
Navigating in the Storm: Using Astrolabe for Distributed Self-Configuration,

Monitoring and Adaptation

Kenneth P. Birman, Robbert van Renesse and Werner Vogels1

Dept. of Computer Science, Cornell University

{ken,rvr,vogels}@cs.cornell.edu

1 The authors were supported by DARPA/AFRL grant RADC F30602-99-1-0532, by AFOSR/MURI grant F49620-
02-1-0233, Microsoft Research BARC and the Cornell/AFRL Information Assurance Institute.

Abstract

The dramatic growth of computer networks creates

both an opportunity and a daunting distributed

computing problem for users seeking to build

applications that can configure themselves and adapt

as disruptions occur. The problem is that data often

resides on large numbers of devices and evolves

rapidly. Systems that collect data at a single location

scale poorly and suffer from single-point failures.

Here, we discuss the use of a new system, Astrolabe, to

automate self-configuration, monitoring, and to control

adaptation. Astrolabe operates by creating a virtual

system-wide hierarchical database, which evolves as

the underlying information changes. Astrolabe is

secure, robust under a wide range of failure and attack

scenarios, and imposes low loads even under stress.

Keywords: Autonomic computing, self-configuration,

distributed monitoring, system management,

adaptation

1 Introduction

In this paper, we describe a new information

management service called Astrolabe, and its use in

building new styles of “autonomic” computing

applications. Our central premise is that large-scale

distributed systems, such as data centers hosting Web

Service applications and client computers accessing

them over the network, are far too fragile today. We

see this fragility as a direct consequence of inadequate

systems support. New tools to assist such applications

in self-configuration, monitoring and adaptation will

promote advances in application robustness and ease of

use. Although the discussion focuses on the Web

Services application just described, we believe that

Astrolabe will also find application in a number of other

kinds of systems.

Astrolabe monitors the dynamically changing state

of a collection of distributed resources, reporting

summaries of this information to its users. Like the

Internet Domain Name Service (DNS), Astrolabe

organizes the resources into a hierarchy of domains,

which we call zones, and associates attributes with each

zone. Unlike DNS, the attributes may be highly

dynamic, and updates propagate within seconds, even in

huge networks. A novel peer-to-peer protocol is used

to implement the Astrolabe system, which operates

without any central servers.

Part of the power of Astrolabe stems from its ability

to perform data mining and data fusion. The system

continuously computes summaries of the data using on-

the-fly aggregation. The aggregation mechanism is

controlled by SQL queries, and operates by extracting

summaries of data from each zone, then assembling

these into higher-level database relations. By

reprogramming these features on the fly (a task very

much like asking a database to compute a dynamically

materialized relation), the user can reconfigure

Astrolabe within seconds. Thus, as the needs of the

user change, the behavior of the system can adapt to

respond to those new requirements.

Aggregation is analogous to computing a dependent

cell in a spreadsheet. When the underlying information

changes, Astrolabe will automatically and rapidly

recompute the associated aggregates and report the

changes to applications that have registered their

interest. Even in huge networks, any change is soon

visible everywhere. For example, suppose that a few

servers in a data center come under a distributed denial

of service attack. Suspecting this, an administrator

might ask Astrolabe to capture some sort of statistic

symptomatic of attack – perhaps, the rate of incomplete

attempted connections to each server. Astrolabe has

potential access to a great variety of host-maintained

statistics and can also tap into data maintained by the

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

application or even stored in files and databases. The

protocol is extremely robust: even if those servers are

under heavy load, within a short period all servers in the

data center and perhaps even all clients of the system

will see the situation. Healthy nodes can then respond

in a coordinated way, by shifting work away from the

affected servers.

We are not aware of any prior system offering the

mixture of scalability, robustness and security seen in

Astrolabe. These properties will be crucial in

tomorrow’s large, extremely critical computing

applications, because the need for autonomic tools is

most acute in large-scale applications that demand high

availability even during disruption or distributed denial

of service attacks. In traditional, centralized,

implementations of system monitoring and control

functionality, these issues can emerge as impediments to

the user. For example, if computers are tracking state

that changes once every second, and we have 10,000

such computers, the centralized database would be

expected to keep up with 10,000 updates per second, a

massive load. If that central system is unavailable, the

autonomic support features of the system would become

inaccessible. And there are many security issues raised

by centralized architectures. This paper will show how

Astrolabe handles the analogous problems through its

peer-to-peer protocols and hierarchical structuring of

data.

This paper starts with a brief discussion of our vision

of how autonomic computing might be accomplished

using tools like Astrolabe. Next, we provide a

technology review focused on the data mining features

of Astrolabe, which are based on its aggregation

mechanisms. Astrolabe gains scalability and robustness

at the price of generality, and we spend some time

looking at the limitations of the system and their

implications for developers and users. In particular,

while Astrolabe is a database, it doesn’t allow the user

to do arbitrary database-style transactions, and it is

important to understand the reasons and the degree to

which one can work around these limits. For reasons of

brevity, this paper omits a detailed scalability analysis,

but we do summarize prior work on this problem.

2 Autonomic Computing

The phrase “autonomic computing” has different

meanings in the eyes of different kinds of users. Some

imagine a new era of self-aggregating computing

systems: a PDA, for example, that can automatically

discover input and display devices in each room the

user enters and dynamically configure a kind of virtual

PC on-the-fly. Some imagine data centers with the

kinds of serviceability and management features

common on RAID file servers. And some imagine a

completely self-managed distributed system in which

parameter setting and configuration is automated,

problem diagnosis and repair are common-place and

standardized, and hence the total cost of ownership is

dramatically reduced even for ambitious configurations.

Our work falls loosely into this third area, although

Astrolabe could be useful in any of these settings.

Consider a large data center hosting a cluster-style load-

balanced web service application that communicates to

multiple backend legacy services. A client system is

performing a high-value transaction on this system

when a request suddenly times out. What should that

client do? If the problem is a failure within the data

center, how should it diagnose and repair the problem?

A simple and somewhat facile answer would point to

the transactional standard (WS_TRANSACTION) and

suggest that merely by using transactions, the client’s

problems will magically vanish. Yet any pragmatist

will recognize that such responses overlook a

tremendous number of hard problems. Setting the poor

performance of web service transactions to the side,

how should the data center sense failures? A timeout,

after all, might originate at many levels of the web

service architecture. Can this type of state sensing

guarantee consistency, so that all nodes monitoring the

server in question simultaneously sense the failure and

do so only if it really crashes? How should the data

center reallocate tasks to repair any functional gaps

caused by the failure? What services need to be

restarted?

Our client also faces difficult problems. The server

to which it was communicating may have failed during

the commit stage of a transaction, or during a so-called

“business transaction”, which will not be automatically

aborted when the connection is lost. Which server

should the client reconnect to? How long should it wait

for the backup server to “catch up” with the failed

primary server?

In the introduction we mentioned that a distributed

denial of service attack could bring down a server. Yet

that server may not have “failed” – it could simply be

extremely overloaded. Thus monitoring goes well

beyond the mere detection of crash failures and must

also encompass the discovery of all sorts of other

problems capable of disrupting smooth operations.

These kinds of questions extend to much more

mundane settings. For example, most modern systems

have a tremendous dependency on the Internet’s DNS.

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

Yet in an era of network address translation and

firewalls, the DNS is increasingly hard pressed to

simply track the bindings of machine names to IP

addresses. Developers complain of unacceptable

tradeoffs between slow performance (because DNS

records have such short lifetimes that they cannot even

be cached), and unacceptable staleness of dynamically

updated data (because DNS uses a pull, not a push,

architecture). Moreover, DNS is poorly suited for

managing other kinds of parameters that may need to

change over time. We need better tools for monitoring

the state of complex distributed systems, representing

that state in a way that multiple applications can access

concurrently, updating state as conditions change, and

triggering appropriate reconfigurations in a consistent

way. By offering solutions to such problems, Astrolabe

offers a major advance in system support for autonomic

computing.

Name Load Weblogic? SMTP? Version

swift 2.0 0 1 6.2
f 4.1

rdinal 4.5 1 0 6.0
alcon 1.5 1 0

a
ca

Name Load Weblogic? SMTP? Version

swift 2.0 0 1 6.2
falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

ca

Name Load Weblogic? SMTP? Version

swift 2.0 0 1 6.2
f lcon 1.5 1 0 4.1

rdinal 4.5 1 0 6.0

Figure 1: Three Astolabe domains

3 The Astrolabe System

Astrolabe is best understood as a relational database

built using a peer-to-peer protocol2 running between the

applications or computers on which Astrolabe is

installed. Like any relational database, the fundamental

building block employed by Astrolabe is a tuple (a row

of data items) into which values can be stored. For

simplicity in this paper, we’ll focus on the case where

each tuple contains information associated with some

computer. The technology is quite general, however,

and can be configured with a tuple per application, or

even with a tuple for each instance of some type of file

or database.

The data stored into Astrolabe can be drawn from the

management information base (MIB) of a computer,

extracted directly from a file, database, spreadsheet, or

fetched from a user-supplied method associated with

some application program. Astrolabe obtains flexibility

by exploiting a recent set of standards (ODBC, JDBC)

whereby a system like ours can treat the objects on a

computer much like databases. Astrolabe is also

flexible about data types, supporting the usual basic

types but also allowing the application to supply

arbitrary information encoded with XML. The only

requirement is that the total size of the tuple be no more

than a few k-bytes; much larger objects can be by

identified by a URL or other reference, but the data

would not be replicated in Astrolabe itself.

The specific data pulled into Astrolabe is specified in

a configuration certificate. Should the needs of the user

change, the configuration certificate can be modified

and, within a few seconds, Astrolabe will reconfigure

itself accordingly. This action is, however, restricted by

our security policy, as discussed in Section 3.

Astrolabe groups small sets of tuples into relational

tables. Each such table consists of perhaps 30 to 60

tuples containing data from sources physically close to

one-another in the network. This grouping (a database

administrator would recognize it as a form of schema)

can often be created automatically, using latency and

network addresses to identify nearby machines.

However, the system administrator can also specify a

desired layout explicitly.

Where firewalls are present, Astrolabe employs a

standard tunneling method to send messages to

machines residing behind the firewall and hence not

directly addressable. This approach also allows

Astrolabe to deal with network address translation

(NAT) filters.

The data collected by Astrolabe evolves as the

underlying information sources report updates, hence

the system constructs a continuously changing database

using information that actually resides on the

participating computers. Figure 1 illustrates this: we see

a collection of small database relations, each tuple

corresponding to one machine, and each relation

collecting tuples associated with some set of nearby

machines. In this figure, the data stored within the tuple

includes the name of the machine, its current load, an

indication of whether or not various servers are running

on it, and the “version” for some application. Keep in

mind that this selection of data is completely determined

by the configuration certificate. In principle, any data

2 The term « peer-to-peer » is often used in conjunction
with scalable file systems for sharing media content.
Here, we refer only to the communication pattern seen
in such systems, which involves direct pairwise
communication between « client » computers, in
contrast to a more traditional star-like client-server
architecture where all data passes through the
centralized servers.

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

available on the machine or in any application running

on the machine can be exported. In particular,

spreadsheets and databases can easily be configured to

export data to Astrolabe.

The same interfaces which enable us to fetch data so

easily also make it easy for applications to use

Astrolabe. Most commonly, an application would

access the Astrolabe relations just as it might access any

other table, database or spreadsheet. As updates occur,

the application receives a form of event notifying it that

the table should be rescanned. Thus, with little or no

specialized programming, data from Astrolabe data

could be « dragged » into a local database, spreadsheet,

or even onto a web page. As the data changes, the

associated application will receive refresh events.

Astrolabe is intended for use in very large networks,

hence this form of direct access to local data cannot be

used for the full dataset : while the system does capture

data throughout the network, the amount of information

would be unweildy and the frequency of updates

excessive. Accordingly, although Astrolabe does

provide an interface whereby a remote region’s data can

be accessed, the normal way of monitoring remote data

is through aggregation queries.

An aggregation query is, as the name suggests, just

an SQL query which operates on these leaf relations,

extracting a single summary tuple from each which

reflects the globally significant information within the

region. Sets of summary tuples are concatenated by

Astrolabe to form summary relations (again, the size is

typically 30 to 60 tuples each), and if the size of the

system is large enough so that there will be several

summary relations, this process is repeated at the next

level up, and so forth. Astrolabe is thus a hierarchical

relational database. Each of the summaries is updated,

in real-time, as the leaf data from which it was formed

changes. Even in networks with thousands or millions

of computers, updates are visible system-wide within a

few tens of seconds. (Figure 2).

A computer using Astrolabe will, in general, keep a

local copy of the data for its own region and

aggregation (summary) data for region above it on the

path to the root of this hierarchy. As just explained, the

system maintains the abstraction of a hierarchical

relational database. Physically, however, this hierarchy

is an illusion, constructed using a peer-to-peer protocol,

somewhat like a jig-saw puzzle in which each computer

has ownership of one piece and read-only replicas of a

few others. Our protocols permit the system to

assemble the puzzle as a whole when needed. Thus,

while the user thinks of Astrolabe as a somewhat

constrained but rather general database, accessed using

conventional programmer APIs and development tools,

this abstraction is actually an illusion, created on the fly.

The peer-to-peer protocol used for this purpose is, to

first approximation, easily described [7]. Each

Astrolabe system keeps track of the other machines in

its zone, and of a subset of contact machines in other

zones. This subset is selected in a pseudo-random

manner from the full membership of the system (again,

a peer-to-peer mechanism is used to track approximate

membership ; for simplicity of exposition we omit any

details here). At some fixed frequency, typically every

2 to 5 seconds, each participating machine sends a

concise state description to a randomly selected

destination within this set of neighbors and remote

contacts. The state description is very compact and lists

versions of objects available from the sender. We call

such a message a « gossip » event. Unless an object is

very small, the gossip event will not contain the data

associated with it.

Upon receiving such a gossip message, an Astrolabe

system is in a position to identify information which

may be stale at the sender’s machine (because

timestamps are out of date) or that may be more current

at the sender than on its own system. We say may

because time elapses while messages traverse the

network, hence no machine actually has current

information about any other. Our protocols are purely

asynchronous : when sending a message, the sender

does not pause to wait for it to be recieved and, indeed,

the protocol makes no effort to ensure that gossip gets

to its destinations.

6.0

4.1

6.2

Word
Version

014.5cardinal

011.5falcon

102.0swift

…SMTP?Weblogic?LoadName

6.0

4.1

6.2

Word
Version

014.5cardinal

011.5falcon

102.0swift

…SMTP?Weblogic?LoadName

6.2

6.2

4.5

Word
Version

01.5gnu

103.2zebra

001.7gazelle

…SMTP?Weblogic?LoadName

6.2

6.2

4.5

Word
Version

01.5gnu

103.2zebra

001.7gazelle

…SMTP?Weblogic?LoadName

14.66.71.1214.66.71.83.1Paris

127.16.77.11127.16.77.61.8NJ

123.45.61.17123.45.61.32.6SF

SMTP contactWL contactAvg
Load

Name

14.66.71.1214.66.71.83.1Paris

127.16.77.11127.16.77.61.8NJ

123.45.61.17123.45.61.32.6SF

SMTP contactWL contactAvg
Load

Name

San Francisco New Jersey

SQL query
“summarizes”

data

Dynamically changing
query output is visible
system-wide

Figure 2: Hierarchy formed when data-mining with an
aggregation query fuses data from many sources.

If a receiver of a gossip message discovers that it

has data missing at the sender machine, a copy of that

data is sent back to the sender. We call this a push

event. Conversely, if the sender has data lacking at the

receiver, a pull event occurs : a message is sent

requesting a copy of the data in question. Again, these

actions are entirely asynchronous ; the idea is that they

will usually be successful, but if not (e.g. if a message

is lost in the network, received very late, or if some

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

other kind of failure occurs), the same information will

probably be obtained from some other source later.

One can see that through exchanges of gossip

messages and data, information should propagate within

a network over an exponentially increasing number of

randomly selected paths among the participants. That

is, if a machine updates its own row, after one round of

gossip, the update will probably be found at two

machines. After two rounds, the update will probably

be at four machines, etc. In general, updates propagate

in log of the system size – seconds or tens of seconds in

our implementation. In practice, we configure

Astrolabe to gossip rapidly within each zone (to take

advantage of the presumably low latency) and less

frequently between zones (to avoid overloading

bottlenecks such as firewalls or shared network links).

The effect of these steps is to ensure that the

communication load on each machine using Astrolabe

and also each communication link involved is bounded

and independent of network size.

We’ve said that Astrolabe gossips about objects. In

our work, a tuple is an object, but because of the

hierarchy used by Astrolabe, a tuple would only be of

interest to a receiver in the same region as the sender.

In general, Astrolabe gossips about information of

shared interest to the sender and receiver. This could

include tuples in the regional database, but also

aggregation results for aggregation zones that are

ancestors of both the sender and receiver.

After a round of gossip or an update to its own tuple,

Astrolabe recomputes any aggregation queries affected

by the update. It then informs any local readers of the

Astrolabe objects in question that their values have

changed, and the associated application rereads the

object and refreshes its state accordingly.

For example, if an Astrolabe aggregation output is

pulled from Astrolabe into a web page, that web page

will be automatically updated each time it changes. The

change would be expected to reach the server within a

delay logarithmic in the size of the network, and

proportional to the gossip rate. Using a 2-second gossip

rate, an update would thus reach all members in a

system of 10,000 computers in roughly 25 seconds. Of

course, the gossip rate can be tuned to make the system

run faster, or slower, depending on the importance of

rapid responses and the available bandwidth.

Our description oversimplifies. Astrolabe can

actually support multiple aggregation queries, each

creating its own hierarchy. The system can also be

configured to accomodate heterogeneity of the leaf

nodes, whereas we have presented it as if each leaf node

has identical information. Moreover, the same peer-to-

peer mechanisms used to propagate updates are also

used to propagate new configuration certificates and

new aggregation queries, hence the behavior of the

system can be modified on the fly, as needs change.

Details on these aspects, together with an enlarged

discussion of our peer-to-peer protocol can be found in

[7].

4 Consistency, Security and Expressiveness

The power of the Astrolabe data mining mechanisms

is limited by the physical layout of the Astrolabe

database and by our need, as builders of the system, to

provide a solution which is secure and scalable. This

section discusses some of the implications of these

limitations for the Astrolabe user.

4.1 Consistency

Although Astrolabe is best understood as a form of

hierarchical database, the system doesn’t support

transactions, the normal consistency model employed

by databases. A transaction is a set of database

operations (database read and update actions) which are

performed in accordance with what are called ACID

properties. The consistency model, serializability,

embodies the guarantee that a database will reflect the

outcome of committed transactions, and will be in a

state that could have been reached by executing those

transactions sequentially in some order.

In contrast, Astrolabe is accessible by read-only

operations on the local zone and aggregation zones on

the path to the root. Update operations can only be

performed by a machine on the data stored in its own

tuple.

If Astrolabe is imagined as a kind of replicated

database, a further distinction arises. In a replicated

database each update will be reflected at each replica.

Astrolabe offers a weaker guarantee: if a participating

computer updates its tuple and then leaves the tuple

unchanged for a sufficiently long period of time, there is

a very high probability that the update will become

visible to all non-faulty computers. Indeed, this

probability converges to 1.0 in the absence of network

partitioning failures. However, if updates are more

frequent, a “new” value could overwrite an “older”

value, so that some machines might see the new update

but miss the prior one.

Astrolabe gains a great deal by accepting this weaker

probabilistic consistency property: the system is able to

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

scale with constant loads on computers and links, and is

not forced to stop and wait if some machine fails to

receive an update. In contrast, there is a well-known

impossibility result that implies that a database system

using the serializability model may need to pause and

wait for updates to reach participating nodes. Indeed, a

single inopportune failure can prevent a replicated

database from making progress. Jointly, these results

limit the performance and availability of a replicated

database. Astrolabe, then, offers a weaker consistency

property but gains availability and very stable,

predictable performance by so doing.

Aggregation raises a different kind of consistency

issue. Suppose that an aggregation query reports some

property of a zone, such as the least loaded machine, the

average humidity in a region, etc. Recall that

aggregates are recomputed each time the Astrolabe

gossip protocol runs. One could imagine a situation in

which machine A and machine B concurrently update

their own states; perhaps, their loads change. Now

suppose that an aggregation query computes the average

load. A and B will both compute new averages, but the

values are in some sense unordered in time: A’s value

presumably reflects a stale version of B’s load, and vice

versa. Not only does this imply that the average

computed might not be the one expected, it also points

to a risk: Astrolabe (as described so far) might report

aggregates that bounce back and forth in time, first

reflecting A’s update (but lacking B’s more current

data), then changing to reflect B’s update but

“forgetting” A’s change. The fundamental problem is

that even if B has an aggregation result with a recent

timestamp, the aggregate could have been computed

from data which was, in part, more stale than was the

data used to compute the value it replaces.

To avoid this phenomenon, Astrolabe tracks

minimum and maximum timestamp information for the

inputs to each aggregation function. A new aggregate

value replaces an older one only if the minimum

timestamp for any input to that new result is at least as

large as the maximum timestamp for the one it replaces.

It can be seen that this will slow the propagation of

updates but will also ensure that aggregates advance

monotonically in time. Yet this stronger consistency

property also brings a curious side-effect: if two

different Astrolabe users write down the series of

aggregate results reported to them, those sequences of

values could advance very differently. Perhaps, A sees

its own update reflected first, then later sees both its

own and B’s; B might see its update first, then later

both, and some third site, C, could see the system jump

to a state in which both updates are reflected. Time

moves forward, but different users see events in

different order and may not even see the identical

events! This tradeoff seems to be fundamental to our

style of distributed data fusion.

4.2 Security Model and Mechanisms

A related set of issues surround the security of our

system. Many peer-to-peer systems suffer from

insecurity and are easily incapacitated or attacked by

malfunctioning or malicious users. Astrolabe is

intended to run on very large numbers of machines,

hence the system itself could represent a large-scale

security exposure.

To mitigate such concerns, we’ve taken several

steps. First, Astrolabe reads but does not write data on

the machines using it. Thus, while Astrolabe can pull a

great variety of data into its hierarchy, the system

doesn’t take the converse action of reaching back onto

the participating machines and changing values within

them, except to the extent that applications explicitly

read data from Astrolabe.

The issue thus becomes one of trustworthiness: can

the data stored in Astrolabe be trusted? In what

follows, we assume that Astrolabe instances are non-

malicious, but that the computers on which they run can

fail, and that software bugs (hopefully, rare) could

corrupt individual systems. To overcome such

problems, Astrolabe includes a public-key infrastructure

(PKI) which is built into the code. We employ digital

signatures to authenticate data. Although machine B

may learn of machine A’s updates through a third party,

unless A’s tuple is correctly signed by A’s private key,

B will reject it. Astrolabe also limits the introduction of

configuration certificates and aggregation queries by

requiring keys for the parent zones within which these

will have effect; by controlling access to those keys, it is

possible to prevent unauthorized users from introducing

expensive computations or configuring Astrolabe to pull

in data from participating hosts without appropriate

permissions. Moreover, the ODBC and JDBC

interfaces by means of which Astrolabe interfaces itself

to other components offer additional security policy

options.

4.3 Query Limitations

A final set of limitations arises from the lack of a

join feature in the aggregation query mechanism. As

seen above, Astrolabe performs data mining by

computing summaries of the data in each zone, then

gluing these together to create higher level zones on

which further summaries can be computed. The

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

approach lacks a way to compute results for queries that

require cross-zone joins.

For example, suppose that Astrolabe were used to

detect distributed denial of service attacks along the

lines suggested earlier. One might want to express a

data mining query along the following lines: “detect

servers under attack and, for each such server, find a

healthy server best positioned to take over its

workload.” The natural way to express this as a query

in a standard database would involve a join. In

Astrolabe, one would need to express this as two

aggregation queries, one to compute a summary of

apparent attacks and the other, using output from the

first as an input, tracking down the best backup

machines. In general, this points to a methodology for

dealing with joins by “compiling” them into multiple

current aggregation queries. However, at present, we

have not developed this insight into a general

mechanism; users who wish to perform joins would

need to break them up in this manner, by hand.

Moreover, it can be seen that while this approach allows

a class of join queries to compile into Astrolabe’s

aggregation mechanism, not all joins can be so treated:

the method only works if the size of the dataset needed

from the first step of the join, and indeed the size of the

final output, will be sufficiently small.

Configuring Astrolabe so that one query will use the

output of another as part of its input raises a further

question: given that these queries are typically

introduced into the system while it is running, how does

the user know when the result is “finished”? We have a

simple answer to this problem, based on a scheme of

counting the number of sub-zones reflected in an

aggregation result. The idea is that as a new aggregate

value is computed, a period passes during which only

some of the leaf zones have reported values. At this

stage the parent aggregation zone is not yet fully

populated with data. However, by comparing a count of

the number of reporting child zones with a separately

maintained count of the total number of children,

applications can be shielded from seeing the results of

an aggregation computation until the output is stable.

By generalizing this approach, we are also able to

handle failures or the introduction of new machines; in

both cases, the user is able to identify and disregard

outputs representing transitional states. The rapid

propagation time for updates ensures that such

transitional conditions last for no more than a few

seconds.

5 Example

In Section 2, we noted that Astrolabe has

applications in many settings. For the purpose of

illustrating the ideas behind the system, however, we

continue to focus on a hypothetical commercial web

service application.

The explosive growth of the web services market and

unprecedented uptake of web services technology has

caught many by surprise. Part of the success of the

technology is undoubtedly a consequence of its natural

evolutionary fit into settings which had already become

more and more object oriented. Given that platforms

such as .NET and J2EE were already relatively in their

handling of objects and interfaces, extending them to

use web-based standards for documenting the services

offered by an application, representing requests and

arguments, and communicating with services over

HTTP is not a huge step. Yet precisely because the

transition to web services has been so straightforward,

commercial users now face a wrenching new

development. Those traditional systems were often

batch oriented, whereas web services are intended to be

highly responsive, interactive applications. Systems

that used to be live comfortably in the isolated

backwaters of large commercial data centers are

suddenly being interconnected to web service

applications in ways never before possible. And with

this sudden leap to turn all systems into spaghetti-like

structures with layers and layers of interdependencies

and interactions, managing those systems has become a

potential nightmare.

Suppose that a client is using a web service and his

request times out. The problem may be a network

outage, sluggish response in the web services system

itself, a crash of that platform, an internal queuing delay

(many of these systems use message oriented

middleware such as MQSeries or MSMQ), bursty

behavior in old legacy software, or an inappropriately

set parameter. The server may even be under some

form of attack. We have few tools to assist in

diagnosing such problems: Modern computing systems

operate in the dark. A vast amount of information is

potentially relevant to their correct configuration and

operation, yet little of this information is ever

represented or available to the application.

Consider first the problem as it arises within a data

center. With Astrolabe, we can easily instrument the

many platforms that comprise the center, and

reconfigure this instrumentation if an unexpected

change in system behavior or responsiveness compels

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

the site administrator to hunt for problems of a type she

has never seen previously. The instrumentation

mechanism taps into the full set of data items available

on the various data center servers: parameters in their

MIBs (such as paging and I/O rates, network statistics,

etc), application-specific parameters, information in

databases or files, etc. Thus the center’s administrator

can view all of this data as comprising a long “tuple”

with one field for each potential data item. She merely

selects items of interest within the set, and Astrolabe

will reach into the system and, given appropriate

permissions, extract the data items in question and

monitor them for subsequent changes. Thus the systems

administrator can think of the whole data center as a

form of dynamically changing database.

Were this the end of the story, Astrolabe might be

best understood as a new kind of network monitoring

system. However, the goal of the technology is to offer

a fundamentally new kind of operating systems service,

accessible not just to human administrators but also to

applications. To this end, Astrolabe offers a consistent,

robust state representation that can be exploited by the

application itself. When an event occurs that disrupts

state – a machine crashes, or a service hangs – the

deviation from the nominal state will become globally

evident within seconds. Every healthy program will

simultaneously notice failures or degradation.

Observing the problem, the many programs that

comprise the system can respond in a coordinated

manner. For example, some server might take over

tasks that a failed server had been responsible for, and

advertise its new role. Other servers, seeing this, can

establish new connections to the server in question and

interrogate it about work in progress.

In practice, we would not expect the applications

themselves to detect degradation in an automated

manner. Instead, the administrator would do this,

flagging degraded servers in the Astrolabe table by

defining aggregation queries that identify such servers,

with a sufficient degree of built-in delay to avoid a

“flapping state” problem if a server fails intermittently

only to quickly recover. The application program thus

uses Astrolabe to sense overall state but relies on a

human-defined notion of “degradation” to identify

servers that are operational but malfunctioning.

Now, suppose that we stand on the data center and

look out towards the client platforms. To what degree

can Astrolabe improve the experience of the end-user?

As a first step, suppose that we use Astrolabe to monitor

the states of client systems. Merely by taking this step,

the data center gains a completely new kind of

functionality. Traditionally, we have viewed a data

center as being operational and “healthy” provided that

the servers seem to be working properly. Suddenly, the

option of focusing on the client’s experience of the

system becomes available.

Perhaps our data center is one that streams media

files to its clients. The mere knowledge that the servers

are not aware of problems tells us relatively little about

the client experience. A client connected to the closest,

least loaded server may still be experiencing disrupted

downloads and poor throughput because of network

problems such as overloads and router or link failures.

Sensing such conditions would enable responses such as

redirecting that client to some other server, perhaps one

that is handling a heavier load or seems to be more

remote in the network, and yet that is capable of

offering a better end-user experience.

Similarly, Astrolabe can offer the client system better

options for connecting to the server pool. To the degree

that we wish to expose such information, clients can be

shown information about which servers are handling

which categories of data, server load, average service

response times, availability of data replicas, and so

forth. These kinds of information can be used as input

to a client-side decision-making process concerning the

best server to handle a given kind of request. The

administrator controls the configuration of Astrolabe

and hence can easily select the data that clients can see.

Keep in mind that the clients we have in mind are

software – the client-side applications developed

originally by the designers of the data center. So we are

not proposing that end-users would “see” the state of

the data center, but merely that the software they

downloaded to use the data center might be smarter

about its current state, just as it could be smarter about

their states. The human user simply experiences better

performance and higher availability, because problems

are now sensed more rapidly and reaction is more

automated.

Our scenario started with a hypothesized timeout.

With Astrolabe in use, the client and data center both

“see” the system state in a consistent manner. If a

server has crashed, they both share this information, and

the client can track the progress of the backup server in

taking over, bringing itself back into sync with the state

of the failed primary server, and eventually coming

back online. Parameter settings advertised through

Astrolabe become globally visible and updates are seen

rapidly. Thus, a wide range of autonomic adaptations

become relatively straightforward.

This paper has mentioned distributed denial of

service attacks several time. As we conclude this

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

section, consider briefly the challenges of responding to

such an event. Commercial data centers are bedeviled

by such problems; few, if any, have escaped unscathed.

However, few of these attacks target more than a small

number of servers: they succeed precisely because the

attacker is able to marshal the resources of large

numbers of machines to overwhelm a small number of

target systems. Using Astrolabe, both servers and

clients can sense localized disruptions, reallocating

work and redirecting clients away from the disabled

systems. Even if an attack has never been seen

previously, by having system administrators in the loop

– for example, in a position to redefine the data-mining

query used to identify “faulty” servers – the capability

now exists for dynamically responding to attacks purely

by recognizing their symptoms. The effect is that the

data center will seamlessly and automatically shift tasks

away from faulty servers and towards those not

currently under attack. The DDoS attacker will lack the

resources to attack all servers and thus will be

frustrated. As he discovers that his attack is having

little impact on performance, he is likely to abandon the

effort in favor of more promising targets.

Earlier we spoke of the many ways that autonomic

computing is viewed by potential developers and users.

Astrolabe can support even more ambitious styles of

computing, extending to the kinds of resource-location

problems that need to be solved to support self-

aggregating computing platforms. We see the

technology as opening the door to a major advance in

computing styles.

Astrolabe has been designed to interoperate

comfortably in a world of Web Services and data

centers. While the sorts of uses just summarized would

require a substantial integration effort between the

vendor of the Web Services platform and our

development team, there are no obvious obstacles to

undertaking such an effort.

Some of the Astrolabe uses outlined here require a

degree of caution on the part of the programmer. Recall

that consistency in Astrolabe is a probabilistic property.

Data will converge over time (so that, given enough

time – seconds or minutes – multiple viewers will see

the same data) but not instantly. Thus, some caution

must be taken in the way that Astrolabe is used.

Actions should be triggered only after a pause to give

the system time to stabilize, and applications should be

designed to watch for evidence of “flapping” systems or

other anomalies. However, if actions are based on

stable states and delayed by long enough to give

Astrolabe itself time to reach a quiescent state, the

approach offers a high degree of robustness and actions

taken will be coordinated with extremely high

probability. We are doubtful that any technology could

offer stronger guarantees.

To reiterate a point made previously, today, the

developer of a sophisticated distributed computing

system is asked to work in the dark. This limits

availability and makes such systems far more expensive

to administer than need be the case. With new services

such as the Astrolabe service, we can turn on the lights,

enabling a new generation of far more automated

computing systems that perform well under all sorts of

conditions, adapt as conditions change, and configure

themselves without requiring endless human

intervention.

6 Performance

The dual goals of keeping this paper brief and of

avoiding repetition of material reported elsewhere led us

to omit any detailed performance section from this

paper. However, Astrolabe is a real system and we

have evaluated it in great detail. The interested reader is

referred to [7].

Broadly, this evaluation consists of four parts. In a

first step, we used formal methods to develop a

theoretical analysis of the scalability and propagation

properties of the system. Such an analysis is interesting

to the extent that it seems to confirm our observations of

behavior, but also limited insofar as we are forced to

simplify the real world in order to reason about the

technology. The analysis predicts the logarithmic

scalability properties outlined earlier, and also lets us

predict the distribution of update delays. Our work

suggests that the exponential wave of infection that

propagates updates not only makes the protocol itself

robust to failures or network disruption, but also makes

our analysis robust to these simplifications. In effect,

when simplifying the model of a network, one perhaps

arrives at behavioral predictions that are overly

optimistic or pessimistic. But because that behavior is

so strongly dominated by the exponential spread of

information, such an error only leads to a minor

inaccuracy. Our experience has been that the formal

analysis of Astrolabe is highly predictive of its

behavior.

A second style of evaluation focuses on two kinds of

simulation. First, using network simulation systems

(NS/2) we have simulated Astrolabe to understand its

behavior in a variety of network topologies and under a

variety of loads and scales. Second, we have looked at

the behavior of our Astrolabe implementation by

running the real software over a simulated network. We

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

do this by injecting packet loss or delays so as to

emulate conditions that might be encountered in the

field.

Finally, we have worked with Astrolabe in real

world settings, and evaluated its behavior as it runs.

While such an approach has the benefit of being an

evaluation of a real system in a real setting, one also has

less control over competing applications which share

resources, less ability to reproduce scenarios to

understand precisely how they gave rise to an observed

behavior, and less opportunity to systematically vary

parameters which determine behavior.

Jointly, these studies have confirmed that Astrolabe

indeed exhibits the predicted logarithmic growth in

update propagation latency, and that the system has

stable, low, computing and communication loads. We

have subjected Astrolabe to a variety of stresses

(failures, packet loss) and found it to be robust even

under rather severe attacks. In particular, conditions

similar to those seen during distributed denial of service

(ddos) attacks slow Astrolabe down, but not very much,

and do not trigger any substantial growth in message

rates or loads associated with the technology. This

suggests that Astrolabe may remain useful even when a

network is experiencing severe disruption. The

possibility of using Astrolabe for distributed detection

of such episodes and to trigger a coordinated response

appears to be very promising.

7 Related Work

Our work draws heavily on prior research in peer-to-

peer computing and databases. In the database area, the

idea of building replicated databases using gossip

communication dates to the Xerox Clearinghouse

server, a flexible directory service for large networks.

Discussion and analysis of the protocols used in this

system appears in [2]. Subsequent Xerox work on a

database system called Bayou takes the idea even

further [6], and also includes a formal analysis of the

scalability of push and pull gossip. The idea of building

large-scale information systems hierarchically is an old

one; many elements of our approach were anticipated

by Lampson [5] and Golding [3]. Work on treating

large sensor networks as databases can be found in [1].

The Ninja system replicates data using a peer-to-peer

protocol similar to the one we use in Astrolabe, but

lacks an aggregation mechanism [4].

8 Conclusions

The Astrolabe system creates a new option for

developers of ambitious autonomic computing

applications which run in large networks. Whereas

traditional approaches collect data in a centralized

server, Astrolabe implements a novel peer-to-peer

protocol whereby queries can be computed directly in

the network by the participating computers themselves.

Although the loads imposed on participating computers

are very small (and independent of the size of the

system), the aggregated computing capability may be

huge, hence we are able to solve problems that would

be infeasible in a centralized solution. Moreover, the

approach scales much better than centralized ones, is

robust against failures and attack, and propagates

updates within seconds or tens of seconds even in

networks with huge numbers of computing nodes.

References

[1] P. Bonnet, J.E. Gehrke, P. Seshadri. Towards

Sensor Database Systems. In Proc of the 2nd Intl. Conf.

On Mobile Data Management. Hong Kong, Jan. 2001.

[2] A. Demers, D. Greene, C. Hauser, W. Irish, J.

Larson, S. Shenker, H. Sturgis, D. Swinehart and D.

Terry. Epidemic Algorithms for Replicated Database

Management. In Proc. Of the Sixth ACM Symp. On

Principles of Distributed Computing, 1-12, Vancouver

BC, Aug. 1987.

[3] R.A. Golding. A Weak-Consistency Architecture

for Distributed Information Services. Computing

Systems, 5(4) : 379-405, Fall 1992.

[4] S.D. Gribble, M. Welsh, R. Von Behren, E.A.

Brewer, D. Culler, N. Borisov, S. Czerwinski, R.

Gummadi, J. Hill, A. Joseph, R.H. Katz, Z.M. Mao, S.

Ross, B. Zhao. The Ninja Architecture for Robust

Internet-Scale Systems and Services. To appear in a

special issue of Computer Network on the topic of

Pervasive Computing. 2001.

[5] B.W. Lampson. Designing a Global Name

Service. In Proc. Of the 5th ACM Symposium on

Principles of Distributed Computing. Calgary, Alberta,

Aug. 1986.

[6] K. Petersen, M.J. Spreitzer, D.B. Terry, M.M.

Theimer, and A.J. Demers. Flexible Update

Propogation for Weakly Consistent Replication. In

Proc. Of the 16th ACM Symposium on Operating

Systems Principles, 288-301, Sant-Malo, France, Oct.

1997.

[7] R. van Renesse and K.P. Birman. Astrolabe: A

Robust and Scalable Technology for Distributed System

Monitoring, Management and Data Mining. To appear,

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

ACM Transactions on Computer Systems, May 2003.

http://www.cs.cornell.edu/ken/Astrolabe.pdf

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

