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Abstract

Nodes in peer-to-peer systems need to know the 

information about others to optimize neighbor 

selection, resource exchanging, replica placement, 

load balancing, query optimization, and other 

collaborative operations. However, how to collect this 

information effectively is still an open issue. In this 

paper, we propose a novel information collection 

protocol, PeerWindow, with which each node can 

collect a large amount of pointers to other nodes at a 

very low cost. Compared to existing protocols, 

PeerWindow is 1) efficient, the cost of collecting 1,000 

pointers being less than 1kbps in a common system 

environment, 2) heterogeneous, nodes with different 

capacities collecting different amounts of information, 

and 3) autonomic, nodes determining their bandwidth 

cost for node collection by themselves and adjusting it 

dynamically. PeerWindow can be used in many 

existing peer-to-peer systems and has tremendous 

potential for future expansions. 

1. Introduction 

 Peer-to-peer nodes need to know the information 

about others. However, in most cases they have too 

limited knowledge about the outside world (sometimes 

they only hold a small routing table that contains no 

more than 100 pointers). In peer-to-peer backup 

systems, nodes need to find partners with similar [4] or 

different [10] operating systems, to reduce redundant 

data storing or to guard against simultaneous virus 

attack. In resource trading systems [5], nodes need to 

find adequate bargainers in terms of capacity, 

availability, physical location, bidding price, etc. In 

load balancing algorithms [6], heavily-loaded nodes 
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need to find lightly-loaded ones to transfer the 

overload. In range query protocols [1], nodes need to 

gather other nodes’ information for query optimization. 

In file sharing protocol of GUESS [19], nodes need to 

collect a large amount of pointers to other nodes to 

increase the local hit rate of submitted queries. 

All these examples indicate that nodes in peer-to-

peer systems have a desire to know others’ information. 

However, cost-effective information-collection method 

is still an open issue. For the lack of general solutions, 

most projects design their own methods on top of an 

existing overlay. For example, Pastiche modifies 

Pastry, Mercury uses random walk on a small-world 

overlay, and GUESS piggybacks node pointers upon 

response messages within a Gnutella-like unstructured 

overlay.  

The goal of our work is to propose a more general 

solution for node collection, which can be used in 

existing and future peer-to-peer systems. To be 

adaptive to the peer-to-peer environment, the protocol 

must hold following properties: 

1. Efficiency. Nodes are able to collect a large 

amount of pointers (a pointer means a piece of 

information about another node) at a low cost. We 

believe efficiency is the most significant property for a 

node collection protocol because obviously the more 

pointers a node collects, the more satisfactory partners 

it may find locally when desired.  

2. Heterogeneity. For the inevitable heterogeneity 

of peer-to-peer systems [13], nodes with different 

capacities should be allowed to collect different 

amounts of pointers (at different bandwidth cost). 

Heterogeneity makes it possible for the weak nodes to 

participate in the system, and also prevents those 

powerful nodes from being restricted by the weak ones. 

3. Autonomy. We should let every node determine 

its cost for node collection (and thereby the amount of 

collected pointers) independently and be able to adjust 

it dynamically. This is accordant with the autonomy 
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spirit of “peer-to-peer” and makes the protocol 

adaptive to the environment changes. 

The most critical problem in designing such a 

protocol is the maintenance of pointers: when a node 

joins or leaves the system, all the related nodes should 

update their pointers timely. There are two common 

ways for pointer maintenance: explicit probing (send 

heartbeat messages to all the neighbors1 periodically) 

and multicasting (when a node joins or leaves, 

multicast the event to all the related nodes). Explicitly 

probing is not efficient because most probes get active 

response, and therefore have no positive effects on 

pointer-state updating. For example, assuming that the 

nodes’ average lifetime2 is about 2 hours [13] and a 

node probes all its neighbors every 30 seconds, then 

%58.99240239 ≈  of the probes would return 

positively, indicating that the corresponding neighbors 

are still alive. Actually, these messages can be seen as 

a waste. If the node uses 10kbps for pointer 

maintenance, it can only maintain 600 pointers 

(assuming each heartbeat message is 500-bit in size). 

Compared to the scale of the whole system (perhaps 

comprising millions of nodes), this amount is very 

small. 

In contrast, multicasting is more efficient because a 

node only receives messages when its neighbors 

change their state (joining or leaving). In another word, 

all the received messages are useful for pointer-state 

updating. While multicasting can achieve high 

efficiency, it faces another critical problem: given a 

heterogeneous system, how to determine which nodes 

hold pointers to a given node? Obviously, such 

information cannot be stored explicitly, because 1) it 

greatly complicates the protocol; 2) it is hard to 

determine where to place it and how to keep it 

available and reliable; and 3) even if we can obtain 

such information when needed, efficient multicast 

algorithm is still a hard problem. 

In this paper, we propose PeerWindow, a novel 

node collection protocol that solves this maintenance 

problem and hence holds the above three properties 

(efficiency, heterogeneity and autonomy) 

simultaneously. Each PeerWindow node has a nodeId 

and a self-determined attribute level. A node at level l

keeps about lN 2/  pointers (where N is the total 

number of the nodes). Then nodes with different 

capacities run at different levels. PeerWindow sets a 

smart mapping between a node’s identifier and the 

pointers it should maintain, which makes it possible to 

judge whether a node keeps a pointer to another node 

                                                          
1 If node A keeps a pointer to node B, then say B is a neighbor of A. 
2 Lifetime means the period from the time when a node joins system 

to the time when it leaves. 

by simply looking at their identifiers and levels. In this 

way, when a node joins or leaves, PeerWindow can 

figure out which nodes need to know the event without 

additional information storing. Furthermore, 

PeerWindow devises a tree-based multicast protocol 

that disseminates the event efficiently. PeerWindow 

nodes are allowed to adjust their levels dynamically to 

tune their bandwidth cost, which makes PeerWindow 

more adaptive than previous protocols. 

In the following, we will first outline the 

PeerWindow protocol in section 2, and then discuss 

how to use PeerWindow in some existing peer-to-peer 

systems in section 3. Protocol details are presented in 

section 4. After reporting the experiment results in 

section 5, we introduce related works in section 6 and 

make final conclusion in section 7. 

2. System Overview 

Every node in PeerWindow keeps a large list of 

pointers to other nodes, called peer list. PeerWindow 

uses multicast to maintain the peer lists: a state-

changing event, e.g., a node’s joining, leaving or 

information changing, will be multicast to all the nodes 

who are interested in the changing node, in another 

word, whose peer list contains (or should contain) a 

pointer to the changing node. As discussed in the 

introduction, the most challenging problem is to 

determine which nodes keep, or should keep, such 

pointers. PeerWindow solves it by setting a novel 

mapping between a node and its peer list. 

Each PeerWindow node has a unique identifier 

nodeId that is 128-bit-long, commonly the result of 

consistent hashing of its public key or IP address. 

Thereby, nodes should be evenly distributed in the 

nodeId space. Additionally, every node has another 

self-determined attribute level, which can be 0, 1, 2, 

and so on. It is demanded that the peer list of an l-level

node should contain pointers to all the nodes whose 

nodeId’s first l bits are the same with the local one. 

Figure 1 shows a 10-node PeerWindow example, in 

which nodeIds are 4-bit long. The first l bits of an l-

level node are called the node’s eigenstring, which is 

underlined in figure 1. It can be seen that 0-level nodes 

have blank eigenstrings, 1-level nodes can be classified 

into two categories according to their different 

eigenstrings, 2-level nodes into four categories (only 

three of them are not empty in the example, nodes with 

eigenstring “11” being absent) and so on. In general, l-

level nodes can be classified at most into 2l categories 

with different eigenstrings. A pointer consists of the 

corresponding node’s IP address, nodeId, level, and a 
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piece of attached info that can be specified by upper 

applications. 

Peer list has the following properties: 

1. Nodes with the same eigenstring must have the 

same peer list, e.g., nodes D and E in figure 1. 

2. If a node’s eigenstring is a prefix of another 

node’s (e.g., nodes E and H), the former’s peer list 

must completely cover the latter’s. We call the former 

is stronger than the latter, in another word, the latter is 

weaker than the former. 

3. A 0-level node’s peer list covers the whole 

system, e.g. node A.  

4. Two nodes at the same level, but with different 

eigenstrings must have entirely different peer lists, e.g., 

nodes C and E. 

5. All nodes with the same eigenstring are fully 

connected through their peer lists (“fully connected” 

means that within a set of nodes, everyone keeps 

pointers to all the others), e.g., all the nodes with 

eigenstring “1”, i.e. nodes D and E. 

Attention should be paid to a special scenario where 

there is no 0-level node in the whole system (i.e., 

removing node A and B from figure 1). In this case, 

the system will split into two parts that are wholly 

unrelated to each other (nodes CFGI and nodes DEHJ). 

PeerWindow protocol does not rely on 0-level nodes 

and is able to work well in each part of a split system. 

To be convenient for statement, in this paper we first 

assume that there are 0-level nodes in the system and 

call them top nodes, and then discuss the special 

handling for a split system in section 4.4. 

All the nodes whose peer list contains a pointer to a 

given node form a set, called the node’s audience set.

As discussed above, when a node changes its state, 

including joining, leaving, shifting its level and 

changing the attached info, all the nodes in its audience 

set must be informed. PeerWindow does not store 

audience sets explicitly, because they can be 

recognized simply by looking at the related nodes’ 

nodeIds and levels. 

For example, in figure 1, node E’s audience set 

consists of these nodes: node A and B at level 0; node 

D and E at level 1 with eigenstring “1”; and node H at 

level 2 with eigenstring “10”. That is to say, the 

audience set contains all the nodes whose eigenstring 

is a prefix of E’s nodeId (1011). 

Generally, the audience set of a node with nodeId 

“N0N1N2N3…” comprises all the nodes with 

eigenstrings of “” (blank string), “N0”, “N0N1”,

“N0N1N2”, and so on, as illustrated in figure 2. 

Therefore, a node in the audience set can directly judge 

whether another node is also in the set, by checking the 

node’s eigenstring. In this way, a top node in an 

audience set can easily find out the whole set, whilst 

an arbitrary node in the set can find out those nodes 

(also in the set) at the same level or at lower levels. For 

example, in figure 2, 0-level nodes know the whole 

audience set, 1-level nodes know those at level 1, 2 
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Figure 1. A PeerWindow example with 10 nodes. NodeIds are 4-bit long and eigenstrings are 
underlined. Peer lists of nodes C, F, G, and I are not shown for the neat of the figure 
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and 3, 2-level nodes know those at level 2 and 3, and 

so on. 

This leads to a useful deduction: when a top node 

gets a node’s state-changing event, it has sufficient 

information to multicast it around the audience set of 

the changing node, as long as the message strictly 

flows from stronger nodes to weaker nodes during the 

multicast process, as illustrated in figure 2. A simple 

manner is by gossip: the top node first initiates a 

gossip around all the top nodes, and then sends the 

event message to a level-1 node L1; L1 then initiates a 

gossip around all the level-1 nodes, and then sends the 

message to a level-2 node. This process continues until 

all the nodes in the audience set receive the message. 

Here we emphasize the feasibility of the multicast 

design. Various multicast protocols can be devised in 

this environment, with different efficiency, reliability, 

and redundancy. In section 4.2, we will propose a tree-

based multicast as the basic design of PeerWindow. 

Noting that a multicast is always originated by a top 

node, a changing event must firstly be sent to a top 

node before being multicast around the audience set. 

To enable this, every PeerWindow node also keeps 

another list, i.e., top-node list, which contains pointers 

to t top nodes. Commonly we set 8=t .

Before turning to the protocol details, we first 

estimate PeerWindow’s performance. 

Assuming that nodes’ average lifetime is L seconds, 

each node changes its state m times during the lifetime 

(including the joining and the leaving), and the 

multicast protocol has r-degree redundancy (i.e., a 

node receives r messages for each event), then a node 

will receive 
L

rm ×  messages per second on average for 

maintaining one pointer. Assuming that the average 

message size is i bits and a node would like to spend W

bps bandwidth on node collection, the number of 

pointers it can collect (namely, the size of its peer list) 

is about 
irm

LW
p

××
×= . This formula shows that 

PeerWindow achieves the three properties proposed in 

the introduction: 

1. Efficiency. Assuming that in a common peer-to-

peer environment where 3600=L  (less than the 

measured result of real peer-to-peer systems [13]), 

3=m  (a node changes its state once per lifetime), 

1000=i  (sufficient for most applications) and 1=r
(a tree-based multicast is used, like that in section 4.2), 

a very weak node (e.g., a modem-linked node) would 

spend only 10% of its bandwidth, about 5kbps, on 

PeerWindow. Then, it can collect about 6000=p

pointers, which is a very large amount. For those high-

bandwidth nodes, it is very easy to collect much more 

pointers by spending more bandwidth. 

2. Heterogeneity. A PeerWindow node can 

determine its bandwidth cost on node collection by 

itself. Thus powerful nodes will never be restricted by 

the limit of the low bandwidth of those weak nodes. 

3. Autonomy. Nodes can adjust their levels to be 

adaptive to the changing environment. Essentially, this 

is because of the direct proportion between peer list 

size p and nodes’ lifetime L: peer lists will 

automatically expand when the system turns stable 

gradually. For instance, in a given PeerWindow system, 

a modem node sets an upper bandwidth threshold 

5kbps, collecting about 6000 pointers, at level l. Then 

the system gradually turns stable (i.e., the average 

lifetime L increases), resulting in fewer events and less 

bandwidth cost. Once the bandwidth cost drops to a 

value below 2.5kbps, the node will automatically shift 

the level to 1−l  and the peer list will inflate 

accordingly. Thereafter, the bandwidth cost returns to 

5kbps, with about 12000 pointers in the peer list. 

3. Usage 

PeerWindow endows every node with a large 

number of pointers to other nodes, which can facilitate 

upper applications in many ways. In this section, we 

present a brief discussion on how to utilize 

PeerWindow to serve different requirements. 

Looking at the level value for powerful nodes. A 

simple and direct way is finding powerful nodes by 

looking at the level value in the pointers. Practical 

experience shows that nodes with higher bandwidth (at 

high levels3 in PeerWindow) also tend to stay longer 

and contribute more resources [15]. 

                                                          
3 “Higher level” means smaller level value, i.e., 0 is the highest level. 

0-level nodes: 
all

nodeId=“N0……”

nodeId=“N0N1……”

nodeId=“N0N1N2……”

… … … … … … … 

1-level nodes: 

2-level nodes: 

3-level nodes: 

M
u

lticast d
irectio

n
 

Audience set of node “N0N1N2N3…”

Figure 2. Composition of an audience set. The 
changing node’s nodeId is “N0N1N2N3…”
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Directly using the attached info. Some applications 

need to exchange some brief information among the 

nodes. They can directly attach the information into the 

pointers. For example, GUESS [19] protocol can 

attach the number of shared files to the pointers. 

Backup systems [4][10] can attach operating system 

versions. Range-query systems [1] can attach load 

distribution, node-count distribution, and query 

selectivity. Bidding systems [5] can attach nodes’ basic 

status, such as storage space, bandwidth, availability, 

software/hardware summary, approximate bid, etc. 

Using compression techniques to express more 

info. PeerWindow pointers should be kept small, 

because large pointers will finally deflate the peer lists. 

Therefore, if nodes need to express much about their 

status, some compressing techniques should be 

combined. For example, Pastiche [4] can attach the 

content abstracts into the pointers. LOCKSS [11] can 

use bloom filter [2] to indicate whether a node contains 

a given digital document and attach the filter results 

into the pointers. 

4. Protocol Details 

4.1 Failure Detection 

Peer-to-peer nodes can leave the system without 

notification. Therefore, leaving events must be 

detected by some means (then multicast around the 

audience set). 

Recall that PeerWindow nodes can be divided into 

multiple groups according to their different 

eigenstrings. Nodes in each group are fully connected 

through their peer lists. Thus, all the nodes in a given 

group can be seen as a circle based on their nodeIds. It 

is demanded that a PeerWindow node always probe its 

right neighbor in the circle (“right” means the direction 

from small to large). Figure 3 shows an example, in 

which there are five nodes with eigenstring “0” and 

every node sends heartbeat messages to the node 

whose nodeId is just larger than it. 

Once a node detects the failure of its right neighbor, 

it immediately reports the event to a top node, 

randomly chosen from its top-node list, and redirects 

its probing to the next neighbor. Note that such 

detection mechanism is resilient to concurrent failures. 

For instance, node B and C concurrently leave the 

system in figure 3. Then node A will first detect B’s 

failure and report it to a top node. After that it removes 

B from its peer list and redirects its probing to node C, 

and then immediately detects C’s failure and reports it. 

4.2 Tree-based Multicast 

As mentioned in section 2, multicast protocol can 

be designed in many ways. In this subsection we 

present a tree-based method as PeerWindow’s basic 

design, the pseudocode of which is shown in figure 4. 

The fundamental principle of the protocol is as 

follows. When a top node starts to multicast an event, 

it first sends the event to a node whose nodeId’s first 

bit is different with the local one. Thus there will be 

two nodes having received the event, with different 

first bits in their nodeIds. After that, each of these two 

nodes sends the event to another node whose nodeId 

has the same first bit but different second bit with the 

local one. Then, all the four informed nodes have 

different first two bits with each other in their nodeIds. 

In general, at step s, every informed node sends the 

event to another node whose nodeId has the same first 

s bits and different (s+1)th bit (see figure 4(3)). This 

Figure 4. Pseudocde of multicast 

rcv_event(nodeId=M, event_type=et, step=s)

//receive change event of node M at step s.

(1) adjustList(list, et, M) 

//adjust the peer list according to the event. 

(2) Rs = getAudience(list, M) 

//get M’s audience set from the peer list. 

for i := s + 1 to 64 do

(3)   Rn := getSuffix(Rs, localID, i  1) 

//get all pointers to the nodes whose 

//nodeIds are the same with the local 

//at the first i 1 bits, but different at the ith.

(4)   if Rn = null then

continue 

  fi

(5)   P := getHighestLevel(Rn)

//get the pointer with the highest level from 

//Rn. If more than one pointers are of the

//same (highest) level, randomly pick one. 

(6)   send_event(P, M, et, i)

 //send the event to P, tagged as step i.

od
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Figure 3. illustration of failure detection 
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process continues until no more appropriate node can 

be found (see figure 4(4)).  

It must be noted that at each step the local node 

always chooses a target node with the highest level 

from all possible nodes, as shown in figure 4(5).  

The multicast protocol has four major properties: 

1. Event messages always flow from the stronger 

nodes to the weaker nodes. 

2. Different nodes have different out-degrees. 

Stronger nodes have more out-degrees than weaker 

ones. The root node of the multicast tree has 

approximately N2log  out-degrees. 

3. An event message can reach all the nodes in the 

audience set through about N2log  steps. 

4. The multicast tree is not pre-determined. Every 

node dynamically chooses the next target in the 

multicast tree at runtime (see figure 4(5)).  

To guard against stale pointers in the peer lists, 

acknowledgement is required for all the multicast 

messages. When a message gets no response after 

three continuous attempts, the corresponding pointer 

will be removed from the peer list and the message 

will be redirected to a new target node (i.e., turn back 

to the line (3) in figure 4). 

4.3 Joining Process and Level Shifting 

A new node contacts a bootstrap node that is 

already in the system for joining. Four steps are needed: 

1) finding out a top node, 2) determining the joining 

node’s level, 3) downloading the peer list and top-node 

list, and 4) multicasting its joining event around its 

audience set. The key problem here is how to 

determine which level is suitable for its capacity before 

practical running. The estimation is by this way: the 

top node tells the new node its own level lT, as well as 

its current bandwidth cost WT that is dynamically 

measured. Then the new node estimates its level lX

based on these two values, as well as its own permitted 

bandwidth cost WX: +=
X

T
TX

W

W
ll 2log . More detailed 

description of these four steps can be found in [8]. 

A new node can also first set a low level so as to 

start working in a relatively short period, and then ask 

stronger nodes for a larger peer list. After completing 

the background downloading, it raises it level and 

reports the state-changing event to a top node. We call 

this process warm-up.

A node can adjust its level at runtime due to the 

change of the system environment or the upper 

bandwidth threshold set by the user. When a node 

raises its level, it should first download those required 

pointers from stronger nodes and then reports the event 

to a top node. When a node lowers its level, it removes 

those useless pointers from its peer list and reports the 

event.

4.4 Split PeerWindow 

When the system is very large or very dynamic, no 

node can afford the bandwidth cost running at level 0. 

In this circumstance, the system will split into two 

parts, one comprising all the nodes whose nodeId starts 

with “0” and the other comprising all the nodes whose 

nodeId starts with “1”. It can be easily seen that these 

two parts are wholly independent to each other (a node 

in one part must keep no pointer to any node of the 

other part) and each one is a complete PeerWindow 

(all the protocols proposed above in this paper are still 

suitable for each part). 

To be general, PeerWindow is made up of several 

parts that are independent to one another. The highest-

level nodes in each part are called top nodes. Every 

node maintains t pointers (in its top-node list) to the 

top nodes in its part. When a node changes its state or 

detects failure of another node, it reports the event to a 

top node, which will then multicast the event around 

the changing node’s audience set, using the tree-based 

multicast protocol presented in section 4.2. 

A top node’s top-node list does not contain pointers 

to top nodes of its own part. Instead, it contains 

pointers to some top nodes of other parts, t pointers for 

each part. When a joining node X and its bootstrap 

node Y are not in the same part, X needs to find a top 

node of its own part first (step 1 of the joining process, 

seeing section 4.3). X accomplishes this by asking a 

top node in Y’s part, say Z. Z’s top-node list must 

contain t top nodes of X’s part. 

4.5 Top-node List Maintenance 

Top-node lists are maintained in a lazy manner. 

When a node M reports an event to a top node, the top 

node should return a response, piggybacking 1−t
pointers to top nodes, which will help M refresh its 

top-node list. If the report does not get a response, M 

will redirect the report to another top node within its 

top-node list. If all the top nodes in its top-node list are 

unavailable, it will then ask another node in its peer list 

for his top-node list as a substitution. 

A top node’s top-node list is maintained similarly. 

When a top node T works for another node’s joining 

process, it chooses a live pointer from its top-node list 

and asks the corresponding node for 1−t  pointers to 

top nodes of that part. If all the pointers in T’s top-
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node list are stale, it will ask another top node of its 

own part for help. 

4.6 Accuracy Improvement 

Because of the Internet asynchrony, the multicast 

protocol can never be absolutely reliable. Therefore, 

there must be some errors in the peer lists, which fall 

into two types: absent pointers and stale pointers. Both 

of them are only of a very small fraction and do no 

substantial harm. An absent pointer would be 

automatically revised when the corresponding node 

leaves the system, while a stale pointer would be 

removed when being used during multicast procedure 

and getting no response. But these errors would 

accumulate before being revised, from the view of 

whole system. 

To guard against this accumulation, PeerWindow 

devises a refreshing mechanism. Every node measures 

the lifetime of all the nodes in its peer list, and 

calculates the average lifetime of each level, noted 
iLT ,

where i denotes the level. An l-level node multicasts its 

state around its audience set every 
lLT⋅2  (by reporting 

to a top node). An m-level pointer that has not been 

refreshed for a period of 
mLT⋅3  will be directly 

removed from the peer list, without explicit probing. 

This mechanism can limit the accumulation of both 

absent pointers and stale pointers, and make the error 

fraction of peer list convergent. In practice, most nodes 

never perform such refreshing multicast because their 

lifetimes are much shorter than twice the average 

lifetime. 

5. Experiment Results 

Our basic experiment goal is to simulate a 100,000-

node PeerWindow in a common environment, where 

the distributions of node capacity and lifetime are both 

accordant with the measurement result of Gnutella in 

[13], and the Internet topology is generated by the 

Transit-Stub model [20]. After that, we examine 

PeerWindow’s scalability and adaptivity, i.e., how 

PeerWindow varies when the system scale or the 

nodes’ lifetime changes. 

To make large-scale experiments possible, we first 

developed ONSP [17], a general platform for large-

scale overlay simulation on a homogeneous cluster. 

ONSP is based on parallel discrete events and uses 

MPI for machine communication. Transit-Stub model 

is naturally integrated into ONSP as its network 

topology.  

Considering that PeerWindow nodes with the same 

eigenstring would have the same peer list, we record 

all the correct peer lists in a centralized data structure, 

and only record erroneous items in nodes’ individual 

data structures. This method has two advantages: 

making it possible to run the whole experiment in 

memory and facilitating the calculation of the error 

rate of the peer lists. Meanwhile, it does not harm the 

validity of the experiment results.  

Based on ONSP, our experiment program 

comprises 1,600 lines of C++ code and is performed 

on a 16-server cluster that is connected by 2Gbps 

Myrinet. Each server has four 700MHz Xeon CPUs 

and 1GB memories, running an operating system of 

Linux Redhat 7.3. 

5.1 Common PeerWindow 

We simulate a common PeerWindow with 100,000 

nodes. That is to say, we first create 100,000 nodes on 

the ONSP platform and then let new nodes join and 

existing nodes leave, with almost the identical joining 

and leaving rates. In this experiment, the following 

characteristics are hold: 

Distribution of nodes’ lifetime meets the 

measurement results of Gnutella (figure 6 of [13]), 

in which the average lifetime is about 135 

minutes. 

Distribution of nodes’ available bandwidth meets 

the measurement results of Gnutella (figure 3 of 

[13]).  

The user-set upper (input) bandwidth threshold is 

1% of the node’s total bandwidth, but cannot be 

less than 500bps (a small value that is affordable 

even for modem-linked nodes). 

The Transit-Stub network model is generated by 

the tool of GT-ITM [20], in which there are 120 

transit domains, each containing 4 transit nodes. 

Every transit node has 5 stub domains, each 

containing 2 stub nodes. Thus, there are totally 

4800 stub nodes. To reach the required 100,000-

node scale, each stub node is assigned with about 

20 PeerWindow nodes. Common latency 

parameters are set as follows: transit-to-transit 

latency is 100ms; transit-to-stub is 20ms; stub-to-

stub is 5ms; and node-to-node is 1ms.  

Nodes join the system in a Poisson process, with 

the expectation of the time interval of two 

successive node joining events is 100,000/135 

minutes.  

The event message size is 1,000 bits. 

During the multicast procedure, every medium 

node delays the message for 1 second that is 

spent on receiving, calculating and sending. 

Figure 5 plots the distribution of the nodes at 

different levels. Somewhat surprisingly, there are more 

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05) 

0190-3918/05 $20.00 © 2005 IEEE 



than half of the nodes running at level 0. It seems quite 

a lot. However, it is really consistent with the 

measurement result of real peer-to-peer systems 

(seeing figure 3 of [13]) in which only 20% nodes’ 

available bandwidth is less than 1Mbps. Perhaps our 

intuition that a large portion of Internet nodes are weak 

ones is somewhat questionable. 

Figure 6 shows the size of the peer lists of the nodes 

at different levels. According to the PeerWindow 

protocol, an l-level node collects the pointers to all the 

nodes whose nodeId has an l-bit common prefix with 

the local nodeId. Because nodes are evenly distributed 

in the nodeId space, the peer lists of the nodes at a 

given level are almost of the same size. (Figure 6 plots 

the maximum and the minimum values, but they are 

hard to be distinguished.) 

Although the peer lists are large, they have very few 

errors. As figure 7 shows, the error rate is less than 

0.5%. This is because a changing event will be 

reported to the top node immediately when it is 

detected and multicast around the audience set without 

delay. The multicast needs 6.16000,100log2 ≈  steps. 

Assuming that each step costs 500ms on average, all 

the nodes in the audience set will receive the event 

within s9.246.16)5.01( =×+ , that is to say, a point 

will be kept stale for no longer than 25 seconds. 

Compared to the average lifetime of the nodes (135 

minutes), the error rate will be no more than 

0035.0)60135/(25 ≈× , which is accordant with the 

experiment result. 

Higher-level nodes have peer lists with fewer errors 

than lower-level nodes. This is because the multicast 

process ensures the higher-to-lower direction of the 

message flow, which indicates that higher-level nodes 

can revise their peer lists earlier than lower-level ones. 

Figure 8 shows the input and output bandwidth for 

the peer list maintenance. As participated, the input 

bandwidth is in proportion to the peer list size. The 

input-bandwidth cost for every 1000 pointers is about 

500bps. As discussed in section 4.2, higher-level nodes 

will have larger output-bandwidth cost. In this case, 

almost all the messages are sent from 0-level or 1-level 

nodes. But their output cost is only a little more than 

the input, also very light for these powerful nodes. 

5.2 Scalability 

The main impacts of the system scale are the 

distribution of the nodes and the error rate of the peer 

lists. Figure 9 depicts the variation of the percentage of 

the nodes at each level when the system scale changes, 

using different figure patterns for different levels. In a 

5000-node PeerWindow, all the nodes run at level 0. 

When the system expands, there comes out more levels 

and more nodes tend to work at lower levels. This is 

because those weak nodes cannot afford the bandwidth 

Figure 5. Node distribution in 
common PeerWindow 

Figure 6. Size of peer lists at 
different levels 

Figure7. Error rate of the peer 
lists at different levels 

Figure 8. bandwidth cost at 
different levels 

Figure 9. Node distribution in
different system scales 

Figure 10. Average peer list 
error rate in different scales 
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cost at high levels in a large system. The error rate of 

the peer lists also rises (seeing figure 10), because 

multicast needs longer time and the errors in the peer 

lists are revised less timely. But the change is very 

slight. 

5.3 Adaptivity 

Nodes in different peer-to-peer systems will have 

different lifetimes, which are essentially determined by 

the usage model. Even in a given system, the nodes’ 

lifetime may vary along with time. We assume that 

nodes’ lifetimes are Lifetime_Rate times of that in the 

common case (section 5.1). The node distribution and 

the error rate of peer list at different Lifetime_Rate are 

shown in figures 11 and 12, respectively. Note that 

figure 12 uses the logarithmic scale on the y-axis. 

When the Lifetime_Rate is 0.1 (this means that the 

average lifetime is 13.5 minutes) there comes out 10 

levels and only about 15% 0-level nodes. This is 

because when the lifetime turns short, more state-

changing events will occur in a given time interval. 

Therefore, a node can only maintain a small peer list 

and run at a low level.  

Figure 12 shows that the peer lists’ error rate also 

increases when lifetime turns shorter. This is because 

the error rate is proximately determined by the formula 

lifetimedelaymulticastrateerror /__ = . Since the 

system scale does not change, the number of multicast 

hops (log2N) also does not change. Thus the lifetime 

will be approximately in inverse proportion to the 

average error rate. As shown in figure 12, in a system 

with 1.0_ =RateLifetime , the average peer list error 

rate is about 10 times of that in the common case 

( 1_ =RateLifetime ), which is between 1% and 5%. 

However, such a result can hardly turn to the reality 

because of its very short average lifetime. 

6. Related Work 

Most previous projects devised their node collection 

protocol based on some existing overlay structures. 

RanSub [9] is based on an application-level 

multicast tree. Using information collection and 

distribution, RanSub offers every node O(logN)

pointers. By explicit probes through these pointers, 

every node changes it parent node dynamically. In this 

way, the multicast tree is optimized piece by piece. 

GUESS [19] is based on a Gnutella-like unstructured 

overlay. By piggybacking some known pointers on the 

response of a ping or query message, every node can 

collect a large number of pointers, which are used for 

non-forwarding search. Pastiche [4] uses a modified 

Pastry to collect pointers to those nodes who are 

storing similar data with the local node. Mercury [1] is 

built on top of a small-world overlay. To optimize the 

attribute-base query and load balancing, Mercury 

deploys random walk upon the overlay to collect other 

nodes’ information, including load distribution, node-

count distribution, and query selectivity. Compared to 

these previous protocols, PeerWindow is not based on 

any existing overlays and simultaneously holds the 

properties of efficiency, heterogeneity, and autonomy. 

We believe PeerWindow can also be used in the above 

systems and works well. 

Another peer-to-peer system in which nodes collect 

a large amount of pointers is the one-hop DHT [7], 

compared to PeerWindow, one-hop DHT treats almost 

all the nodes as homogeneous peers and costs too 

much for weak nodes when the system is very large 

and dynamic or some application-specified information 

should be attached into the pointers. 

There are also some previous works aiming at peer-

to-peer node information aggregation (not collection), 

such as SOMO [21], SDIMS [18] and Willow [12]. 

The main difference between these protocols and 

PeerWindow is that they summarize the state of the 

whole system (e.g. the total load of the current system), 

while PeerWindow simply presents individual nodes’ 

information to others. 

Figure 11. Nodes distribution with different 
lifetime rate (to the common PeerWindow) 

Figure 12. Average peer list error rate in the 
systems with different lifetime rates 
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PeerWindow uses a prefix-based multicast for event 

notification. Prefix-based multicast has been proposed 

for a long time [16] and was also introduced into the 

global multicast service recently [14]. However, the 

multicast in PeerWindow has a substantial difference 

with previous protocols. In previous protocols, a 

message must be sent to all the nodes whose nodeIds 

have a common prefix (the groupId in I3 [14]), while 

in PeerWindow all the nodes receiving a given 

message do not have a common prefix, but their 

eigenstrings must be prefix of a given identifier (the 

changing node’s nodeId). 

Also there are some application-level multicast 

protocols that use prefix-based relationship to 

construct a multicast tree, e.g., Scribe [3]. In them, 

every node within a group needs to maintain the states 

of its parent node and children nodes, which is not 

desired in PeerWindow’s multicast protocol. 

7. Conclusion 

The spirit of peer-to-peer system is collaboration, 

intercommunion, and resource exchanging among 

different nodes. All these operations are based on 

mutual understanding of the nodes. Therefore, letting 

peer-to-peer nodes know each other is very important. 

In this paper, we propose a novel node collection 

protocol PeerWindow that simultaneously holds the 

fine properties of efficiency, heterogeneity, autonomy, 

dynamical adjustability, self-organizing, and adaptivity. 

PeerWindow can be used in many existing peer-to-

peer systems and we believe it can also serve well for 

future peer-to-peer system constructions. 
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