
PeerWindow: An Efficient, Heterogeneous, and Autonomic Node

Collection Protocol

Jinfeng Hu, Ming Li, Hongliang Yu, Haitao Dong and Weimin Zheng

Department of Computer Science and Technology, Tsinghua University, P. R. China

hujinfeng00@mails.tsinghua.edu.cn, mingli@cs.umass.edu,

hlyu@tsinghua.edu.cn, dht02@mails.tsinghua.edu.cn, zwm-dcs@tsinghua.edu.cn

Abstract

Nodes in peer-to-peer systems need to know the

information about others to optimize neighbor

selection, resource exchanging, replica placement,

load balancing, query optimization, and other

collaborative operations. However, how to collect this

information effectively is still an open issue. In this

paper, we propose a novel information collection

protocol, PeerWindow, with which each node can

collect a large amount of pointers to other nodes at a

very low cost. Compared to existing protocols,

PeerWindow is 1) efficient, the cost of collecting 1,000

pointers being less than 1kbps in a common system

environment, 2) heterogeneous, nodes with different

capacities collecting different amounts of information,

and 3) autonomic, nodes determining their bandwidth

cost for node collection by themselves and adjusting it

dynamically. PeerWindow can be used in many

existing peer-to-peer systems and has tremendous

potential for future expansions.

1. Introduction

 Peer-to-peer nodes need to know the information

about others. However, in most cases they have too

limited knowledge about the outside world (sometimes

they only hold a small routing table that contains no

more than 100 pointers). In peer-to-peer backup

systems, nodes need to find partners with similar [4] or

different [10] operating systems, to reduce redundant

data storing or to guard against simultaneous virus

attack. In resource trading systems [5], nodes need to

find adequate bargainers in terms of capacity,

availability, physical location, bidding price, etc. In

load balancing algorithms [6], heavily-loaded nodes

This work is supported by National Science Foundation of China

under contract 60433040.

need to find lightly-loaded ones to transfer the

overload. In range query protocols [1], nodes need to

gather other nodes’ information for query optimization.

In file sharing protocol of GUESS [19], nodes need to

collect a large amount of pointers to other nodes to

increase the local hit rate of submitted queries.

All these examples indicate that nodes in peer-to-

peer systems have a desire to know others’ information.

However, cost-effective information-collection method

is still an open issue. For the lack of general solutions,

most projects design their own methods on top of an

existing overlay. For example, Pastiche modifies

Pastry, Mercury uses random walk on a small-world

overlay, and GUESS piggybacks node pointers upon

response messages within a Gnutella-like unstructured

overlay.

The goal of our work is to propose a more general

solution for node collection, which can be used in

existing and future peer-to-peer systems. To be

adaptive to the peer-to-peer environment, the protocol

must hold following properties:

1. Efficiency. Nodes are able to collect a large

amount of pointers (a pointer means a piece of

information about another node) at a low cost. We

believe efficiency is the most significant property for a

node collection protocol because obviously the more

pointers a node collects, the more satisfactory partners

it may find locally when desired.

2. Heterogeneity. For the inevitable heterogeneity

of peer-to-peer systems [13], nodes with different

capacities should be allowed to collect different

amounts of pointers (at different bandwidth cost).

Heterogeneity makes it possible for the weak nodes to

participate in the system, and also prevents those

powerful nodes from being restricted by the weak ones.

3. Autonomy. We should let every node determine

its cost for node collection (and thereby the amount of

collected pointers) independently and be able to adjust

it dynamically. This is accordant with the autonomy

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

spirit of “peer-to-peer” and makes the protocol

adaptive to the environment changes.

The most critical problem in designing such a

protocol is the maintenance of pointers: when a node

joins or leaves the system, all the related nodes should

update their pointers timely. There are two common

ways for pointer maintenance: explicit probing (send

heartbeat messages to all the neighbors1 periodically)

and multicasting (when a node joins or leaves,

multicast the event to all the related nodes). Explicitly

probing is not efficient because most probes get active

response, and therefore have no positive effects on

pointer-state updating. For example, assuming that the

nodes’ average lifetime2 is about 2 hours [13] and a

node probes all its neighbors every 30 seconds, then

%58.99240239 ≈ of the probes would return

positively, indicating that the corresponding neighbors

are still alive. Actually, these messages can be seen as

a waste. If the node uses 10kbps for pointer

maintenance, it can only maintain 600 pointers

(assuming each heartbeat message is 500-bit in size).

Compared to the scale of the whole system (perhaps

comprising millions of nodes), this amount is very

small.

In contrast, multicasting is more efficient because a

node only receives messages when its neighbors

change their state (joining or leaving). In another word,

all the received messages are useful for pointer-state

updating. While multicasting can achieve high

efficiency, it faces another critical problem: given a

heterogeneous system, how to determine which nodes

hold pointers to a given node? Obviously, such

information cannot be stored explicitly, because 1) it

greatly complicates the protocol; 2) it is hard to

determine where to place it and how to keep it

available and reliable; and 3) even if we can obtain

such information when needed, efficient multicast

algorithm is still a hard problem.

In this paper, we propose PeerWindow, a novel

node collection protocol that solves this maintenance

problem and hence holds the above three properties

(efficiency, heterogeneity and autonomy)

simultaneously. Each PeerWindow node has a nodeId

and a self-determined attribute level. A node at level l

keeps about lN 2/ pointers (where N is the total

number of the nodes). Then nodes with different

capacities run at different levels. PeerWindow sets a

smart mapping between a node’s identifier and the

pointers it should maintain, which makes it possible to

judge whether a node keeps a pointer to another node

1 If node A keeps a pointer to node B, then say B is a neighbor of A.
2 Lifetime means the period from the time when a node joins system

to the time when it leaves.

by simply looking at their identifiers and levels. In this

way, when a node joins or leaves, PeerWindow can

figure out which nodes need to know the event without

additional information storing. Furthermore,

PeerWindow devises a tree-based multicast protocol

that disseminates the event efficiently. PeerWindow

nodes are allowed to adjust their levels dynamically to

tune their bandwidth cost, which makes PeerWindow

more adaptive than previous protocols.

In the following, we will first outline the

PeerWindow protocol in section 2, and then discuss

how to use PeerWindow in some existing peer-to-peer

systems in section 3. Protocol details are presented in

section 4. After reporting the experiment results in

section 5, we introduce related works in section 6 and

make final conclusion in section 7.

2. System Overview

Every node in PeerWindow keeps a large list of

pointers to other nodes, called peer list. PeerWindow

uses multicast to maintain the peer lists: a state-

changing event, e.g., a node’s joining, leaving or

information changing, will be multicast to all the nodes

who are interested in the changing node, in another

word, whose peer list contains (or should contain) a

pointer to the changing node. As discussed in the

introduction, the most challenging problem is to

determine which nodes keep, or should keep, such

pointers. PeerWindow solves it by setting a novel

mapping between a node and its peer list.

Each PeerWindow node has a unique identifier

nodeId that is 128-bit-long, commonly the result of

consistent hashing of its public key or IP address.

Thereby, nodes should be evenly distributed in the

nodeId space. Additionally, every node has another

self-determined attribute level, which can be 0, 1, 2,

and so on. It is demanded that the peer list of an l-level

node should contain pointers to all the nodes whose

nodeId’s first l bits are the same with the local one.

Figure 1 shows a 10-node PeerWindow example, in

which nodeIds are 4-bit long. The first l bits of an l-

level node are called the node’s eigenstring, which is

underlined in figure 1. It can be seen that 0-level nodes

have blank eigenstrings, 1-level nodes can be classified

into two categories according to their different

eigenstrings, 2-level nodes into four categories (only

three of them are not empty in the example, nodes with

eigenstring “11” being absent) and so on. In general, l-

level nodes can be classified at most into 2l categories

with different eigenstrings. A pointer consists of the

corresponding node’s IP address, nodeId, level, and a

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

piece of attached info that can be specified by upper

applications.

Peer list has the following properties:

1. Nodes with the same eigenstring must have the

same peer list, e.g., nodes D and E in figure 1.

2. If a node’s eigenstring is a prefix of another

node’s (e.g., nodes E and H), the former’s peer list

must completely cover the latter’s. We call the former

is stronger than the latter, in another word, the latter is

weaker than the former.

3. A 0-level node’s peer list covers the whole

system, e.g. node A.

4. Two nodes at the same level, but with different

eigenstrings must have entirely different peer lists, e.g.,

nodes C and E.

5. All nodes with the same eigenstring are fully

connected through their peer lists (“fully connected”

means that within a set of nodes, everyone keeps

pointers to all the others), e.g., all the nodes with

eigenstring “1”, i.e. nodes D and E.

Attention should be paid to a special scenario where

there is no 0-level node in the whole system (i.e.,

removing node A and B from figure 1). In this case,

the system will split into two parts that are wholly

unrelated to each other (nodes CFGI and nodes DEHJ).

PeerWindow protocol does not rely on 0-level nodes

and is able to work well in each part of a split system.

To be convenient for statement, in this paper we first

assume that there are 0-level nodes in the system and

call them top nodes, and then discuss the special

handling for a split system in section 4.4.

All the nodes whose peer list contains a pointer to a

given node form a set, called the node’s audience set.

As discussed above, when a node changes its state,

including joining, leaving, shifting its level and

changing the attached info, all the nodes in its audience

set must be informed. PeerWindow does not store

audience sets explicitly, because they can be

recognized simply by looking at the related nodes’

nodeIds and levels.

For example, in figure 1, node E’s audience set

consists of these nodes: node A and B at level 0; node

D and E at level 1 with eigenstring “1”; and node H at

level 2 with eigenstring “10”. That is to say, the

audience set contains all the nodes whose eigenstring

is a prefix of E’s nodeId (1011).

Generally, the audience set of a node with nodeId

“N0N1N2N3…” comprises all the nodes with

eigenstrings of “” (blank string), “N0”, “N0N1”,

“N0N1N2”, and so on, as illustrated in figure 2.

Therefore, a node in the audience set can directly judge

whether another node is also in the set, by checking the

node’s eigenstring. In this way, a top node in an

audience set can easily find out the whole set, whilst

an arbitrary node in the set can find out those nodes

(also in the set) at the same level or at lower levels. For

example, in figure 2, 0-level nodes know the whole

audience set, 1-level nodes know those at level 1, 2

11010101

10110111 1001

0011

1001

l = 0

l = 1

l = 2

l = 3

1101

0101

1001

0111

1011

0110

1000

0011

0010

1001

1011

A B

D E

F H

C

J

A

B

C

D

E

F

G

H

I

D

E

1000

Peer list of A or B:

0010
I

1001 J

H

1001 J

0110
G

1101

1000

B
1001 D

1000 H

1001 J

IP address

xxx.xxx.xxx.xx

nodeId

1000 2

level

…………

Attached info Content of a pointer:

1000 H

1001 J

1001 D

1011 E

Figure 1. A PeerWindow example with 10 nodes. NodeIds are 4-bit long and eigenstrings are
underlined. Peer lists of nodes C, F, G, and I are not shown for the neat of the figure

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

and 3, 2-level nodes know those at level 2 and 3, and

so on.

This leads to a useful deduction: when a top node

gets a node’s state-changing event, it has sufficient

information to multicast it around the audience set of

the changing node, as long as the message strictly

flows from stronger nodes to weaker nodes during the

multicast process, as illustrated in figure 2. A simple

manner is by gossip: the top node first initiates a

gossip around all the top nodes, and then sends the

event message to a level-1 node L1; L1 then initiates a

gossip around all the level-1 nodes, and then sends the

message to a level-2 node. This process continues until

all the nodes in the audience set receive the message.

Here we emphasize the feasibility of the multicast

design. Various multicast protocols can be devised in

this environment, with different efficiency, reliability,

and redundancy. In section 4.2, we will propose a tree-

based multicast as the basic design of PeerWindow.

Noting that a multicast is always originated by a top

node, a changing event must firstly be sent to a top

node before being multicast around the audience set.

To enable this, every PeerWindow node also keeps

another list, i.e., top-node list, which contains pointers

to t top nodes. Commonly we set 8=t .

Before turning to the protocol details, we first

estimate PeerWindow’s performance.

Assuming that nodes’ average lifetime is L seconds,

each node changes its state m times during the lifetime

(including the joining and the leaving), and the

multicast protocol has r-degree redundancy (i.e., a

node receives r messages for each event), then a node

will receive
L

rm × messages per second on average for

maintaining one pointer. Assuming that the average

message size is i bits and a node would like to spend W

bps bandwidth on node collection, the number of

pointers it can collect (namely, the size of its peer list)

is about
irm

LW
p

××
×= . This formula shows that

PeerWindow achieves the three properties proposed in

the introduction:

1. Efficiency. Assuming that in a common peer-to-

peer environment where 3600=L (less than the

measured result of real peer-to-peer systems [13]),

3=m (a node changes its state once per lifetime),

1000=i (sufficient for most applications) and 1=r
(a tree-based multicast is used, like that in section 4.2),

a very weak node (e.g., a modem-linked node) would

spend only 10% of its bandwidth, about 5kbps, on

PeerWindow. Then, it can collect about 6000=p

pointers, which is a very large amount. For those high-

bandwidth nodes, it is very easy to collect much more

pointers by spending more bandwidth.

2. Heterogeneity. A PeerWindow node can

determine its bandwidth cost on node collection by

itself. Thus powerful nodes will never be restricted by

the limit of the low bandwidth of those weak nodes.

3. Autonomy. Nodes can adjust their levels to be

adaptive to the changing environment. Essentially, this

is because of the direct proportion between peer list

size p and nodes’ lifetime L: peer lists will

automatically expand when the system turns stable

gradually. For instance, in a given PeerWindow system,

a modem node sets an upper bandwidth threshold

5kbps, collecting about 6000 pointers, at level l. Then

the system gradually turns stable (i.e., the average

lifetime L increases), resulting in fewer events and less

bandwidth cost. Once the bandwidth cost drops to a

value below 2.5kbps, the node will automatically shift

the level to 1−l and the peer list will inflate

accordingly. Thereafter, the bandwidth cost returns to

5kbps, with about 12000 pointers in the peer list.

3. Usage

PeerWindow endows every node with a large

number of pointers to other nodes, which can facilitate

upper applications in many ways. In this section, we

present a brief discussion on how to utilize

PeerWindow to serve different requirements.

Looking at the level value for powerful nodes. A

simple and direct way is finding powerful nodes by

looking at the level value in the pointers. Practical

experience shows that nodes with higher bandwidth (at

high levels3 in PeerWindow) also tend to stay longer

and contribute more resources [15].

3 “Higher level” means smaller level value, i.e., 0 is the highest level.

0-level nodes:
all

nodeId=“N0……”

nodeId=“N0N1……”

nodeId=“N0N1N2……”

… … … … … … …

1-level nodes:

2-level nodes:

3-level nodes:

M
u

lticast d
irectio

n

Audience set of node “N0N1N2N3…”

Figure 2. Composition of an audience set. The
changing node’s nodeId is “N0N1N2N3…”

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

Directly using the attached info. Some applications

need to exchange some brief information among the

nodes. They can directly attach the information into the

pointers. For example, GUESS [19] protocol can

attach the number of shared files to the pointers.

Backup systems [4][10] can attach operating system

versions. Range-query systems [1] can attach load

distribution, node-count distribution, and query

selectivity. Bidding systems [5] can attach nodes’ basic

status, such as storage space, bandwidth, availability,

software/hardware summary, approximate bid, etc.

Using compression techniques to express more

info. PeerWindow pointers should be kept small,

because large pointers will finally deflate the peer lists.

Therefore, if nodes need to express much about their

status, some compressing techniques should be

combined. For example, Pastiche [4] can attach the

content abstracts into the pointers. LOCKSS [11] can

use bloom filter [2] to indicate whether a node contains

a given digital document and attach the filter results

into the pointers.

4. Protocol Details

4.1 Failure Detection

Peer-to-peer nodes can leave the system without

notification. Therefore, leaving events must be

detected by some means (then multicast around the

audience set).

Recall that PeerWindow nodes can be divided into

multiple groups according to their different

eigenstrings. Nodes in each group are fully connected

through their peer lists. Thus, all the nodes in a given

group can be seen as a circle based on their nodeIds. It

is demanded that a PeerWindow node always probe its

right neighbor in the circle (“right” means the direction

from small to large). Figure 3 shows an example, in

which there are five nodes with eigenstring “0” and

every node sends heartbeat messages to the node

whose nodeId is just larger than it.

Once a node detects the failure of its right neighbor,

it immediately reports the event to a top node,

randomly chosen from its top-node list, and redirects

its probing to the next neighbor. Note that such

detection mechanism is resilient to concurrent failures.

For instance, node B and C concurrently leave the

system in figure 3. Then node A will first detect B’s

failure and report it to a top node. After that it removes

B from its peer list and redirects its probing to node C,

and then immediately detects C’s failure and reports it.

4.2 Tree-based Multicast

As mentioned in section 2, multicast protocol can

be designed in many ways. In this subsection we

present a tree-based method as PeerWindow’s basic

design, the pseudocode of which is shown in figure 4.

The fundamental principle of the protocol is as

follows. When a top node starts to multicast an event,

it first sends the event to a node whose nodeId’s first

bit is different with the local one. Thus there will be

two nodes having received the event, with different

first bits in their nodeIds. After that, each of these two

nodes sends the event to another node whose nodeId

has the same first bit but different second bit with the

local one. Then, all the four informed nodes have

different first two bits with each other in their nodeIds.

In general, at step s, every informed node sends the

event to another node whose nodeId has the same first

s bits and different (s+1)th bit (see figure 4(3)). This

Figure 4. Pseudocde of multicast

rcv_event(nodeId=M, event_type=et, step=s)

//receive change event of node M at step s.

(1) adjustList(list, et, M)

//adjust the peer list according to the event.

(2) Rs = getAudience(list, M)

//get M’s audience set from the peer list.

for i := s + 1 to 64 do

(3) Rn := getSuffix(Rs, localID, i 1)

//get all pointers to the nodes whose

//nodeIds are the same with the local

//at the first i 1 bits, but different at the ith.

(4) if Rn = null then

continue

 fi

(5) P := getHighestLevel(Rn)

//get the pointer with the highest level from

//Rn. If more than one pointers are of the

//same (highest) level, randomly pick one.

(6) send_event(P, M, et, i)

 //send the event to P, tagged as step i.

od

0011

0001

0100

0111

0110

D

A

E

C

B

Figure 3. illustration of failure detection

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

process continues until no more appropriate node can

be found (see figure 4(4)).

It must be noted that at each step the local node

always chooses a target node with the highest level

from all possible nodes, as shown in figure 4(5).

The multicast protocol has four major properties:

1. Event messages always flow from the stronger

nodes to the weaker nodes.

2. Different nodes have different out-degrees.

Stronger nodes have more out-degrees than weaker

ones. The root node of the multicast tree has

approximately N2log out-degrees.

3. An event message can reach all the nodes in the

audience set through about N2log steps.

4. The multicast tree is not pre-determined. Every

node dynamically chooses the next target in the

multicast tree at runtime (see figure 4(5)).

To guard against stale pointers in the peer lists,

acknowledgement is required for all the multicast

messages. When a message gets no response after

three continuous attempts, the corresponding pointer

will be removed from the peer list and the message

will be redirected to a new target node (i.e., turn back

to the line (3) in figure 4).

4.3 Joining Process and Level Shifting

A new node contacts a bootstrap node that is

already in the system for joining. Four steps are needed:

1) finding out a top node, 2) determining the joining

node’s level, 3) downloading the peer list and top-node

list, and 4) multicasting its joining event around its

audience set. The key problem here is how to

determine which level is suitable for its capacity before

practical running. The estimation is by this way: the

top node tells the new node its own level lT, as well as

its current bandwidth cost WT that is dynamically

measured. Then the new node estimates its level lX

based on these two values, as well as its own permitted

bandwidth cost WX: +=
X

T
TX

W

W
ll 2log . More detailed

description of these four steps can be found in [8].

A new node can also first set a low level so as to

start working in a relatively short period, and then ask

stronger nodes for a larger peer list. After completing

the background downloading, it raises it level and

reports the state-changing event to a top node. We call

this process warm-up.

A node can adjust its level at runtime due to the

change of the system environment or the upper

bandwidth threshold set by the user. When a node

raises its level, it should first download those required

pointers from stronger nodes and then reports the event

to a top node. When a node lowers its level, it removes

those useless pointers from its peer list and reports the

event.

4.4 Split PeerWindow

When the system is very large or very dynamic, no

node can afford the bandwidth cost running at level 0.

In this circumstance, the system will split into two

parts, one comprising all the nodes whose nodeId starts

with “0” and the other comprising all the nodes whose

nodeId starts with “1”. It can be easily seen that these

two parts are wholly independent to each other (a node

in one part must keep no pointer to any node of the

other part) and each one is a complete PeerWindow

(all the protocols proposed above in this paper are still

suitable for each part).

To be general, PeerWindow is made up of several

parts that are independent to one another. The highest-

level nodes in each part are called top nodes. Every

node maintains t pointers (in its top-node list) to the

top nodes in its part. When a node changes its state or

detects failure of another node, it reports the event to a

top node, which will then multicast the event around

the changing node’s audience set, using the tree-based

multicast protocol presented in section 4.2.

A top node’s top-node list does not contain pointers

to top nodes of its own part. Instead, it contains

pointers to some top nodes of other parts, t pointers for

each part. When a joining node X and its bootstrap

node Y are not in the same part, X needs to find a top

node of its own part first (step 1 of the joining process,

seeing section 4.3). X accomplishes this by asking a

top node in Y’s part, say Z. Z’s top-node list must

contain t top nodes of X’s part.

4.5 Top-node List Maintenance

Top-node lists are maintained in a lazy manner.

When a node M reports an event to a top node, the top

node should return a response, piggybacking 1−t
pointers to top nodes, which will help M refresh its

top-node list. If the report does not get a response, M

will redirect the report to another top node within its

top-node list. If all the top nodes in its top-node list are

unavailable, it will then ask another node in its peer list

for his top-node list as a substitution.

A top node’s top-node list is maintained similarly.

When a top node T works for another node’s joining

process, it chooses a live pointer from its top-node list

and asks the corresponding node for 1−t pointers to

top nodes of that part. If all the pointers in T’s top-

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

node list are stale, it will ask another top node of its

own part for help.

4.6 Accuracy Improvement

Because of the Internet asynchrony, the multicast

protocol can never be absolutely reliable. Therefore,

there must be some errors in the peer lists, which fall

into two types: absent pointers and stale pointers. Both

of them are only of a very small fraction and do no

substantial harm. An absent pointer would be

automatically revised when the corresponding node

leaves the system, while a stale pointer would be

removed when being used during multicast procedure

and getting no response. But these errors would

accumulate before being revised, from the view of

whole system.

To guard against this accumulation, PeerWindow

devises a refreshing mechanism. Every node measures

the lifetime of all the nodes in its peer list, and

calculates the average lifetime of each level, noted
iLT ,

where i denotes the level. An l-level node multicasts its

state around its audience set every
lLT⋅2 (by reporting

to a top node). An m-level pointer that has not been

refreshed for a period of
mLT⋅3 will be directly

removed from the peer list, without explicit probing.

This mechanism can limit the accumulation of both

absent pointers and stale pointers, and make the error

fraction of peer list convergent. In practice, most nodes

never perform such refreshing multicast because their

lifetimes are much shorter than twice the average

lifetime.

5. Experiment Results

Our basic experiment goal is to simulate a 100,000-

node PeerWindow in a common environment, where

the distributions of node capacity and lifetime are both

accordant with the measurement result of Gnutella in

[13], and the Internet topology is generated by the

Transit-Stub model [20]. After that, we examine

PeerWindow’s scalability and adaptivity, i.e., how

PeerWindow varies when the system scale or the

nodes’ lifetime changes.

To make large-scale experiments possible, we first

developed ONSP [17], a general platform for large-

scale overlay simulation on a homogeneous cluster.

ONSP is based on parallel discrete events and uses

MPI for machine communication. Transit-Stub model

is naturally integrated into ONSP as its network

topology.

Considering that PeerWindow nodes with the same

eigenstring would have the same peer list, we record

all the correct peer lists in a centralized data structure,

and only record erroneous items in nodes’ individual

data structures. This method has two advantages:

making it possible to run the whole experiment in

memory and facilitating the calculation of the error

rate of the peer lists. Meanwhile, it does not harm the

validity of the experiment results.

Based on ONSP, our experiment program

comprises 1,600 lines of C++ code and is performed

on a 16-server cluster that is connected by 2Gbps

Myrinet. Each server has four 700MHz Xeon CPUs

and 1GB memories, running an operating system of

Linux Redhat 7.3.

5.1 Common PeerWindow

We simulate a common PeerWindow with 100,000

nodes. That is to say, we first create 100,000 nodes on

the ONSP platform and then let new nodes join and

existing nodes leave, with almost the identical joining

and leaving rates. In this experiment, the following

characteristics are hold:

Distribution of nodes’ lifetime meets the

measurement results of Gnutella (figure 6 of [13]),

in which the average lifetime is about 135

minutes.

Distribution of nodes’ available bandwidth meets

the measurement results of Gnutella (figure 3 of

[13]).

The user-set upper (input) bandwidth threshold is

1% of the node’s total bandwidth, but cannot be

less than 500bps (a small value that is affordable

even for modem-linked nodes).

The Transit-Stub network model is generated by

the tool of GT-ITM [20], in which there are 120

transit domains, each containing 4 transit nodes.

Every transit node has 5 stub domains, each

containing 2 stub nodes. Thus, there are totally

4800 stub nodes. To reach the required 100,000-

node scale, each stub node is assigned with about

20 PeerWindow nodes. Common latency

parameters are set as follows: transit-to-transit

latency is 100ms; transit-to-stub is 20ms; stub-to-

stub is 5ms; and node-to-node is 1ms.

Nodes join the system in a Poisson process, with

the expectation of the time interval of two

successive node joining events is 100,000/135

minutes.

The event message size is 1,000 bits.

During the multicast procedure, every medium

node delays the message for 1 second that is

spent on receiving, calculating and sending.

Figure 5 plots the distribution of the nodes at

different levels. Somewhat surprisingly, there are more

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

than half of the nodes running at level 0. It seems quite

a lot. However, it is really consistent with the

measurement result of real peer-to-peer systems

(seeing figure 3 of [13]) in which only 20% nodes’

available bandwidth is less than 1Mbps. Perhaps our

intuition that a large portion of Internet nodes are weak

ones is somewhat questionable.

Figure 6 shows the size of the peer lists of the nodes

at different levels. According to the PeerWindow

protocol, an l-level node collects the pointers to all the

nodes whose nodeId has an l-bit common prefix with

the local nodeId. Because nodes are evenly distributed

in the nodeId space, the peer lists of the nodes at a

given level are almost of the same size. (Figure 6 plots

the maximum and the minimum values, but they are

hard to be distinguished.)

Although the peer lists are large, they have very few

errors. As figure 7 shows, the error rate is less than

0.5%. This is because a changing event will be

reported to the top node immediately when it is

detected and multicast around the audience set without

delay. The multicast needs 6.16000,100log2 ≈ steps.

Assuming that each step costs 500ms on average, all

the nodes in the audience set will receive the event

within s9.246.16)5.01(=×+ , that is to say, a point

will be kept stale for no longer than 25 seconds.

Compared to the average lifetime of the nodes (135

minutes), the error rate will be no more than

0035.0)60135/(25 ≈× , which is accordant with the

experiment result.

Higher-level nodes have peer lists with fewer errors

than lower-level nodes. This is because the multicast

process ensures the higher-to-lower direction of the

message flow, which indicates that higher-level nodes

can revise their peer lists earlier than lower-level ones.

Figure 8 shows the input and output bandwidth for

the peer list maintenance. As participated, the input

bandwidth is in proportion to the peer list size. The

input-bandwidth cost for every 1000 pointers is about

500bps. As discussed in section 4.2, higher-level nodes

will have larger output-bandwidth cost. In this case,

almost all the messages are sent from 0-level or 1-level

nodes. But their output cost is only a little more than

the input, also very light for these powerful nodes.

5.2 Scalability

The main impacts of the system scale are the

distribution of the nodes and the error rate of the peer

lists. Figure 9 depicts the variation of the percentage of

the nodes at each level when the system scale changes,

using different figure patterns for different levels. In a

5000-node PeerWindow, all the nodes run at level 0.

When the system expands, there comes out more levels

and more nodes tend to work at lower levels. This is

because those weak nodes cannot afford the bandwidth

Figure 5. Node distribution in
common PeerWindow

Figure 6. Size of peer lists at
different levels

Figure7. Error rate of the peer
lists at different levels

Figure 8. bandwidth cost at
different levels

Figure 9. Node distribution in
different system scales

Figure 10. Average peer list
error rate in different scales

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

cost at high levels in a large system. The error rate of

the peer lists also rises (seeing figure 10), because

multicast needs longer time and the errors in the peer

lists are revised less timely. But the change is very

slight.

5.3 Adaptivity

Nodes in different peer-to-peer systems will have

different lifetimes, which are essentially determined by

the usage model. Even in a given system, the nodes’

lifetime may vary along with time. We assume that

nodes’ lifetimes are Lifetime_Rate times of that in the

common case (section 5.1). The node distribution and

the error rate of peer list at different Lifetime_Rate are

shown in figures 11 and 12, respectively. Note that

figure 12 uses the logarithmic scale on the y-axis.

When the Lifetime_Rate is 0.1 (this means that the

average lifetime is 13.5 minutes) there comes out 10

levels and only about 15% 0-level nodes. This is

because when the lifetime turns short, more state-

changing events will occur in a given time interval.

Therefore, a node can only maintain a small peer list

and run at a low level.

Figure 12 shows that the peer lists’ error rate also

increases when lifetime turns shorter. This is because

the error rate is proximately determined by the formula

lifetimedelaymulticastrateerror /__ = . Since the

system scale does not change, the number of multicast

hops (log2N) also does not change. Thus the lifetime

will be approximately in inverse proportion to the

average error rate. As shown in figure 12, in a system

with 1.0_ =RateLifetime , the average peer list error

rate is about 10 times of that in the common case

(1_ =RateLifetime), which is between 1% and 5%.

However, such a result can hardly turn to the reality

because of its very short average lifetime.

6. Related Work

Most previous projects devised their node collection

protocol based on some existing overlay structures.

RanSub [9] is based on an application-level

multicast tree. Using information collection and

distribution, RanSub offers every node O(logN)

pointers. By explicit probes through these pointers,

every node changes it parent node dynamically. In this

way, the multicast tree is optimized piece by piece.

GUESS [19] is based on a Gnutella-like unstructured

overlay. By piggybacking some known pointers on the

response of a ping or query message, every node can

collect a large number of pointers, which are used for

non-forwarding search. Pastiche [4] uses a modified

Pastry to collect pointers to those nodes who are

storing similar data with the local node. Mercury [1] is

built on top of a small-world overlay. To optimize the

attribute-base query and load balancing, Mercury

deploys random walk upon the overlay to collect other

nodes’ information, including load distribution, node-

count distribution, and query selectivity. Compared to

these previous protocols, PeerWindow is not based on

any existing overlays and simultaneously holds the

properties of efficiency, heterogeneity, and autonomy.

We believe PeerWindow can also be used in the above

systems and works well.

Another peer-to-peer system in which nodes collect

a large amount of pointers is the one-hop DHT [7],

compared to PeerWindow, one-hop DHT treats almost

all the nodes as homogeneous peers and costs too

much for weak nodes when the system is very large

and dynamic or some application-specified information

should be attached into the pointers.

There are also some previous works aiming at peer-

to-peer node information aggregation (not collection),

such as SOMO [21], SDIMS [18] and Willow [12].

The main difference between these protocols and

PeerWindow is that they summarize the state of the

whole system (e.g. the total load of the current system),

while PeerWindow simply presents individual nodes’

information to others.

Figure 11. Nodes distribution with different
lifetime rate (to the common PeerWindow)

Figure 12. Average peer list error rate in the
systems with different lifetime rates

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

PeerWindow uses a prefix-based multicast for event

notification. Prefix-based multicast has been proposed

for a long time [16] and was also introduced into the

global multicast service recently [14]. However, the

multicast in PeerWindow has a substantial difference

with previous protocols. In previous protocols, a

message must be sent to all the nodes whose nodeIds

have a common prefix (the groupId in I3 [14]), while

in PeerWindow all the nodes receiving a given

message do not have a common prefix, but their

eigenstrings must be prefix of a given identifier (the

changing node’s nodeId).

Also there are some application-level multicast

protocols that use prefix-based relationship to

construct a multicast tree, e.g., Scribe [3]. In them,

every node within a group needs to maintain the states

of its parent node and children nodes, which is not

desired in PeerWindow’s multicast protocol.

7. Conclusion

The spirit of peer-to-peer system is collaboration,

intercommunion, and resource exchanging among

different nodes. All these operations are based on

mutual understanding of the nodes. Therefore, letting

peer-to-peer nodes know each other is very important.

In this paper, we propose a novel node collection

protocol PeerWindow that simultaneously holds the

fine properties of efficiency, heterogeneity, autonomy,

dynamical adjustability, self-organizing, and adaptivity.

PeerWindow can be used in many existing peer-to-

peer systems and we believe it can also serve well for

future peer-to-peer system constructions.

Acknowledgement

We thank Professor Jie Wu for some valuable

suggestions on the paper. We thank the anonymous

reviewers for their useful comments. We thank Zheng

Zhang, Ben Y. Zhao, Xuezheng Liu, Shuming Shi and

Yun Mao for their discussion with us on the basic idea

of PeerWindow. We also thank Yinghui Wu for his

ONSP platform that simplifies our experiment

significantly.

References

[1] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury:

Supporting Scalable Multi-Attribute Range Queries.

SIGCOMM 2004. August 2004.

[2] B. Bloom. Space/time trade-offs in hash coding with

allowable errors. Communications of the ACM, 13(7),

pages 422–426, July 1970.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, and A.

Rowstron. SCRIBE: A large-scale and decentralized

application-level multicast infrastructure. IEEE JSAC,

20(8), October 2002.

[4] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche:

Making Backup Cheap and Easy. OSDI '02. December

2002.

[5] B. F. Cooper and H. Garcia-Molina. Bidding for

Storage Space in a Peer-to-Peer Data Preservation

System. ICDCS '02. Junly 2002.

[6] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp,

and I. Stoica. Load Balancing in Dynamic Structured

P2P Systems. INFOCOM 2004. March 2004.

[7] A. Gupta, B. Liskov, and R. Rodrigues. One Hop

Lookups for Peer-to-Peer Overlays. HOTOS IX. May

2003.

[8] J. Hu, M. Li, H. Dong, and W. Zheng. PeerWindow:

An Efficient, Heterogeneous, and Autonomic Node

Collection Protocol. Full report, available at

http://hpc.cs.tsinghua.edu.cn/granary/.

[9] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A.

Vahdat. Using Random Subsets to Build Scalable

Network Services. USITS '03. March 2003.

[10] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and

M. Isard. A Cooperative Internet Backup Scheme.

USNIX '03. June 2003.

[11] P. Maniatis, M. Roussopoulos, T. Giuli, D. S. H.

Rosenthal, M. Baker, and Y. Muliadi. Preserving Peer

Replicas By Rate-Limited Sampled Voting. SOSP '03.

October 2003.

[12] R. van Renesse and A. Bozdog. Willow: DHT,

Aggregation, and Publish/Subscribe in One Protocol.

IPTPS '04. February 2004.

[13] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A

Measurement Study of Peer-to-Peer File Sharing

Systems. MMCN '02. January 2002.

[14] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S.

Surana. Internet Indirection Infrastructure. SIGCOMM

2002. August 2002.

[15] B. Wilcox-O'Hearn. Experiences Deploying a Large-

Scale Emergent Network. IPTPS '02. March 2002.

[16] J. Wu and L. Sheng. Deadlock-Free Routing in

Irregular Networks Using Prefix Routing. PDCS '99.

Auguest 1999.

[17] Y. Wu, M. Li, and W. Zheng. ONSP: Parallel Overlay

Network Simulation Platform. PDPTA '04. June 2004.

[18] P. Yalagandula and M. Dahlin. A Scalable Distributed

Information Management System. SIGCOMM 2004.

August 2004.

[19] B. Yang, P. Vinograd, and H. Garcia-Molina.

Evaluating GUESS and Non-Forwarding Peer-to-Peer

Search. ICDCS '04. March 2004.

[20] E. Zegura, K. Calvert, and S. Bhattacharjee. How to

Model an Internetwork. INFOCOM 1996. June 1996.

[21] Z. Zhang, S. Shi, and J. Zhu. SOMO: Self-organized

Metadata Overlay for Resource Management in P2P

DHT. IPTPS '03. November 2003.

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

