
“SelfService” - A Theoretical Protocol for

Autonomic Distribution of Services in P2P Communities

Fabrice Saffre and Håvard Rast Blok

Intelligent Systems Laboratory, BT Exact, Adastral park, Orion 1, pp 12, IP53RE, UK

fabrice.saffre@bt.com, havard.rastblok@bt.com

Abstract

In this paper, we present a theoretical protocol for

autonomic distribution of services in a P2P
environment, as well as the results of its simulated

implementation. Our objective is to demonstrate that it

is possible to obtain a distribution of the
corresponding software modules that meets the

requirement of the community in the absence of any

centralized resource management. Instead, an
acceptable balance between offer and demand is

achieved via a simple “trial-and-error” mechanism,

involving a simple, locally applied “reasoning” loop

running independently on every peer.

1. Introduction

 The peer-to-peer paradigm has recently received

increased attention from research and commercial

organisations that want to look beyond the early file

sharing applications. Legal mass-market P2P products

are emerging, links between grid and P2P computing

are evident, and the IBM-led autonomic computing

initiative [1] can be seen as a key enabler for adaptive

and decentralised architectures.

 To fulfil the variable needs of users of a

modularised application we present a theoretical

protocol for autonomic distribution of services in a P2P

environment, and results of its simulated

implementation. We make the assumption that most

users require only a small subset of modules and that,

once locally installed, a module can be remotely

accessed by other peers. Fig. 1 shows a simplified

example of the “ideal” architecture that should emerge

in this hypothetical scenario.

 Our main objective is to demonstrate that a simple

set of local rules can preside to the self-organisation of

such a community of peers where every user would

experience good quality of service overall, though

having installed only a small number of modules on

his/her own machine.

A
x

y
z

B

x
y

z

C

x y

z

Figure 1: schematic representation of a self-
organised, component sharing community of
peers. A, B and C are individual machines, x, y
and z are application modules.

2. Methodology

 The SelfService protocol is based on a combination

of “trial and error”, local memory and broadcast

requests. Every newcomer joining the community is

assumed to have at least one module installed, and

when it needs access to another, it must find a member

hosting the corresponding service. If it does not already

know a suitable host, a broadcast message is sent to all

members of the community. If this fails, the peer has

the option to install the module locally.
 In the simulation of this protocol we have assumed

the application to be comprised of 100 independent

modules, with every peer subscribing to an average 10
of these. Each time-step, every member has a

probability P of requiring use of one of its enlisted

modules These can be found locally or via a directed or
broadcast request. Every on-going job has a probability

of 0.1 to be completed at the end of every time-step,

which results in the average job duration being 10

time-steps. Peers have an average processing capacity

of 5 simultaneous jobs (min. 1, max. 10, binomial

distribution) independently of their origin. Finally, to

emulate the unpredictable reliability of P2P

communications, a remote job request only reaches the

intended host with probability S.

 Due to space constrains, we cannot go into further

methodological details in the present paper. These are

available on request to the interested reader.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

3. Results

 In the first simulated implementation of

SelfService, we assumed a fault-proof messaging

infrastructure where S = 1. The peers benefit from

being able to distribute jobs between themselves, and,

as shown on fig 2, the number of required modules

which are locally installed nearly immediately reaches

a plateau of < 14%. This is consistent for all tested

values of P. The simulations also show that this load

balancing prevents long queues since the peers which

possess more processing power effectively relieve their

less capable counterparts.

 At steady state, only a small fraction of requests

give rise to a broadcast message, even though most

peers do rely on other members to provide at least

some of the modules they require. Fig 2 also shows the

evolution of the number of broadcasts over time, which

always stabilises below 5% of all requests.

Figure 2: SelfService scenario with S = 1 and
1000 peers.

 In the second scenario the messaging reliability S is

set to 0.5 to simulate a more realistic environment.

Results show that the faction of locally installed

modules is only marginally increased (still < 15%).

 The real impact of varying S is best measured by its

effect on the number of jobs queuing in the entire

system. Indeed, if S < 1, it may require several

attempts before a request is successfully passed to the

known provider of a service, which can delay the

execution of the corresponding job. For P = 0.1 (i.e.

when jobs are generated and completed at the same

average rate), we find the cumulative length of all

queues (i.e. summed over all peers) to be a linear

function of S. But for P = 0.2, the signature becomes

that of a power law (see fig. 3). This is actually an

indication that SelfService can make a big difference in

a relatively unreliable messaging environment,

provided that the total load on the community is

relatively high.

0

500

1000

1500

2000

S = 0 S = 0.5 S = 1

T
o

ta
l

n
u

m
b

e
r

o
f

q
u

e
u

in
g

 j
o

b
s

P = 0.2

P = 0.1

Figure 3: total number of queuing jobs after
255 time-steps, for three values of S and two
values of P.

4. Conclusions and future work

This work demonstrates that it is theoretically

possible to obtain adequate load balancing and good

utilisation of resources by applying basic decision rules

at a very low level.

 The resulting “colony” of co-operating peers is not

unlike those found in social insects: specialisation

means that individuals only possess a small sub-set of

all capabilities required for their survival and so

heavily rely on each other. It is no coincidence if the

so-called “swarm intelligence” paradigm [2] and other

nature-inspired heuristics [3] have been applied to grid

computing problems by other authors.

Future work will put more emphasis on the

economics of distributed services for P2P

communities, including relationship with software

manufacturers and fairness considerations. We are

tempted to argue that this is the equivalent of

behavioural ecology for autonomic computing. Indeed,

only a good understanding of the long-term dynamics

of the interactions taking place between the many

“species” involved will allow for the creation of a

sustainable P2P ecosystem.

5. References

[1] Kephart, O. and Chess, D. M. , "The Vision of Autonomic

Computing", IEEE Computer, 36(1), pp. 41-50, 2003.

[2] Babaoglu, O., Meling, H. and Montresor, A. , “Anthill: A

Framework for the Development of Agent-Based Peer-to-Peer

Systems”, In Proceedings of the 22nd International Conference on

Distributed Computing Systems, Vienna, Austria, July 2002.

[3] Abraham A., Buyya R. and Nath, B. , “Nature's Heuristics for

Scheduling Jobs on Computational Grids”, The 8th IEEE

International Conference on Advanced Computing and

Communications (ADCOM 2000), Cochin, India, December 14-16,

2000.

0%

25%

50%

75%

100%

0 200 400 600 800 1000

Time-step

F
ra

c
ti

o
n

 (
p

e
rc

e
n

ta
g

e
)

Broadcast requests

Locally installed components

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

