: CoSMoS allows components to provide some logics

	Fig.€7. Example of logic.
	C. CoSMoS Implementation
	III. C OMPONENT R UNTIME E NVIRONMENT (C O RE)

	Fig.€8. CoRE architecture.
	IV. S EMANTIC G RAPH -B ASED S ERVICE C OMPOSITION (S E GS E C)
	A. SeGSeC Architecture

	Fig.€9. Modules in SeGSeC.
	Fig.€10. Home component in CoSMoS.
	Fig.€11. Printer component in CoSMoS.
	1) RequestAnalyzer Module: When a user requests a service in a n
	2) ServiceComposer Module: Upon receiving a user request (i.e.,

	Fig.€12. User request converted into CoSMoS.
	Fig.€13. Input complement pseudocode.
	3) SemanticsAnalyzer Module: Upon receiving a workflow and the u

	TABLE€I S EMANTICS R ETRIEVAL R ULES
	Fig.€14. Workflows created after input complement. (a) Print dir
	Fig.€15. Example of applying semantics retrieval rules (1).
	Fig.€16. Example of applying semantics retrieval rules (2).
	Fig.€17. Components implemented in SeGSeC. (a) Microphone. (b) S
	Fig.€18. User interface of the SeGSeC implementation.
	4) ServicePerformer Module: Upon receiving a workflow from Servi
	B. SeGSeC Implementation
	C. Empirical Evaluation

	TABLE€II R ESULTS OF THE F IRST S ET OF M EASUREMENTS
	Fig.€19. Results of the second set of measurements. (a) Number o
	V. C ONCLUSION AND F UTURE W ORK
	F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and M.-C. S
	D. Mennie and B. Pagurek, An architecture to support dynamic com
	M. Minami, H. Morikawa, and T. Aoyama, The design and evaluation
	Q. Z. Sheng, B. Benatallah, M. Dumas, and E. Mak, SELF-SERV: A p
	P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma, Dynamic workflo
	M. Marazakis, D. Papadakis, and C. Nikolaou, The aurora architec
	P. Pires, M. Mattoso, and M. Benevides, Building Reliable Web Se
	P. Traverso and M. Pistore, Automated composition of semantic we
	W. Cheung, J. Liu, K. Tsang, and R. Wong, Toward autonomous serv
	S. Chandrasekaran, S. Madden, and M. Ionescu, Ninja workflows: A
	S. R. Ponnekanti and A. Fox, SWORD: A developer toolkit for web
	E. Sirin and B. Parsia, Planning for semantic web services, in P
	D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau, Automating D
	B. Limthanmaphon and Y. Zhang, Web service composition with case
	S. McIlraith and T. Son, Adapting Golog for composition of seman
	M. Sheshagiri, M. desJardins, and T. Finin, A planner for compos
	J. Rao, P. Kungas, and M. Matskin, Logic-based web service compo
	K. Fujii and T. Suda, Dynamic service composition using semantic

	OWL-S 1.0 release . [Online] . Available: http://www.daml.org/se
	Web service modeling ontology . [Online] . Available: http://www
	A. Eberhart, Ad hoc invocation of semantic web services, in Proc

	METEOR-S: Semantic web services and processes . [Online] . Avail
	J. Peer . Semantic service markup with SESMA version 0.8 . [Onli
	K. Fujii . Dynamic service composition . [Online] . Available: h
	T. Nakano and T. Suda, Self-organizing network services with evo
	J. Suzuki and T. Suda, A middleware platform for a biologically-
	M. Wang and T. Suda, The bio-networking architecture: A biologic
	G. A. Mann, BEELINE a situated, bounded conceptual knowledge sys

