COVER FEATURE

David
Garlan

Shang-Wen
Cheng

An-Cheng
Huang

Bradley
Schmerl

Peter

Steenkiste
Carnegie Mellon
University

Computer

Rainbow: Architecture-
Based Self-Adaptation

with Reusable ESe
Infrastructure

The Rainbow framework uses software architectures and a reusable infra-
structure to support self-adaptation of software systems. The use of exter-
nal adaptation mechanisms allows the explicit specification of adaptation
strategies for multiple system concerns.

oftware-based systems today increasingly
operate in changing environments with
variable user needs, resulting in the con-
tinued increase in administrative overhead
for managing these systems. To reduce
these costs, systems are increasingly expected to
dynamically self-adapt to accommodate resource
variability, changing user needs, and system faults.
Mechanisms that support self-adaptation currently
exist in the form of programming language features
such as exceptions and in algorithms such as fault-
tolerant protocols. But these mechanisms are
often highly specific to the application and tightly
bound to the code. As a result, self-adaptation in
today’s systems is costly to build, difficult to mod-
ify, and usually provides only localized treatment of
system faults.

In contrast to these internal mechanisms, recent
work uses external models and mechanisms in a
closed-loop control fashion to achieve various goals
by monitoring and adapting system behavior at run-
time."? As illustrated in Figure 1, control of system
adaptation becomes the responsibility of compo-
nents outside the system that is being adapted.

In principle, external control mechanisms pro-
vide a more effective engineering solution than
internal mechanisms for self-adaptation because
they localize the concerns of problem detection and

Published by the IEEE Computer Society

resolution in separable modules that can be ana-
lyzed, modified, extended, and reused across dif-
ferent systems. Additionally, developers can use this
approach to add self-adaptation to legacy systems
for which the source code may not be available.

This external approach requires using an appro-
priate model to reason about the system’s dynamic
behavior. Several researchers have proposed using
architectural models,® which represent the system
as a gross composition of components, their inter-
connections, and their properties of interest.* Such
an architecture-based self-adaptation approach
offers many benefits. Most significantly, an abstract
architectural model can provide a global perspective
of the system and expose important system-level
properties and integrity constraints.

While attractive in principle, architecture-based
self-adaptation raises a number of research and
engineering challenges. First, the ability to handle a
wide variety of systems must be addressed. Since
different systems have radically different architec-
tural styles, properties of interest, and mechanisms
supporting dynamic modification, it is critical that
the architectural control model and modification
strategies be tailored to the specific system. Second,
the need to reduce costs in adding external control
to a system must be addressed. Creating the moni-
toring, modeling, and problem-detection mecha-

0018-9162/04/$20.00 © 2004 IEEE

nisms from scratch for each new system would ren-
der the approach prohibitively expensive.

Our Rainbow framework attempts to address
both problems. By adopting an architecture-based
approach, it provides reusable infrastructure together
with mechanisms for specializing that infrastructure
to the needs of specific systems. These specialization
mechanisms let the developer of self-adaptation capa-
bilities choose what aspects of the system to model
and monitor, what conditions should trigger adap-
tation, and how to adapt the system.

THE RAINBOW FRAMEWORK

Figure 2 shows the Rainbow framework’s con-
trol loop for self-adaptation. Rainbow uses an
abstract architectural model to monitor an execut-
ing system’s runtime properties, evaluates the
model for constraint violation, and—if a problem
occurs—performs global- and module-level adap-
tations on the running system.

Software architectures

Rainbow adopts a standard view of software
architecture that is typically used today at design
time to characterize a system to be built. Specifi-
cally, an architecture is represented as a graph of
interacting computational elements.* Nodes in the
graph, called components, represent the system’s
principal computational elements and data stores,
including clients, servers, databases, and user inter-
faces. Arcs, called connectors, represent the path-
ways for interaction between the components.
Additionally, architectural elements may be anno-
tated with various properties, such as expected
throughputs, latencies, and protocols of interac-
tion. Components themselves may represent com-
plex systems, which are represented hierarchically
as subarchitectures.

However, unlike traditional uses of software
architecture as strictly a design-time artifact,
Rainbow includes a system’s architectural model
in its runtime system. In particular, developers of
self-adaptation capabilities use a system’s software
architectural model to monitor and reason about
the system. Using a system’s architecture as a con-
trol model for self-adaptation holds promise in sev-
eral areas. As an abstract model, an architecture
can provide a global perspective of the system and
expose important system-level behaviors and prop-
erties. As a locus of high-level system design deci-
sions, an architectural model can make a system’s
topological and behavioral constraints explicit,
establishing an envelope of allowed changes and
helping to ensure the validity of a change.

EDem

Adapt Monitor

- Eu>

Figure 1. External control of self-adaptation uses external models to monitor and
modify a system dynamically.

Architecture layer
D Adaptation Constraint
engine evaluator
Strategies Rules
and tactics v
Adaptation Model
executor manager
Operators Types and
properties
Translation infrastructure
Mappings
s T —="7
! Resource !
i Effectors System API discovery Probes i
7777777 e e e

['S
Executing system

System layer

Figure 2. Rainhow framework. The framework uses an abstract model to monitor
an executing system’s runtime properties, evaluates the model for constraint vio-
lation, and—if a problem occurs—performs adaptations on the running system.

Client1 Client2 Client3 Client4 Clientd

V. V. V. V. V.

Client6

& &
v v

v
ServerGrp1 ServerGrp2 ServerGrp3

| Serveri || Server2 || Server3 |

Component ServerGrp1
(ServerGrpRep)

Figure 3. Client-server system software architecture. This model represents the
architecture as a hierarchical graph of interacting components.

Figure 3 shows one example of an architecture
in which the components represent Web clients and

server clusters. Each server cluster has a subarchi-

October 2004

To capture system
commonalities,
Rainhow adopts the
notion of an
architectural style,
which describes
a family of systems
related by shared
structural and
semantic properties.

tecture consisting of one or more server com-
ponents. This architectural model provides
a global perspective on the system by reveal-
ing all the components and how they con-
nect. The model also contains important
properties such as each server’s load, each
connection’s bandwidth, and the response
time experienced by each client.

Further, the model maintains explicit con-
straints on the architecture that, for exam-
ple, require each client to connect to exactly
one server cluster. The constraints establish
an envelope of allowed changes such as

ensuring that no future changes to the sys-

tem leave a client dangling without a con-

nection. A system change is valid only if the
system satisfies the constraints after the change.

Reusable Rainbow units

To fulfill Rainbow’s objectives, its various com-
ponents must be reusable from system to system. To
identify what parts of the framework are reusable,
and under what circumstances, we divide the frame-
work into an adaptation infrastructure and the sys-
tem-specific adaptation knowledge. The adaptation
infrastructure, divided into system, architecture, and
translation layers, provides common functionalities
across self-adapting systems and is therefore reusable
across all systems, while the adaptation knowledge
itself is typically system-specific (Figure 2).

System-layer infrastructure. At this layer, we have
defined the system access interface and built an
infrastructure that implements it. A system mea-
surement mechanism, realized as probes, observes
and measures various system states. This low-level
system information can be published by or queried
from the probes. Additionally, a resource discov-
ery mechanism can be queried for new resources
based on resource type and other criteria. Finally,
an effector mechanism carries out the actual sys-
tem modification.

Architecture-layer infrastructure. At this layer,
gauges aggregate information from the probes and
update the appropriate properties in the architec-
tural model. A model manager handles and provides
access to the system’s architectural model. A con-
straint evaluator checks the model periodically and
triggers adaptation if a constraint violation occurs.
An adaptation engine then determines the course of
action and carries out the necessary adaptation.

Translation infrastructure. This infrastructure helps
mediate the mapping of information across the
abstraction gap from the system to the model and
vice versa. A translation repository within the infra-

Computer

structure maintains various mappings that the
translator components share, for example, to trans-
late an architectural-level element identifier into an
IP address or an architectural-level change opera-
tor into system-level operations.

System-specific adaptation knowledge. Adding self-
adaptation to a system using the functionalities that
the adaptation infrastructure provides requires
using the system-specific adaptation knowledge to
tailor that infrastructure. This knowledge includes
the target system’s operational model, which
defines parameters such as component types and
properties, behavioral constraints, and adaptation
strategies.

Architectural style

While reusable infrastructure helps reduce the
costs of adding self-adaptation to systems, it is also
possible to leverage commonalities in system archi-
tecture to encapsulate adaptation knowledge for
various system classes.

To capture system commonalities, Rainbow
adapts the notion of an architectural style. Tradi-
tionally, the software engineering community has
used architectural styles to help encode and express
system-specific knowledge.’ An architectural style
characterizes a family of systems related by shared
structural and semantic properties. The style is typ-
ically defined by four sets of entities:

o Component and connector types provide a
vocabulary of elements, including components
such as Database, Client, Server, and Filter;
connectors such as SQL, HTTP, RPC, and
Pipe; and component and connector interfaces.

o Constraints determine the permitted compo-
sition of the elements instantiated from the
types. For example, constraints might prohibit
cycles in a particular pipe-filter style, or define
a compositional pattern such as the starfish
arrangement of a blackboard system or a com-
piler’s pipelined decomposition.

e Properties are attributes of the component and
connector types, and provide analytic, behav-
ioral, or semantic information. For example,
load and service time properties might be char-
acteristic of servers in a performance-specific
client-server style, while transfer-rate might be
a property in a pipe-filter style.

o Analyses can be performed on systems built in
an appropriate architectural style. Examples
include performance analysis using queuing
theory in a client-server system, and schedula-
bility analysis for a real-time-oriented style.

These four entity sets primarily capture a sys-
tem’s static attributes. Rainbow extends this notion
of architectural style to support runtime adapta-
tion by also capturing the system’s dynamic attrib-
utes, both in terms of the primitive operations that
can be performed on the system to change it
dynamically, and how the system can combine
those operations to achieve some effect. Specifically,
it augments the notion of architectural style with
adaptation operators and strategies, which together
determine the system’s adaptation style.

® Adaptation operators determine a set of style-
specific actions that the control infrastructure
can perform on a system’s elements to alter its
configuration. For example, a service coalition
style might define the operators AddService or
RemoveService to add or remove services from
a system configuration in this style.

* Adaptation strategies specify the adaptations
that can be applied to move a system away
from an undesirable condition. For example, a
service-coalition system might have a system-
wide cost constraint. Upon violating it, an
adaptation strategy might progressively
replace the most costly service with lower-
grade services until the overall cost falls within
acceptable bounds. Strategies are defined
using—and therefore constrained by—opera-
tors and properties.

Although strategies use operators and properties
to adapt systems of a particular style, they are
designed for particular system concerns. A system
concern outlines a related set of system require-
ments—such as performance, cost, or reliability—
and determines the set of system properties on
which self-adaptation should focus, and hence the
set of strategies. The system concerns form a sub-
set of the properties in a system’s style. For example,
a client-server system may have a style that includes
load, bandwidth, and cost properties, while a par-
ticular performance concern might focus only on
the system’s load and bandwidth properties.

Adaptation style and system concerns together
comprise two important dimensions of variability
from system to system. How much of Rainbow’s
system-specific adaptation knowledge can be
reused will depend on how similar two systems are
in terms of their styles and system concerns. More
specifically, types, properties, adaptation strategies,
and operators may be reusable if the two systems
have matching styles and concerns. Two case stud-
ies help illustrate this concept.

ADAPTATION CASE STUDIES

The following studies examine two systems
with different adaptation styles that share the
same system concern. This allows reusing the
Rainbow framework across both prototype
systems.

Web-based client-server system

The first case study system consists of a set
of Web clients, each of which makes stateless
requests of contents from one of several Web
server groups, as Figure 3 shows. The client
and server components are implemented in
Java and provide remote method invocation (RMI)
interfaces for the effectors to use in performing
adaptation operations. Clients connected to a
server group send requests to the group’s shared
request queue, and servers that belong to the group
grab requests from the queue.

The system concern focuses primarily on perfor-
mance—specifically, the response time the clients
experience. A queuing theory analysis of the sys-
tem identifies that the server load and available
bandwidth are two properties that affect the
response time. Based on this system concern and
analysis, the developer defines a client-server style
for the system. The major parts of the style include

e ClientT, ServerT, ServerGroupT, and LinkT
types;

¢ ClientT.responseTime, ServerT.load, Server-
GroupT.load, and LinkT.bandwidth proper-
ties; and

e ServerGroupT.addServer() and ClientT.move
(ServerGroupT, toGroup) operators.

The ServerGroupT.addServer() operator finds
and adds an available ServerT to a ServerGroupT
to increase the capacity. The ClientT.move
(ServerGroupT, toGroup) operator disconnects
ClientT from its current ServerGroupT, then con-
nects ClientT to the toGroup ServerGroupT.

Associated with each client is an invariant that
checks to see if its perceived response time is less
than a predefined maximum response time. If the
invariant fails, an adaptation strategy is invoked.
An example invariant and adaptation strategy is

invariant (self.responseTime <
maxResponseTime)

!> responseTimeStrategy(self) ;

strategy responseTimeStrategy

Rainbow
supports runtime
adaptation by
also capturing
the system’s
dynamic
attributes.

October 2004

P1 Handheld e
proxy (HHP) &
Handheld

=
=
M’ i (receive-only)
End system
P4
¥

multicast (ESM)
overlay

E NetMeeting
—

P2 = i
D‘I Videoconferencing D‘I.
= gateway (VGW) .

NetMeeting

Vic/SDR

Figure 4. Videoconferencing adaptation case study. Two participants use Vic/SDR
IP multicast videoconferencing tools; two others use NetMeeting, which adopts
the H.323 protocol and unicast; while the final participant uses a handheld device
running a slightly modified version of Vic.

(ClientT C) {
let G = findConnectedServerGroup
(C);
if (query("load", G) >
maxServerLoad) {
G.addServer () ;
return true;
}
let conn = findConnector(C, G);
if (query("bandwidth", conn) <
minBandwidth) {
let G = findBestServerGroup

(C);
C.move (G);
return true;
}
return false;

}

In this specification, the invariant defines a pred-
icate that determines whether a client’s perceived
response time (self.responseTime) is below a
threshold (maxResponseTime). If this invariant is
violated (indicated by “!—”), the adaptation engine
executes the strategy responseTimeStrategy.

This strategy first checks to see if the current
server group’s load exceeds a predefined thresh-
old. If so, the engine adds a server to the group to
decrease the load and thus decrease response time.
If, however, the available bandwidth between the

Computer

client and the current server group drops too low,
the engine moves the client to another group,
resulting in higher available bandwidth and lower
response time.

Videoconferencing system

Figure 4 shows the second system example, a
videoconferencing session with five participating
users. Two of the participants use the Vic/SDR
videoconferencing tools, which use the Session
Initiation Protocol (SIP) and IP multicast. Two
other participants use NetMeeting, which uses the
H.323 protocol and unicast. The final participant
uses a handheld device, which runs a slightly mod-
ified version of Vic.

Since the handheld device cannot perform pro-
tocol negotiation, a handheld proxy (HHP) joins
the conferencing session on behalf of the handheld
user. A videoconferencing gateway (VGW) that
supports both H.323 and SIP translates the pro-
tocols for NetMeeting and Vic users. Finally, to
allow efficient communication among all partici-
pants across wide-area networks, the system uses
Narada, an end-system multicast overlay consist-
ing of three proxies, to provide the multicast func-
tionality.

The system concerns here involve both perfor-
mance and cost. For example, the system seeks
to maintain sufficient available bandwidth between
the handheld user and the handheld proxy, while
keeping the cost of providing the videoconfer-
encing service low. For example, if only one
NetMeeting user remains online, the system should
switch to a low-cost gateway. The developers
define a videoconferencing style for the system
based on these concerns. The major parts of the
style include the following:

o VicT, NetMeetingT, HandheldT, GatewayT,
HandheldProxyT, ESMProxyT, and Connec-
tionT component and connector types;

e GatewayT.cost, GatewayT.load, and Connec-
tionT.bandwidth properties; and

¢ HandheldT.move(HandheldProxyT, toHHP)
and NetMeetingT.move(GatewayT, toVGW)
operators.

In this case, the HandheldT.move(Handheld-
ProxyT, toHHP) operator switches the handheld user
to a new handheld proxy, while the NetMeetingT.
move(GatewayT, toVGW) operator switches the
NetMeeting user to a new video gateway.

Two sample adaptation strategies specify the
desired adaptive behavior:

invariant (bandwidthToHHP (self)
> minHHBandwidth)
!— HHBandwidthStrategy (self) ;

invariant (self.cost /
numberOfNMusers <
maxVGWUnitCost)
1> VGWCostStrategy(self);

strategy HHBandwidthStrategy
(HandheldT HH) ({
let HHP1 = findBestHHP (HH) ;
HH.move (HHP1) ;
return true;

strategy VGWCostStrategy
(GatewayT VGW) {
let VGW1 = the gateway with the
lowest cost that
can handle the
current load;
if ((query("cost", VGW1) /
numberofNMusers)
< maxVGWUnitCost) {
foreach NetMeeting user U of
VGW {
U.move (VGW1) ;
}
return true;
}

return false;

The first invariant is associated with com-
ponents of type HandheldT, while the second
invariant is associated with components of type
Gateway'T.

At runtime, when either invariant is violated,
the adaptation engine executes the corresponding
adaptation strategy. For example, when the avail-
able bandwidth between the handheld user and
the handheld proxy drops too low, the engine
moves the handheld user to a better handheld
proxy.

When the unit cost of the gateway VGW be-
comes too high—for example, when a NetMeeting
user leaves the session—the engine switches the
NetMeeting users connected to VGW to the
lowest-cost gateway that can handle the load.

A conflict between concerns of performance and
cost is possible, such as when an adaptation pushes
the system’s total service cost above a maximum
threshold. Although not addressed here, a com-

posite utility function can help resolve such
conflicts.

At the framework’s

Reuse analysis

Several reuse issues can be better under-
stood by examining how the two case study
systems reuse the adaptation infrastructure’s
three layers and the various parts of style,
which represent the system-specific adapta-
tion knowledge.

System layer infrastructure. This layer con-
sists of three elements: effectors, probes, and
resource discovery. Effectors are component-
specific: An effector can perform adaptation oper-
ations only on one type of system component. For
example, a videoconferencing gateway effector can
activate and shut down a gateway. Rainbow’s sys-
tem-layer infrastructure provides a reusable inter-
face for accessing the effectors. For example, the
adaptation engine/executor can issue an Activate
operation by invoking the corresponding function
that the system application programming interface
(API) provides. The system- layer infrastructure
then dispatches the operation to the appropriate
effector based on the target component’s type.
Because the two case study systems do not share
any components, their effectors cannot be reused.

The system-layer infrastructure provides probes
that measure the response time, load, and band-
width of various system components. Among
these, the load and bandwidth probes are reused
across the two systems because these two proper-
ties are of interest in both systems. Probes support
monitoring and querying of information that is
used at higher levels of the infrastructure to update
model properties. In addition, the adaptation
strategies often need to query some additional
information, such as the server group load and
new gateway’s cost.

The adaptation engine needs a resource discov-
ery mechanism to find available components to
replace existing ones as directed by the adaptation
strategy. For example, the first strategy for the
videoconferencing system requires the adaptation
engine to find the HHP component with the
most available bandwidth for the handheld user.
The second strategy finds a VGW component that
supports both Vic users and NetMeeting users and
has the lowest cost. Rainbow’s system-layer infra-
structure supports resource discovery based on
component type and other desired component
attributes.

Architecture-layer infrastructure. At the frame-
work’s architecture layer, the adaptation style spec-

Octo

architecture layer,

the adaptation
style specifies the
model instance’s
types, properties,
and rules.

ber 2004

Table 1. Framework system-specific adaptation knowledge reuse summary.

Architectural System Reuse

style concerns achieved

Different Different Adaptation infrastructure

Different Same Adaptation infrastructure,
Properties, Mappings

Same Different Adaptation infrastructure, Types, Rules,
Mappings, Adaptation operators

Same Same Adaptation infrastructure, Types, Rules,

Properties, Mappings, Adaptation operators

ifies the types, properties, and rules of the model
instance that the model manager handles. The
functionalities of the gauges, model manager, con-
straint evaluator, and adaptation engine remain
the same. Gauges for the properties of response
time, load, and bandwidth aggregate information
from the corresponding probes and update the
appropriate properties in the model.

Translation infrastructure. This layer bridges the
abstraction gap between the model and the sys-
tem. For example, when the adaptation engine
performs resource discovery to find a VGW, the
translation layer must map the architectural type
GatewayT to the system-level component type
sysGateway that the system-layer resource dis-
covery mechanism uses. Likewise, when the adap-
tation engine applies the connect operator to two
elements in the architectural model, such as a
NetMeeting user and a gateway, the translation
layer must map them to actual machines in the
system. These mappings are stored in the transla-
tion repository, and the translators perform the
actual translation.

System-specific adaptation knowledge. The two case
study systems differ in adaptation styles but share
a system concern. This concern manifests itself in
the properties of each style, so sharing the same
concern means that the system can reuse the
knowledge about the shared properties of load and
bandwidth. Part of the knowledge is the transla-
tion mappings between the system properties and
architectural properties that the style defines. For
properties that the gauges need to aggregate, such
as average latency, the aggregation knowledge can
also be reused.

Drawing on these two case studies, Table 1
generalizes from our experience in determining
what system-specific adaptation knowledge in the
framework can be reused depending on the two
dimensions of adaptation style and system concerns.

Computer

Implementation and evaluation

Moving beyond the two case studies, we have
implemented a prototype of the Rainbow self-adap-
tation framework. At the system level, we use the
global network positioning (GNP) approach to esti-
mate network latency, the Remos tool® to measure
bandwidth, and the network-sensitive service dis-
covery (NSSD) mechanism” to discover resources.
We implemented probes that obtain information
from GNP and the Remos tool.

The architecture-layer entities are implemented in
Java, based on the Acme architectural design
toolset.® Performance-property gauges were imple-
mented to read values from the probes and update
the model manager’s model via two event broad-
cast buses. For the translation infrastructure, the
translation repository provides a Java RMI inter-
face for the translators to use for storing and
retrieving the necessary translation mappings.

Some translators are stand-alone entities, while
others are integrated modules of system-layer or
architecture-layer entities. Communications with-
in the framework use XML messages over Java
RMI.

Turning to the issue of reuse, although code size
is not the only reuse measure, we can use the
Rainbow prototype’s code size to approximate the
degree of reuse for the two systems. The Rainbow
prototype—including the adaptation mechanism;
model manager; gauge, probes, and their infra-
structure; and the translation and system-layer
infrastructure—requires 102 kilolines of code
(KLoCs), with a breakdown of 84, 11, and 4
KLoCs for the architecture, system, and translation
layers, respectively. Of these, the nonreused code
and data for adaptation and translation mappings
occupy about 1.8 KLoCs. In addition, the project
reused 73 KLoCs of tool and utility code.

The Rainbow framework’s self-adaptation effec-
tiveness and performance are two other important
aspects requiring evaluation. We can use the client-
server system to demonstrate the effectiveness of
the framework’s self-adaptation. To demonstrate
this, we conducted an experiment on a dedicated
testbed consisting of five routers and 11 machines
communicating over 10-megabits-per-second lines.
This experiment conducted repairs, while the
network was overloaded, on a client-server system
that required a client latency of less than two
seconds.

The results show that for this application and
the specific loads used in the experiment, self-
repair significantly improved system performance.
Figure 5 shows sample results for system perfor-

mance with and without adaptation. Figure 5a
shows that, without adaptation, once the latency
experienced by each client rises above 2 seconds,
it never again falls below this threshold. On the
other hand, Figure 5b shows that if Rainbow
issues the repairs, the client latencies return to
optimal levels.

Perhaps not unexpectedly, our experiment also
revealed that external repair has an associated
latency. In the client-server example, it took several
seconds for the system to notice a performance
problem and several more seconds to fix it. For the
videoconferencing application, elapsed time for
adaptation at the architecture, translation, and sys-
tem layers were 230, 300, and 1,600 ms, respec-
tively, for one scenario, and 330, 900, and 1,500
ms, respectively, for another. Although we can
imagine speeding up the round-trip repair time,
these results indicate that the software architecture-
based approach best suits repairs that operate on a
systemwide scale and fix longer-term system behav-
ior trends.

Ithough our evaluation indicates that it is
A possible to achieve architecture-based self-
adaptation at low cost using reusable infra-
structure, it is worth noting that the Rainbow
framework rests on some important assumptions.
One assumption is that any target system will
provide system access hooks for monitoring and
adaptation. This assumption seems reasonable, at
least for measurement, because an increasing num-
ber of measurement tools and infrastructure pro-
vide measures of or information about common
component properties, including network band-
width and latency. Several protocols can discover
new services and resources for a system. Likewise,
emerging effector technologies support dynamic
changes to running system components. Also,
developers can use wrappers to add hooks for mak-
ing changes in legacy systems.

Another assumption lies in the adaptation infra-
structure, where we assume probes will provide
information about system properties, along with
gauges to aggregate the information and update
properties in the model manager. This assumption
is based on a model that has well-defined gauge
and probe APIs. We anticipate that external devel-
opers will specialize in developing gauges and
probes for various purposes. Further, the mea-
surement tools we have described could also imple-
ment the probe API or be wrapped to serve as
probes, which would let developers of self-adapt-

1,000

100

Latency (s)

0.1

(a)

100

Latency (s)

(b)

Time elapsed (s)

e

AN

Time elapsed (s)

Figure 5. System performance with and without adaptation. The dashed lines
indicate the desired latency behavior. (a) Without adaptation, if each client’s
latency rises above 2 seconds, it never again falls below that threshold. (b)
Once repaired, client Iatencies soon return to optimal levels.

ing systems plug in any gauge and probe to suit
their needs.

Finally, the work we have described is inherently
centralized, with monitoring and adaptation per-
formed within a single Rainbow instance. Making
this assumption has let us focus on core issues of
self-adaptation—specifically monitoring, detec-
tion, resolution, and adaptation. At the same time,
there may be concerns regarding scalability and
single-point failure. The Rainbow framework can,
however, be applied in a distributed setting. For
example, we could apply Rainbow instances to
adapt multiple subsystems of a distributed system,
and then coordinate those instances toward an
overall adaptation goal. The coordination and
other distributed computing issues present a chal-
lenge for future research.

October 2004

Help
shape
the IEEE
Computer
Society of
tomorrow.
Vote for 2005 |IEEE

Computer Society officers.

Acknowledgments

This research was supported by DARPA under
grants N66001-99-2-8918 and F30602-00-2-
0616, by the US Army Research Office (ARO)
under grant number DAAD19-01-1-04835, and the
NASA High Dependability Computing Program
under cooperative agreement NCC-2-1298. The
views and conclusions described here are those of
the authors and should not be interpreted as rep-
resenting the official policies, either expressed or
implied, of DARPA, the ARO, NASA, the US gov-
ernment, or any other entity.

References

1. D. Garlan, J. Kramer, and A. Wolf, eds., Proc. 1st
ACM SIGSOFT Workshop on Self-Healing Systems
(WOSS 02), ACM Press, 2002.

2. A.G. Ganak and T.A. Corbi, “The Dawning of the
Autonomic Computing Era, IBM Systems J., vol. 42,
no. 1, 2003, pp. 5-18.

3. P. Oriezy et al., “An Architecture-Based Approach
to Self-Adaptive Software,” IEEE Intelligent Sys-
tems, vol. 14, no. 3, 1999, pp. 54-62.

Polls open 13 August —

6 October
www.computer.org/election/ COMPUTER
SOCIETY

Computer

4. P. Clements et al., Documenting Software Architec-
ture: Views and Beyond, Addison-Wesley, 2003.

5. M. Shaw and D. Garlan, Software Architecture: Per-
spectives on an Emerging Discipline, Prentice Hall,
1996.

6. T. Gross et al., “Design, Implementation, and Eval-
uation of the Remos Network Monitoring System,”
J. Grid Computing, vol. 1, no. 1, 2003, pp. 75-93.

7. A.-C. Huang and P. Steenkiste, “Network-Sensitive
Service Discovery,” J. Grid Computing, vol. 1,no. 1,
2003; www.cs.cmu.edu/~pach.

8. D. Garlan, R.T. Monroe, and D. Wile, “Acme: Archi-
tectural Descriptions of Component-Based Systems,”
Foundations of Component-Based Systems, G.T.
Leavens and M. Sitaraman, eds., Cambridge Univ.
Press, 2000, pp. 47-68.

David Garlan is a professor of computer science
at Carnegie Mellon University. His research inter-
ests include software architectures, formal meth-
ods, self-healing systems, and task-based com-
puting. He received a PhD in computer science
from Carnegie Mellon University. Contact him at
garlan@cs.cmu.edu.

Shang-Wen Cheng is a doctoral candidate at
Carnegie Mellon University. His research interests
include dynamic system adaptation, software archi-
tectures, and software designs for security. He
received a BS in computer information sciences
from Florida State University. Contact him at
chengs@cmu.edu.

An-Cheng Huang is a doctoral candidate at
Carnegie Mellon University. His research interests
include distributed systems, networking, and grid
computing. He received a BS in computer science
and information engineering from National Tai-
wan University. Contact him at pach@cs.cmu.edu.

Bradley Schmerl is a systems scientist at Carnegie
Mellon University. His research interests include
dynamic adaptation, software architectures, and
software engineering environments. He received a
PhD in computer science from Flinders University
in South Australia. Contact him at schmerl@cs.
cmu.edu.

Peter Steenkiste is a professor of computer science
and electrical and computer engineering at
Carnegie Mellon University. His research interests
include networking and distributed systems. He
received a PhD in electrical engineering from Stan-
ford University. Contact him at prs@cs.cmu.edu.

