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Abstract—We present an architecture and prototype implemen-
tation of a performance management system for cluster-based
web services. The system supports multiple classes of web ser-
vices traffic and allocates server resources dynamically so to
maximize the expected value of a given cluster utility function in
the face of fluctuating loads. The cluster utility is a function of
the performance delivered to the various classes, and this leads
to differentiated service. In this paper, we will use the average
response time as the performance metric. The management system
is transparent: it requires no changes in the client code, the server
code, or the network interface between them. The system performs
three performance management tasks: resource allocation, load
balancing, and server overload protection. We use two nested
levels of management. The inner level centers on queuing and
scheduling of request messages. The outer level is a feedback
control loop that periodically adjusts the scheduling weights and
server allocations of the inner level. The feedback controller is
based on an approximate first-principles model of the system,
with parameters derived from continuous monitoring. We focus
on SOAP-based web services. We report experimental results that
show the dynamic behavior of the system.

Index Terms—Clustered computing, performance management,
quality-of-service (QoS), resource allocation, service differentia-
tion, utility functions, Web services.

I. INTRODUCTION

TODAY, we are seeing the emergence of a powerful dis-
tributed computing paradigm, broadly called web services

[1]. Web services feature ubiquitous protocols, language-inde-
pendence, and standardized messaging. Due to these technical
advances and growing industrial support, many believe that
web services will play a key role in dynamic e-business [2]. In
such an environment, a web service provider may provide mul-
tiple web services, each in multiple grades, and each of those
to multiple customers. The provider will, thus, have multiple
classes of web service traffic, each with its own characteristics
and requirements. Performance management becomes a key
problem, particularly when service level agreements (SLA) are
in place. Such SLAs are included in service contracts between
providers and customers and they specify both performance
targets, known as performance objectives, and financial conse-
quences for meeting or failing to meet those targets. A SLA may
also depend on the level of load presented by the customer [3].
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In this paper, we present an architecture, and describe a pro-
totype implementation, of a performance management system
for web services that supports SLAs. We have designed and im-
plemented reactive control mechanisms to handle dynamic fluc-
tuations in service demand while keeping SLAs in mind. Our
mechanisms dynamically allocate resources among the classes
of traffic, balance the load across the servers, and protect the
servers against overload—all in a way that maximizes a given
cluster utility function. This produces differentiated service.

We introduce a cluster utility function that is a composition
of two kinds of functions, both given by the service provider.
First, for each traffic class, there is a class-specific utility func-
tion of performance. Second, there is a combining function that
combines the class utility values into one cluster utility value.
This parameterization by two kinds of utility functions gives the
service provider flexible control over the tradeoffs made in the
course of service differentiation. In general, a service provider
is interested in profit (which includes cost, as well as revenue),
as well as other considerations (e.g., reputation and customer
satisfaction).

We have organized our architecture in two levels: 1) a col-
lection of in-line mechanisms that act on each connection and
each request and 2) a feedback controller that tunes the param-
eters of the in-line mechanisms. The in-line mechanisms con-
sist of request queueing, scheduling, and load balancing. The
feedback controller periodically sets the operating parameters
of the in-line mechanisms so as to maximize the cluster utility
function. The feedback controller uses a performance model of
the cluster to solve an optimization problem. The feedback con-
troller continuously adjusts the model parameters using mea-
surements of actual operations. In this paper, we report the re-
sults obtained using an approximate, first-principles model. We
focus on SOAP-based web services and use statistical abstracts
of SOAP response times as the characterization of performance.
We allow ourselves no functional impact on the service cus-
tomers or service implementation: we have a transparent man-
agement technique that does not require changes in the client
code, the server code, or the network protocol between them.

The rest of this paper is organized as follows. Section II dis-
cusses related work. Section III presents the system architec-
ture and prototype implementation. Performance modeling and
optimization analysis are described in Section IV. Section V il-
lustrates some experimental results, showing both transient re-
sponses and service differentiation. Section VI presents conclu-
sions and discusses future work.
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II. RELATED WORK

Several research groups have addressed the issue of
quality-of-service (QoS) support for distributed systems [4]. In
this section, we summarize the current state of the art. The first
class of research studies deals with session-based admission
control for overload protection of web servers. Chen et al.
[5] proposed a dynamic weighted fair sharing scheduler to
control overloads in web servers. The weights are dynamically
adjusted, partially based on session transition probabilities from
one stage to another, in order to avoid processing requests that
belong to sessions likely to be aborted in the future. Similarly,
Carlström et al. [6] proposed using generalized processor
sharing for scheduling requests, which are classified into mul-
tiple session stages with transition probabilities, as opposed to
regarding entire sessions as belonging to different classes of
service, governed by their respective SLAs. Welsh et al. [7],
[8] presented a multistage approach to overload control based
on adaptive per stage admission control. In this approach, the
system actively observes application performance and tunes
the admission rate of each processing stage to attempt to meet
a 90th percentile response time target. This approach is based
on the SEDA architecture [9], and was extended to perform
class-based service differentiation. The downside of this multi-
staged admission control approach, as noted by its authors, is
that a request may be rejected late in the processing pipeline,
after it has consumed significant resources in upstream stages.

Another area of research deals with performance con-
trol of web servers using classical feedback control theory.
Abdelzaher et al. [10] used classical feedback control to
limit utilization of a bottleneck resource in the presence of
load unpredictability. They relied on scheduling in the ser-
vice implementation to leverage the utilization limitation to
meet differentiated response-time goals. They used simple
priority-based schemes to control how service is degraded in
overload and improved in under-load. In this paper, we use
a new technique that gives the service provider a finer grain
control on how the control subsystem should tradeoff resource
among different web services requests. Diao et al. [11] used
feedback control based on a black-box model to maintain
desired levels of memory and CPU utilization. In this paper, we
use a first-principles model and maximize a cluster objective
function.

Web server overload control and service differentiation
using operating system (OS) kernel-level mechanisms, such as
transmission control protocol (TCP) synchronize/start (SYN)
policing, has been studied in [12]. A common tendency across
these approaches is tackling the problem at lower protocol
layers, such as HTTP or TCP, and the need to modify the web
server or the OS kernel in order to incorporate the control
mechanisms. Our solution on the other hand operates at the
SOAP protocol layer, which does not require changes to the
server, and allows for finer granularity of content-based request
classification.

Service differentiation in cluster-based network servers has
also been studied in [13] and [14]. The approach taken here is
to physically partition the server farm into clusters, each serving
one of the traffic classes. This approach is limited in its ability

to accommodate a large number of service classes, relative to
the number of servers. Lack of responsiveness due to the nature
of the server transfer operation from one cluster to another is
typical in such systems. On the other hand, our approach uses
statistical multiplexing, which makes fine-grained resource par-
titioning possible, and unused resource capacities can be instan-
taneously shared with other traffic classes.

Chase et al. [15] refine the above approach. They note that
there are techniques (e.g., cluster reserves [16], and resource
containers [17]) that can effectively partition server resources
and quickly adjust the proportions. Like our work, Chase et al.
also solve a cluster-wide optimization problem. They add terms
for the cost (due, e.g., to power consumption) of utilizing a
server, and use a more fragile solution technique. Also, they use
a black-box model rather than first-principles one.

Zhao and Karamcheti [18] propose a distributed set of
queueing intermediaries with nonclassical feedback control
that maximizes a global objective. Their technique does not
decouple the global optimization cycle from the scheduling
cycle.

In this paper, we use the concept of utility function to encap-
sulate the business importance of meeting or failing to meet per-
formance targets for each class of service. The notion of using a
utility function and maximizing a sum [19] or a minimum [20]
of utility functions for various classes of service has been used to
support SLAs in communication services. In such analyses, the
utility function is defined in terms of bandwidth allocated (i.e.,
resources). In our work, we define a class utility function to ex-
press the business value of meeting the service level objective
as well as deviating from it. Further, the effect of the amount of
allocated resources on performance level is separated from the
business value objectives.

III. PERFORMANCE MANAGEMENT SYSTEM ARCHITECTURE

AND IMPLEMENTATION

In this section, we present the system architecture and pro-
totype implementation of a management system for web ser-
vices. This system allows service providers to offer and manage
SLAs for web services. The service provider may offer each
web service in different grades, with each grade defining a spe-
cific set of performance objective parameters. For example, the
StockUtility service could be offered in either premium
or basic grade, with each grade differentiated by performance
objective and base price. A prototypical grade will say that the
service customers will pay $10 for each month in which they
request less than 100 000 transactions and the 95th percentile of
the response times is smaller than 5 s, and $5 for each month of
slower service.

Using a configuration tool, the service provider will define
the number and parameters of each grade. Using a subscription
interface, users can register with the system and subscribe to
services. At subscription time, each user will select a specific
offering and associated grade.

The service provider uses the configuration tool
to also create a set of traffic classes and map a

tuple into a
specific traffic class (or simply class). The service provider
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Fig. 1. System overview.

assigns a specific response time target to each traffic class.
Our management system allocates resources to traffic classes
and assumes that each traffic class has a homogeneous service
execution time.

We introduce the concept of class to separate operations
with widely differing execution time characteristics. For
example, the StockUtility service may support the op-
erations getQuote() and buyShares(). The fastest
execution time for getQuote() could be 10 ms, while the
buyShares() cannot execute faster that 1 s. In such a case,
the service provider would map these operations into different
classes with different set of response time goals. We also use
the concept of class to isolate specific contracts to handle the
requests from those customers in a specific way.

Fig. 1 shows the system architecture. The main components
are a set of gateways, a global resource manager, a management
console, and a set of server nodes on which we deploy the target
web services. We use gateways to execute the logic that controls
the request flow, and we use the server nodes to execute the web
services logic. Gateway and server nodes are software compo-
nents. We usually have only one gateway per physical machine
and, in general, we have server nodes and gateways on separate
machines. The simplest configuration is one gateway and one
server node running on the same physical machine.

In this paper, we assume that all server nodes are homoge-
neous and that every web service is deployed on each server.
We can deal with heterogeneous servers by partitioning them
into disjoint pools, where all the servers in a given pool have
the same subset of web services deployed, and where the traffic
classes are also partitioned among the pools.

The servers, gateways, global resource manager, and con-
sole share monitoring and control information via a publish/sub-
scribe network [21]. In coping with higher loads, the system
scales by having multiple gateways. An L4 switch distributes
the incoming load uniformly across the gateways. It performs
content-independent load balancing.

A. Gateway

We use gateways to control the amount of server resources
allocated to each traffic class. By dynamically changing the
amount of resources, we can control the response time expe-
rienced by each traffic class.

We denote with the maximum number of concurrent
requests that server executes on behalf of gateway . We also

Fig. 2. Gateway components.

use to describe the minimum number of class requests
that all servers will execute on behalf of gateway . We refer
to as server shares. In Section IV, we will describe how
we compute and , while in this section, we describe
how gateway enforces the and constraints. For each
gateway , we use and to denote the following:

(1)

where and denote the set of all classes and servers, re-
spectively. Fig. 2 illustrates the gateway components. We have
used Axis [22] to implement all our gateway components, and
we have implemented some of the mechanisms using Axis han-
dlers, which are generic interceptors in the stream of message
processing. Axis handlers can modify the message, and can
communicate out-of-band with each other via an Axis mes-
sage context associated with each SOAP invocation (request and
response) [22].

When a new request arrives a classification handler deter-
mines the traffic class of the request. The mapping functions
use the request metadata (user id, subscriber id, service name,
etc.). In our implementation, the classification handler uses the
user and SOAP action fields in the HTTP headers as inputs, and
reads the mappings from configuration files. We avoid parsing
the incoming SOAP request to minimize the overhead.

After we classify the requests, we invoke the queue handler,
which in turn contacts a queue manager. The queue manager
implements a set of logical FIFO queues one for each class.
When the queue handler invokes the queue manager the queue
manager suspends the request and adds the request to the logical
queue corresponding to the request’s class.

The queue manager includes a scheduler that runs when a
specific set of events occurs and selects the next request to ex-
ecute. The queue manager on gateway tracks the number of
outstanding requests dispatched to each server and makes sure
that there are at most requests concurrently executing on all
the servers. When the number of concurrently outstanding re-
quests from gateway is smaller than the scheduler selects
a new request for execution.

The scheduler uses a round-robin scheme. The total length of
the round-robin cycle is and the length of class interval is

. We use a dynamic boundary and work conserving disci-
pline that always selects a nonempty queue if there is at least
one. The above discipline guarantees that during periods of re-
source contention the server nodes will concurrently execute at
least requests of class on behalf of gateway .
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After the scheduler selects a request the queue manager re-
sumes the execution of the request’s corresponding queue han-
dler. The queue manager collects statistics on arrival rates, ex-
ecution rates, and queueing time and periodically broadcasts
these data on the control network.

The dispatch handler selects a server and sends the request to
the server, using a protocol defined by configuration parameter.
Our implementation supports SOAP over HTTP and SOAP over
JMS. The dispatch handler distributes the requests among the
available servers using a simple load balancing discipline, while
enforcing the constraint that at most requests execute on
server concurrently on behalf of gateway .

When a request completes its execution, the response handler
reports to the queue manager the completion of the request’s
processing. The queue manager uses this information to both
keep an accurate count of the number of requests currently exe-
cuting and to measure performance data such as service time.

The gateway functions may be run on dedicated machines, or
on each server machine. The second approach has the advan-
tage that it does not require a sizing function to determine how
many gateways are needed, and the disadvantage that the server
machines are subjected to load beyond that explicitly managed
by the gateways.

B. Global Resource Manager and Management Console

The global resource manager computes , the maximum
number of concurrent requests that each server executes on
behalf of each gateway , and it computes , the minimum
number of class requests that all servers will execute on the be-
half of each gateway . represents the total amount
of resources allocated to gateway , while is the portion
of that dedicated to class . Given these two sets of parame-
ters, a gateway is able to perform WRR scheduling, and load
balancing.

The global resource manager runs periodically and computes
the resource allocation parameters every time interval , which
we define as the th control horizon. The global resource man-
ager computes and that each gateway will use during
the control horizon using the resource allocation parameters
computed in the control horizon as well request and server
utilization statistics measured in during .

The size of the control horizon affects the ability of the global
resource manager to respond to rapid changes in the traffic load
or response time. On the one hand, when is small, the resource
allocation parameters are updated frequently which make the
system more adaptive. On the other hand, a larger value of
increases the stability of the system.

Fig. 3 shows the global resource manager inputs and outputs.
In addition to real-time dynamic measurements, the global re-
source manager uses resource configuration information, and
the cluster utility function. The cluster utility function consists
of as a set of class utility functions and a combining function.
Each class utility function maps the performance for a particular
traffic class into a scalar value that encapsulates the business im-
portance of meeting, failing to meet or exceeding the class ser-
vice level objective. A combining function combines the class
utility function into one cluster utility function. In this paper,

Fig. 3. Global resource manager inputs and outputs.

we have implemented two combining functions: sum and min-
imum. However, our work could be extended to study the impact
of other combining function on the structure of the solution.

As shown in Fig. 3, the global resource manager may as-
sume the responsibility of computing the capacity of each
server . represents the maximum number of web services
requests that server can execute concurrently. The global re-
source manager should select to be large enough to effi-
ciently utilize the server’s physical resources, but small enough
to prevent overload and performance degradation. The global
resource manager may use server utilization data to determine
the value of .

The global resource manager partitions among all gate-
ways and classes. The global resource manager uses
to describe the minimum number of class requests that all
servers will execute on behalf of gateway . The global resource
manager uses a queueing model of the system to predict the
performance that each class would experience for each given
allocation . The global resource manager implements a
dynamic programming algorithm to find the that maximize
the cluster utility function. After we compute , we compute

by partitioning among all gateways. We describe the
details on the model and the resource allocation algorithm in
Section IV.

After the global resource manager computes a new set of
and values, it broadcasts them on the control net-

work. Upon receiving the new resource allocation parameters
each gateway switches to the new values of and . We
discuss the algorithm used to predict the class performance and
maximize the cluster utility function in Section IV.

The management console offers a graphical user interface
to the management system. Through this interface the service
provider can view and override all the configuration parame-
ters. We also use the console to display the measurements and
internal statistics published on the control network. Finally, we
can use the console to manually override the control values com-
puted by the global resource manager.

IV. MODELING AND OPTIMIZATION

In this section, we describe how the global resource manager
computes the resource allocation. First, we give an abstract def-
inition of the problem solved. Then, we discuss the simplified
queueing model used to predict the performance of each class
for a given resource allocation. We also examine the class utility
functions detail.
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A. The Resource Allocation Problem

The global resource manager computes the and
values to maximize the cluster utility function over the next con-
trol period. We decouple the and problems by solving
for the first, and then deriving the from them.

To determine the , we use dynamic programming [23] to
find the that maximizes the cluster utility function , which
we defined as a combination of each class utility function .
In our work, we have studied two different kinds of combining
functions. In particular, we find the set of values of that

a

b
(2)

subject to

(3)

where

(4)

and , , and denote the set of classes, gateways and servers,
respectively. It is assumed that is relatively larger than the
number of modeled request flows, i.e., . The
utility function defines the utility associated with al-
lowing requests of class traveling through gateway to
concurrently execute on any of the servers. When we use the
objective function in (2a), we compute the cluster utility as the
sum of each class utility function, thus, we maximize the overall
system utility. When we use (2b) to compute the cluster utility,
the resource manager will find the allocation vector that maxi-
mizes the smallest utility function, which means it looks for a
solution that equalizes the utility of all classes. The former ob-
jective function reflects a greedy policy in managing the server
cluster, while the latter represents a fair sharing policy. Service
providers choose to follow one of these two basic policies, based
on considerations such as the relative importance of the different
classes of service, customer satisfaction, and reputation. While
more advanced hybrid objective functions may also be desir-
able, the scope of this paper is limited to the two functions de-
scribed above. In Section IV-B, we discuss the structure of the
utility function and in Section IV-C, we show how we compute

as a function of .
As we mentioned in the previous section, we enforce for

each server , a limit on the maximum number of requests
that may be concurrently active on that server. Once we have
computed , the value derived from (1) represents the
portion of server resources that have been allocated to gateway

. To compute for each gateway , we divide each server
available concurrency among the gateways in proportion

to . In particular, for each server , we select the point
( being the number of gateways) with

integer-valued coordinates constrained by

(5)

and near the point defined by

(6)

where is the total number of resources across all servers as
defined in (4).

B. The Structure of Class Utility Functions

We use a utility function to encapsulate the business im-
portance of meeting or failing to meet class performance. The
utility function maps the performance actually experienced by
web services requests into a real number . Since in (2) we use
a combination of utility functions to construct the cluster objec-
tive function, by changing the size and shape of the utility func-
tion, we can influence the amount of resources that we will al-
locate to each class. There is no single way to construct a utility
function. In this paper, we study a family of functions, and we
use experiments to determine the impact of different choices of
utility function. When selecting the utility functions, we have
used the following guidelines:

• the value of should be larger when the performance ex-
perienced by requests is better than the target and smaller
when the performance is worse;

• the value of should increase as the performance expe-
rienced by increases and decrease, otherwise;

• the size and shape of the utility function should be con-
trolled by one or two parameters that can be adjusted by
the platform provider to reflect the importance of one class
of traffic over another.

In this paper, we express each class performance objective as
an upper bound on the average response time and, therefore,
will depend on the negotiated upper bound as well as the actual
response time. We denote with the average response time ex-
perienced by class requests and with the negotiated upper
bound on the average response time. We then use the following
family of functions to describe class utility:

if
if

(7)

The function in (7) and shown in Fig. 4 compares average
response time to target response time for class . When

the utility grows as the response time distance from the
target to the power of . When the utility decays as the
response time distance from the target to the power of . We
also use as a scaling factor.

For the plot in Fig. 4, we have used , ,
and . By increasing , we control the

business importance of exceeding the target for class , while
by increasing , we can control how fast the business utility
degrades when class experience a delay bigger than the objec-
tive. By changing , , and , we can influence how resource
are allocated to each class of traffic and in turn the class perfor-
mance. In the next section, we describe how we estimate the
expected response time for class given a resource allocation

, where is a factor that we use to weight utility functions.
In the next section, we describe how we estimate the expected
response time for class given a scheduling weight of .
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Fig. 4. Utility function for class c.

Fig. 5. Modeling the response time behavior for class c requests handled by
gateway g.

C. System Modeling

To compute the class utility given an allocation of
resources, we need to predict , i.e., the average response time
of class requests handled by gateway given a proposed al-
location resources. To predict , we use the observed
arrival rate, response time, and the allocation values, from the
previous control cycle denoted by , , and .

We use an M/M/1 queue to model the response time behavior
of requests of class traveling through gateway , i.e., we as-
sume that was evenly divided among the server threads
that have been concurrently executing all requests of class
traveling through gateway during the previous control cycle.
Using this assumption, we compute the equivalent service rate
of the M/M/1 queue that has been handling the fraction of re-
quests served by one of the threads. The equivalent service
rate is given by

(8)

Fig. 5 exemplifies the above modeling technique. We now use
to predict the response time of all class requests traveling

through gateway in the next control cycle under an allocation
of threads, as follows:

(9)

In the previous calculation, we have assumed that the request
load in the new cycle is equal to the previous one.

Using (7) and (9), we can compute the utility function
as a function of the expected allocation . Using

dynamic programming, we can then compute the set of
that will maximize the cluster utility function in (2) under
the constraints in (3). We chose to use dynamic programming
in order to provide a general framework that can accommo-
date any utility function, even those that may not be convex.
The complexity of this dynamic programming computation
is , where is the number of modeled
request flows, and is the maximum number of requests that
may be concurrently active on all the servers, as defined in
(3) and (4) [23]. Note that the complexity can be expressed in
terms of instead of , using (4) and (5).

The resource allocation methodology described in this sec-
tion will achieve an optimal resource allocation only under the
assumptions mentioned above. For all other cases our method-
ology achieves a suboptimal solution. Given the nature of our
system, an optimal allocation can be determined only by simu-
lation and extensive search. More work is required to determine
the difference between our approach and an optimal allocation
of resources. In the next section, we report the results of several
experiments intended to study the effectiveness of this approach.

V. EXPERIMENTAL RESULTS

In this section, we describe a set of experiments that we have
conducted to study the behavior of our system under different
traffic load conditions.

We used two Intel-based machines for our experiments. We
used the first machine to run a Web Services load generator. For
the load generator, we used a Java-based application that can
simulate large numbers of Web Services clients each generating
requests according to a defined stochastic model. We used the
second Intel machine to run both the gateway and the Web Ser-
vices server. We used Axis [22] running on Tomcat [24] to im-
plement the server and gateway containers.

For the experiments described in this paper, we used two
different classes of clients, referred to as Premium and Basic.
Both classes of clients generate requests using a closed-loop
model. In such a model, a number of clients of each class
generate requests independently. Each client generates one
request and waits until the server responds. Then, the client
goes to sleep, modeling the think time of an application or user.
The sleep times are independent identically distributed (i.i.d.)
random variables with negative exponential distribution with
a mean of 1 s. After waking up, the client generates a new
request. In our experiments, we varied the number of clients of
each class in the range of 5–20 clients, as shown in Fig. 6.

On the server we deployed a synthetic Web Service. We chose
a synthetic service to better control our experiments. We im-
plemented the synthetic service using a Java class that alter-
nates between CPU-bound processing and sleeping. We used the
sleeping intervals to emulate periods in which a process waits
response from a back-end server or database. The service times
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Fig. 6. Traffic load combinations used in our experiments.

Fig. 7. Throughput versus requested maximum number of concurrent
executions.

are i.i.d. random variables with negative exponential distribu-
tion and average of 1 s.

A. Effect of Degree of Concurrency on Throughput

We used the first set of experiments to determine the optimal
degree of concurrency for our set up.

In order to determine the optimal value of for our server,
we measured the system throughput for various settings of .
In these experiments, the load consisted of only one traffic
class, and we always used a large enough number of clients to
make sure that at any given time requests were executing
concurrently.

We started with a value of for the first experiment.
We ran the experiment for several minutes and we measured
the average throughput of the system, i.e., the number of re-
quests that complete in a unit of time. We repeated the same
experiment several times using larger values of each time.
Fig. 7 shows the results of our experiments. When is small
the CPU is under utilized and the throughput increases by in-
creasing . When the CPU reaches 100% utiliza-
tion and the throughput remains constant even if we increase

further. When we used values of much larger than 10 the
throughput decreased because of context switching overheads.

Based on these results, we selected the value of
as the concurrency setting in all the remaining experiments de-
scribed in this section. In general, the optimal value of will
change dynamically and will depend on the type of services
being invoked, their parameters, and the service mix.

For the experiments reported in this paper, we did not use
an automatic mechanism to compute the optimal value of .
However, such a mechanism is a key component for a produc-
tion system and will be the subject of future work.

B. Service Level Differentiation and System Responsiveness

In this section, we describe the results of a set of experiments
aimed at studying the dynamic behavior of our system and its
ability to react to changes in the traffic load and mix. In our ex-
periments, we configured our sensors to report traffic load and
performance statistics every 5 s. We also configured these sen-
sors to average traffic and performance statistics over a period
of 30 s. We set the length of the global resource manager control
cycle to 5 s, i.e., the global resource manager recomputes a new
set of server shares every time the sensors publish a new
value of traffic load and performance statistics.

We used the utility function in (7) with for
both the Premium and Basic class. For the Premium class, we set
a target average response time of Premium requests s
and we set the average response time for Basic to s.
We used the cluster utility function in (2b), thus attempting to
equalize the utilities of both classes.

We started from an idle server, and changed the load to the
system in four phases, denoted by , , , and , re-
spectively. During phase , we set the number of clients to 5
for each of the classes, which corresponds to a light load sit-
uation. We denote this case as , where

denotes the number of premium clients and denotes
the number of basic clients. The other three phases are as fol-
lows: , , and

. We use to simulate a heavy load
situation and both and to simulate moderate load con-
ditions, with a different mix of Premium and Basic clients. Our
experiment study starts with light load, then moves to heavy
load, followed by moderate load with more Basic then more
Premium, respectively.

During the experiment, the global manager adjusted the
values of for each class to respond to the changes in the
traffic load and mix, as shown in Fig. 8. Since we use a work
conserving scheduling discipline, during the light load phase

, the unused allocated capacity of one traffic is available to
other traffic class. Therefore, the response time for both classes
during phase is not sensitive to the value of the allocation
vector. During the heavy load phase , the allocation re-
mained at to ensure good response for
the Premium class. During phase , the allocation changed
to , giving more capacity to the Basic
traffic which is about three times as large as the Premium.
During phase , the global manager changed the allocation
to because of the higher load from the
Premium clients.
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Fig. 8. Weights allocated by the GRM.

Fig. 9. Average response time.

Fig. 9 shows the average response time. In Fig. 9, we marked
the target values of s and s for the Premium
and Basic classes. Due to the light traffic during phase , the
queueing time is negligible and the response time is simply due
the service time which has an average of 1 s. During the heavy-
loaded phase , the allocation results
in a average response time for the Premium class that is slightly
above the target value, whereas the average response time for
the Basic clients is about twice as large as the Premium one.
Since we use the same utility function for both Premium and
Basic traffic and we use the cluster objective function in (2b),
the heavy load impacted both traffic classes in a way that is
proportional to their target values.

During phase , the response time decreased because the
load decreased, but we still observe a difference in the response
time for the different class of clients. The switch between phase

and phase caused the Premium traffic to initially ex-
perience a increase in the response time until the global re-
source manager detected the new load conditions and corrected
by adjusting the allocation vector . Similarly, the
Basic clients experience a better response time at the edge of
the transition between phases and . The response time
for the Basic clients increases after the global resource manager
changes the allocation vector.

Fig. 10 shows the average queue length. During phase ,
there is no queueing. During the other three phases, the number

of concurrent Web Services requests executed by the server
is almost always equal to the maximum of ten. Therefore, we
have requests waiting in the queue manager buffers.

Fig. 10. Average queue length.

In the heavy load phase , the allo-
cation vector is , and since the average
client think time equals the average request service time, the av-
erage number of clients in the think state to be (6,4) Thus, the
remaining number of requests (8,12) must be queued or some-
where in transition in the network.

During phase the load was reduced to
and the resulting allocation was .

The queue length for Premium was negligible, and most of
the requests in the queue manager buffers were from the
Basic clients. During phase , the traffic load was switched
to and the resulting allocation was

, yielding an average queue length for
Premium that is about twice as much as for Basic.

The performance during phase is not ideal because the
Premium traffic has a lower target response time than Basic, and
we would desire a smaller queue. The performance in this phase
is due to the small number of maximum concurrent requests al-
lowed to execute on the server. Since the global man-
ager can allocate server shares in coarse increments of 10% only.
A decrease in the Basic allocation from 2 to 1 would have re-
sulted in extremely poor performance for the requests associated
with the Basic clients.

We could have achieved a better performance if we could
have used a fractional allocations. An allocation vector of

would have increased the perfor-
mance of the Premium requests without exploding the response
time of the Basic clients. Based on this results, we are im-
proving our system to support fractional weights.

The throughput curves are shown in Fig. 11. During phase
, the total throughput may be evaluated as the ratio of the

total number of clients, ten, and the total round-trip time (think
time plus service time), 2 s, yielding 5 req/s, or about 2.5 req/s
for each class. During phases , , and , the server was
busy most of the time executing the maximum number of con-
current requests and, therefore, the total throughput
was limited to 10 req/s (obtained by dividing 10 threads by the
service time of 1 s).

Fig. 12 illustrates the utility values. For the experiments re-
ported in this section, we used the optimization criterion that
maximize the minimum of the utility values of Premium and
Basic traffic. In other words, the optimization attempts to yield
equal utility values for both traffic classes. A near perfect equal-
ization is achieved during phases , , and . As for phase
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Fig. 11. Throughput.

Fig. 12. Utility functions.

, there is a difference between the two utility values. This is
due to the use of an integer allocation vector, rather than a frac-
tional one.

We have also run experiments with larger clusters composed
of several machines, and we did not observe any difference in
the system behavior. The numerical results are similar to the
ones reported in Figs. 9–11 for the one node case. However, in
our experiments, we did not go beyond ten nodes. Currently, we
are building a larger testbed to study scalability issues.

C. Optimality of Resource Allocation

In this section, we compare the behavior of our system to
two systems that use a first-come-first-served (FCFS) and static
priority (SP) scheduling disciplines, respectively. In the FCFS
system, requests are treated similarly, independent of their class.
All requests queue up in a single FCFS queue and wait until a
server becomes available. In this section, we still limited the
maximum number of requests concurrently executing on the
server to to maximize the server performance and to
study the impact of the allocation discipline in isolation.

When a request completes a corresponding response is gener-
ated and a server thread becomes available. In the SP system, we
implemented two queues, one for each class of requests. When a
thread becomes available, the request in the head of the highest
priority queue uses it until the request completes. In both FCFS
and SP systems, the target response time values are not used to
decide which request will be served.

We consider the experimental setup described above, where
there are two classes of requests: Premium and Basic. Instead

Fig. 13. Utility regions with FCFS scheduling.

of a single traffic point per phase, we consider a two-dimen-
sional workload traffic space, given by the number of Premium
clients and Basic clients, respectively. We ran experiments using
5, 10, 15, and 20 clients of each class, thus resulting in a 16-point
space, as depicted in Fig. 6. At each point, we measure the re-
sulting cluster utility function, which in our case is the minimum
of the utilities of Premium and Basic classes. We use the same
traffic, service time, and target time values as in the previous
section.

Fig. 13 illustrates the utility regions, as a surface plot, ob-
tained in the uncontrolled case of FCFS. We note that the utility
function decreases as the number of clients increases. The con-
tour lines are diagonal in a way that exhibits the lack of differ-
entiation between Premium and Basic requests. For example,
achieving a nonnegative utility function value (i.e., both classes
meet or exceed their targets) puts a limit of about 29 as the total
number of clients.

The cluster utility with SP scheduling is shown in Fig. 14.
First, we note that the contour lines are more slanted due to the
preferential treatment of Premium requests. For example, a zero
utility value is achieved with clients or

clients. Achieving the target for Basic re-
quests requires less number of Basic clients in the former and
less number of Premium clients in the latter. Second, we note
that the utility region (for nonnegative utility values) is roughly
smaller than the corresponding region in the FCFS system. The
total number of clients on the zero contour line varies from 25
to about 31 clients. For smaller values of the utility function,
the utility regions become remarkably smaller than the corre-
sponding regions in the FCFS system.

Fig. 15 shows the utility regions obtained with our optimized
controlled system. The resulting utility regions are larger than
both the FCFS and the SP systems. This means that we can
accommodate more workload using the same resources, while
achieving the target response times. The zero contour line passes
by points where the total number of clients is somewhere be-
tween about 32 and 35 clients. We achieve this result because
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Fig. 14. Utility regions with priority scheduling.

Fig. 15. Utility regions with optimized scheduling.

the global resource manager allocates server resources to opti-
mize the cluster utility function.

VI. CONCLUSION AND FUTURE WORK

We have presented an architecture and a prototype implemen-
tation of a performance management system for cluster-based
web services. The management system is transparent and allo-
cates server resources dynamically in order to maximize the ex-
pected value of a given cluster utility function. We use a cluster
utility to encapsulate business value, in the face of SLAs and
fluctuating offered load. The architecture features gateways that
implement local resource allocation mechanisms. A global re-
source manager solves an optimization problem and tunes the
parameters of the gateway’s mechanisms. In this study, we have
used a simple queueing model to predict the response time of
requests for different resource allocation values. Feedback con-
trollers based on first-principles model of the system converge

quickly and with fewer oscillations than controllers based on a
black-box model.

We plan to explore other queueing models, such as multi-
server open models, including M/M/m and G/G/m, as well as
multiserver closed queueing network models. We expect closed
queueing models to yield better results since they represent
more accurately the nature of web sessions.

Our work can be extended in several directions. Our platform
could be enhanced with additional management functionality
such as policing, admission control and fault management. We
will need to develop more sophisticated models of web services
and web services traffic loads to study and predict platform per-
formance under different service and traffic conditions. The ef-
fect of control parameters, such as control cycle, on the perfor-
mance of the feedback controller needs further study. Finally,
we will need to study the impact of using other scheduling al-
gorithms on the end-to-end resource management problem, es-
pecially, in the presence of multiple gateways.
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