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Abstract

The dramatic growth of computer networks creates 

both an opportunity and a daunting distributed 

computing problem for users seeking to build 

applications that can configure themselves and adapt 

as disruptions occur.  The problem is that data often 

resides on large numbers of devices and evolves 

rapidly.  Systems that collect data at a single location 

scale poorly and suffer from single-point failures.  

Here, we discuss the use of a new system, Astrolabe, to 

automate self-configuration, monitoring, and to control 

adaptation.  Astrolabe operates by creating a virtual 

system-wide hierarchical database, which evolves as 

the underlying information changes.  Astrolabe is 

secure, robust under a wide range of failure and attack 

scenarios, and imposes low loads even under stress. 

Keywords: Autonomic computing, self-configuration, 

distributed monitoring, system management, 

adaptation 

1 Introduction 

In this paper, we describe a new information 

management service called Astrolabe, and its use in 

building new styles of “autonomic” computing 

applications.  Our central premise is that large-scale 

distributed systems, such as data centers hosting Web 

Service applications and client computers accessing 

them over the network, are far too fragile today.  We 

see this fragility as a direct consequence of inadequate 

systems support.  New tools to assist such applications 

in self-configuration, monitoring and adaptation will 

promote advances in application robustness and ease of 

use.  Although the discussion focuses on the Web 

Services application just described, we believe that 

Astrolabe will also find application in a number of other 

kinds of systems. 

Astrolabe monitors the dynamically changing state 

of a collection of distributed resources, reporting 

summaries of this information to its users. Like the 

Internet Domain Name Service (DNS), Astrolabe 

organizes the resources into a hierarchy of domains, 

which we call zones, and associates attributes with each 

zone. Unlike DNS, the attributes may be highly 

dynamic, and updates propagate within seconds, even in 

huge networks.   A novel peer-to-peer protocol is used 

to implement the Astrolabe system, which operates 

without any central servers.  

Part of the power of Astrolabe stems from its ability 

to perform data mining and data fusion. The system 

continuously computes summaries of the data using on-

the-fly aggregation.  The aggregation mechanism is 

controlled by SQL queries, and operates by extracting 

summaries of data from each zone, then assembling 

these into higher-level database relations.   By 

reprogramming these features on the fly (a task very 

much like asking a database to compute a dynamically 

materialized relation), the user can reconfigure 

Astrolabe within seconds.  Thus, as the needs of the 

user change, the behavior of the system can adapt to 

respond to those new requirements. 

Aggregation is analogous to computing a dependent 

cell in a spreadsheet. When the underlying information 

changes, Astrolabe will automatically and rapidly 

recompute the associated aggregates and report the 

changes to applications that have registered their 

interest.  Even in huge networks, any change is soon 

visible everywhere.  For example, suppose that a few 

servers in a data center come under a distributed denial 

of service attack.  Suspecting this, an administrator 

might ask Astrolabe to capture some sort of statistic 

symptomatic of attack – perhaps, the rate of incomplete 

attempted connections to each server.  Astrolabe has 

potential access to a great variety of host-maintained 

statistics and can also tap into data maintained by the 
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application or even stored in files and databases.  The 

protocol is extremely robust: even if those servers are 

under heavy load, within a short period all servers in the 

data center and perhaps even all clients of the system 

will see the situation.  Healthy nodes can then respond 

in a coordinated way, by shifting work away from the 

affected servers.

We are not aware of any prior system offering the 

mixture of scalability, robustness and security seen in 

Astrolabe.  These properties will be crucial in 

tomorrow’s large, extremely critical computing 

applications, because the need for autonomic tools is 

most acute in large-scale applications that demand high 

availability even during disruption or distributed denial 

of service attacks. In traditional, centralized, 

implementations of system monitoring and control 

functionality, these issues can emerge as impediments to 

the user.  For example, if computers are tracking state 

that changes once every second, and we have 10,000 

such computers, the centralized database would be 

expected to keep up with 10,000 updates per second, a 

massive load.  If that central system is unavailable, the 

autonomic support features of the system would become 

inaccessible.  And there are many security issues raised 

by centralized architectures.  This paper will show how 

Astrolabe handles the analogous problems through its 

peer-to-peer protocols and hierarchical structuring of 

data. 

This paper starts with a brief discussion of our vision 

of how autonomic computing might be accomplished 

using tools like Astrolabe.  Next, we provide a 

technology review focused on the data mining features 

of Astrolabe, which are based on its aggregation 

mechanisms.  Astrolabe gains scalability and robustness 

at the price of generality, and we spend some time 

looking at the limitations of the system and their 

implications for developers and users.  In particular, 

while Astrolabe is a database, it doesn’t allow the user 

to do arbitrary database-style transactions, and it is 

important to understand the reasons and the degree to 

which one can work around these limits. For reasons of 

brevity, this paper omits a detailed scalability analysis, 

but we do summarize prior work on this problem.  

2 Autonomic Computing 

The phrase “autonomic computing” has different 

meanings in the eyes of different kinds of users.  Some 

imagine a new era of self-aggregating computing 

systems: a PDA, for example, that can automatically 

discover input and display devices in each room the 

user enters and dynamically configure a kind of virtual 

PC on-the-fly.  Some imagine data centers with the 

kinds of serviceability and management features 

common on RAID file servers.  And some imagine a 

completely self-managed distributed system in which 

parameter setting and configuration is automated, 

problem diagnosis and repair are common-place and 

standardized, and hence the total cost of ownership is 

dramatically reduced even for ambitious configurations. 

Our work falls loosely into this third area, although 

Astrolabe could be useful in any of these settings.  

Consider a large data center hosting a cluster-style load-

balanced web service application that communicates to 

multiple backend legacy services.  A client system is 

performing a high-value transaction on this system 

when a request suddenly times out.  What should that 

client do?  If the problem is a failure within the data 

center, how should it diagnose and repair the problem? 

A simple and somewhat facile answer would point to 

the transactional standard (WS_TRANSACTION) and 

suggest that merely by using transactions, the client’s 

problems will magically vanish.  Yet any pragmatist 

will recognize that such responses overlook a 

tremendous number of hard problems.  Setting the poor 

performance of web service transactions to the side, 

how should the data center sense failures?  A timeout, 

after all, might originate at many levels of the web 

service architecture.  Can this type of state sensing 

guarantee consistency, so that all nodes monitoring the 

server in question simultaneously sense the failure and 

do so only if it really crashes?  How should the data 

center reallocate tasks to repair any functional gaps 

caused by the failure?  What services need to be 

restarted?   

Our client also faces difficult problems.   The server 

to which it was communicating may have failed during 

the commit stage of a transaction, or during a so-called 

“business transaction”, which will not be automatically 

aborted when the connection is lost.  Which server 

should the client reconnect to?  How long should it wait 

for the backup server to “catch up” with the failed 

primary server?   

In the introduction we mentioned that a distributed 

denial of service attack could bring down a server.  Yet 

that server may not have “failed” – it could simply be 

extremely overloaded.  Thus monitoring goes well 

beyond the mere detection of crash failures and must 

also encompass the discovery of all sorts of other 

problems capable of disrupting smooth operations. 

These kinds of questions extend to much more 

mundane settings.  For example, most modern systems 

have a tremendous dependency on the Internet’s DNS.  
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Yet in an era of network address translation and 

firewalls, the DNS is increasingly hard pressed to 

simply track the bindings of machine names to IP 

addresses.  Developers complain of unacceptable 

tradeoffs between slow performance (because DNS 

records have such short lifetimes that they cannot even 

be cached), and unacceptable staleness of dynamically 

updated data (because DNS uses a pull, not a push, 

architecture).   Moreover, DNS is poorly suited for 

managing other kinds of parameters that may need to 

change over time.  We need better tools for monitoring 

the state of complex distributed systems, representing 

that state in a way that multiple applications can access 

concurrently, updating state as conditions change, and 

triggering appropriate reconfigurations in a consistent 

way. By offering solutions to such problems, Astrolabe 

offers a major advance in system support for autonomic 

computing. 

Name Load Weblogic? SMTP? Version

swift 2.0 0 1 6.2
f 4.1

rdinal 4.5 1 0 6.0
alcon 1.5 1 0

a
ca

Name Load Weblogic? SMTP? Version

swift 2.0 0 1 6.2
falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

ca

Name Load Weblogic? SMTP? Version

swift 2.0 0 1 6.2
f lcon 1.5 1 0 4.1

rdinal 4.5 1 0 6.0

Figure 1: Three Astolabe domains 

3 The Astrolabe System 

Astrolabe is best understood as a relational database 

built using a peer-to-peer protocol2 running between the 

applications or computers on which Astrolabe is 

installed.  Like any relational database, the fundamental 

building block employed by Astrolabe is a tuple (a row 

of data items) into which values can be stored.  For 

simplicity in this paper, we’ll focus on the case where 

each tuple contains information associated with some 

computer.  The technology is quite general, however, 

and can be configured with a tuple per application, or 

even with a tuple for each instance of some type of file 

or database. 

The data stored into Astrolabe can be drawn from the 

management information base (MIB) of a computer, 

extracted directly from a file, database, spreadsheet, or 

fetched from a user-supplied method associated with 

some application program.  Astrolabe obtains flexibility 

by exploiting a recent set of standards (ODBC, JDBC) 

whereby a system like ours can treat the objects on a 

computer much like databases.  Astrolabe is also 

flexible about data types, supporting the usual basic 

types but also allowing the application to supply 

arbitrary information encoded with XML.  The only 

requirement is that the total size of the tuple be no more 

than a few k-bytes; much larger objects can be by 

identified by a URL or other reference, but the data 

would not be replicated in Astrolabe itself.  

The specific data pulled into Astrolabe is specified in 

a configuration certificate. Should the needs of the user 

change, the configuration certificate can be modified 

and, within a few seconds, Astrolabe will reconfigure 

itself accordingly.  This action is, however, restricted by 

our security policy, as discussed in Section 3. 

Astrolabe groups small sets of tuples into relational 

tables.  Each such table consists of perhaps 30 to 60 

tuples containing data from sources physically close to 

one-another in the network.  This grouping (a database 

administrator would recognize it as a form of schema) 

can often be created automatically, using latency and 

network addresses to identify nearby machines.  

However, the system administrator can also specify a 

desired layout explicitly.  

Where firewalls are present, Astrolabe employs a 

standard tunneling method to send messages to 

machines residing behind the firewall and hence not 

directly addressable.  This approach also allows 

Astrolabe to deal with network address translation 

(NAT) filters. 

The data collected by Astrolabe evolves as the 

underlying information sources report updates, hence 

the system constructs a continuously changing database 

using information that actually resides on the 

participating computers.  Figure 1 illustrates this: we see 

a collection of small database relations, each tuple 

corresponding to one machine, and each relation 

collecting tuples associated with some set of nearby 

machines.  In this figure, the data stored within the tuple 

includes the name of the machine, its current load, an 

indication of whether or not various servers are running 

on it, and the “version” for some application.  Keep in 

mind that this selection of data is completely determined 

by the configuration certificate.  In principle, any data 

                                                          
2 The term « peer-to-peer » is often used in conjunction 
with scalable file systems for sharing media content.  
Here, we refer only to the communication pattern seen 
in such systems, which involves direct pairwise 
communication between « client » computers, in 
contrast to a more traditional star-like client-server 
architecture where all data passes through the 
centralized servers. 
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available on the machine or in any application running 

on the machine can be exported.  In particular, 

spreadsheets and databases can easily be configured to 

export data to Astrolabe.   

The same interfaces which enable us to fetch data so 

easily also make it easy for applications to use 

Astrolabe.  Most commonly, an application would 

access the Astrolabe relations just as it might access any 

other table, database or spreadsheet.  As updates occur, 

the application receives a form of event notifying it that 

the table should be rescanned.  Thus, with little or no 

specialized programming, data from Astrolabe data 

could be « dragged » into a local database, spreadsheet, 

or even onto a web page.  As the data changes, the 

associated application will receive refresh events. 

Astrolabe is intended for use in very large networks, 

hence this form of direct access to local data cannot be 

used for the full dataset : while the system does capture 

data throughout the network, the amount of information 

would be unweildy and the frequency of updates 

excessive.  Accordingly, although Astrolabe does 

provide an interface whereby a remote region’s data can 

be accessed, the normal way of monitoring remote data 

is through aggregation queries. 

An aggregation query is, as the name suggests, just 

an SQL query which operates on these leaf relations, 

extracting a single summary tuple from each which 

reflects the globally significant information within the 

region.  Sets of summary  tuples are concatenated by 

Astrolabe to form summary relations (again, the size is 

typically 30 to 60 tuples each), and if the size of the 

system is large enough so that there will be several 

summary relations, this process is repeated at the next 

level up, and so forth.  Astrolabe is thus a hierarchical 

relational database.  Each of the summaries is updated, 

in real-time, as the leaf data from which it was formed 

changes.  Even in networks with thousands or millions 

of computers, updates are visible system-wide within a 

few tens of seconds. (Figure 2). 

A computer using Astrolabe will, in general, keep a 

local copy of the data for its own region and 

aggregation (summary) data for region above it on the 

path to the root of this hierarchy.   As just explained, the 

system maintains the abstraction of a hierarchical 

relational database.  Physically, however, this hierarchy 

is an illusion, constructed using a peer-to-peer protocol, 

somewhat like a jig-saw puzzle in which each computer 

has ownership of one piece and read-only replicas of a 

few others.  Our protocols permit the system to 

assemble the puzzle as a whole when needed.  Thus, 

while the user thinks of Astrolabe as a somewhat 

constrained but rather general database, accessed using 

conventional programmer APIs and development tools, 

this abstraction is actually an illusion, created on the fly. 

The peer-to-peer protocol used for this purpose is, to 

first approximation, easily described [7].  Each 

Astrolabe system keeps track of the other machines in 

its zone, and of a subset of contact machines in other 

zones.  This subset is selected in a pseudo-random 

manner from the full membership of the system (again, 

a peer-to-peer mechanism is used to track approximate 

membership ; for simplicity of exposition we omit any 

details here).  At some fixed frequency, typically every 

2 to 5 seconds, each participating machine sends a 

concise state description to a randomly selected 

destination within this set of neighbors and remote 

contacts.  The state description is very compact and lists 

versions of objects available from the sender.  We call 

such a message a « gossip » event.  Unless an object is 

very small, the gossip event will not contain the data 

associated with it. 

Upon receiving such a gossip message, an Astrolabe 

system is in a position to identify information which 

may be stale at the sender’s machine (because 

timestamps are out of date) or that may be more current 

at the sender than on its own system.  We say may

because time elapses while messages traverse the 

network, hence no machine actually has current 

information about any other. Our protocols are purely 

asynchronous : when sending a message, the sender 

does not pause to wait for it to be recieved and, indeed, 

the protocol makes no effort to ensure that gossip gets 

to its destinations. 

6.0
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011.5falcon
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San Francisco New Jersey

SQL query 
“summarizes” 

data

Dynamically changing 
query output is visible 
system-wide

Figure 2: Hierarchy formed when data-mining with an 
aggregation query fuses data from many sources. 

If a receiver of a gossip message discovers that it 

has data missing at the sender machine, a copy of that 

data is sent back to the sender.  We call this a push

event.  Conversely, if the sender has data lacking at the 

receiver, a pull event occurs : a message is sent 

requesting a copy of the data in question.  Again, these 

actions are entirely asynchronous ; the idea is that they 

will usually be successful, but if not (e.g. if a message 

is lost in the network, received very late, or if some 
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other kind of failure occurs), the same information will 

probably be obtained from some other source later. 

One can see that through exchanges of gossip 

messages and data, information should propagate within 

a network over an exponentially increasing number of 

randomly selected paths among the participants.  That 

is, if a machine updates its own row, after one round of 

gossip, the update will probably be found at two 

machines.  After two rounds, the update will probably 

be at four machines, etc.  In general, updates propagate 

in log of the system size – seconds or tens of seconds in 

our implementation.  In practice, we configure 

Astrolabe to gossip rapidly within each zone (to take 

advantage of the presumably low latency) and less 

frequently between zones (to avoid overloading 

bottlenecks such as firewalls or shared network links).  

The effect of these steps is to ensure that the 

communication load on each machine using Astrolabe 

and also each communication link involved is bounded 

and independent of network size. 

We’ve said that Astrolabe gossips about objects.  In 

our work, a tuple is an object, but because of the 

hierarchy used by Astrolabe, a tuple would only be of 

interest to a receiver in the same region as the sender.  

In general, Astrolabe gossips about information of 

shared interest to the sender and receiver.  This could 

include tuples in the regional database, but also 

aggregation results for aggregation zones that are 

ancestors of both the sender and receiver. 

After a round of gossip or an update to its own tuple, 

Astrolabe recomputes any aggregation queries affected 

by the update.   It then informs any local readers of the 

Astrolabe objects in question that their values have 

changed, and the associated application rereads the 

object and refreshes its state accordingly. 

For example, if an Astrolabe aggregation output is 

pulled from Astrolabe into a web page, that web page 

will be automatically updated each time it changes.  The 

change would be expected to reach the server within a 

delay logarithmic in the size of the network, and 

proportional to the gossip rate.  Using a 2-second gossip 

rate, an update would thus reach all members in a 

system of 10,000 computers in roughly 25 seconds.  Of 

course, the gossip rate can be tuned to make the system 

run faster, or slower, depending on the importance of 

rapid responses and the available bandwidth. 

Our description oversimplifies.  Astrolabe can 

actually support multiple aggregation queries, each 

creating its own hierarchy.  The system can also be 

configured to accomodate heterogeneity of the leaf 

nodes, whereas we have presented it as if each leaf node 

has identical information.  Moreover, the same peer-to-

peer mechanisms used to propagate updates are also 

used to propagate new configuration certificates and 

new aggregation queries, hence the behavior of the 

system can be modified on the fly, as needs change.  

Details on these aspects, together with an enlarged 

discussion of our peer-to-peer protocol can be found in 

[7]. 

4 Consistency, Security and Expressiveness 

The power of the Astrolabe data mining mechanisms 

is limited by the physical layout of the Astrolabe 

database and by our need, as builders of the system, to 

provide a solution which is secure and scalable.  This 

section discusses some of the implications of these 

limitations for the Astrolabe user. 

4.1 Consistency 

Although Astrolabe is best understood as a form of 

hierarchical database, the system doesn’t support 

transactions, the normal consistency model employed 

by databases.  A transaction is a set of database 

operations (database read and update actions) which are 

performed in accordance with what are called ACID 

properties.  The consistency model, serializability, 

embodies the guarantee that a database will reflect the 

outcome of committed transactions, and will be in a 

state that could have been reached by executing those 

transactions sequentially in some order. 

In contrast, Astrolabe is accessible by read-only 

operations on the local zone and aggregation zones on 

the path to the root.  Update operations can only be 

performed by a machine on the data stored in its own 

tuple.  

If Astrolabe is imagined as a kind of replicated 

database, a further distinction arises.  In a replicated 

database each update will be reflected at each replica.  

Astrolabe offers a weaker guarantee: if a participating 

computer updates its tuple and then leaves the tuple 

unchanged for a sufficiently long period of time, there is 

a very high probability that the update will become 

visible to all non-faulty computers.  Indeed, this 

probability converges to 1.0 in the absence of network 

partitioning failures.  However, if updates are more 

frequent, a “new” value could overwrite an “older” 

value, so that some machines might see the new update 

but miss the prior one. 

Astrolabe gains a great deal by accepting this weaker 

probabilistic consistency property: the system is able to 
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scale with constant loads on computers and links, and is 

not forced to stop and wait if some machine fails to 

receive an update.  In contrast, there is a well-known 

impossibility result that implies that a database system 

using the serializability model may need to pause and 

wait for updates to reach participating nodes.  Indeed, a 

single inopportune failure can prevent a replicated 

database from making progress.  Jointly, these results 

limit the performance and availability of a replicated 

database.  Astrolabe, then, offers a weaker consistency 

property but gains availability and very stable, 

predictable performance by so doing. 

Aggregation raises a different kind of consistency 

issue.  Suppose that an aggregation query reports some 

property of a zone, such as the least loaded machine, the 

average humidity in a region, etc.  Recall that 

aggregates are recomputed each time the Astrolabe 

gossip protocol runs.  One could imagine a situation in 

which machine A and machine B concurrently update 

their own states; perhaps, their loads change.  Now 

suppose that an aggregation query computes the average 

load.  A and B will both compute new averages, but the 

values are in some sense unordered in time: A’s value 

presumably reflects a stale version of B’s load, and vice 

versa.  Not only does this imply that the average 

computed might not be the one expected, it also points 

to a risk: Astrolabe (as described so far) might report 

aggregates that bounce back and forth in time, first 

reflecting A’s update (but lacking B’s more current 

data), then changing to reflect B’s update but 

“forgetting” A’s change.   The fundamental problem is 

that even if B has an aggregation result with a recent 

timestamp, the aggregate could have been computed 

from data which was, in part, more stale than was the 

data used to compute the value it replaces. 

To avoid this phenomenon, Astrolabe tracks 

minimum and maximum timestamp information for the 

inputs to each aggregation function.  A new aggregate 

value replaces an older one only if the minimum 

timestamp for any input to that new result is at least as 

large as the maximum timestamp for the one it replaces.  

It can be seen that this will slow the propagation of 

updates but will also ensure that aggregates advance 

monotonically in time.  Yet this stronger consistency 

property also brings a curious side-effect: if two 

different Astrolabe users write down the series of 

aggregate results reported to them, those sequences of 

values could advance very differently.  Perhaps, A sees 

its own update reflected first, then later sees both its 

own and B’s; B might see its update first, then later 

both, and some third site, C, could see the system jump 

to a state in which both updates are reflected.  Time 

moves forward, but different users see events in 

different order and may not even see the identical 

events!  This tradeoff seems to be fundamental to our 

style of distributed data fusion.  

4.2 Security Model and Mechanisms 

A related set of issues surround the security of our 

system.  Many peer-to-peer systems suffer from 

insecurity and are easily incapacitated or attacked by 

malfunctioning or malicious users.   Astrolabe is 

intended to run on very large numbers of machines, 

hence the system itself could represent a large-scale 

security exposure. 

To mitigate such concerns, we’ve taken several 

steps.  First, Astrolabe reads but does not write data on 

the machines using it.  Thus, while Astrolabe can pull a 

great variety of data into its hierarchy, the system 

doesn’t take the converse action of reaching back onto 

the participating machines and changing values within 

them, except to the extent that applications explicitly 

read data from Astrolabe. 

The issue thus becomes one of trustworthiness: can 

the data stored in Astrolabe be trusted?  In what 

follows, we assume that Astrolabe instances are non-

malicious, but that the computers on which they run can 

fail, and that software bugs (hopefully, rare) could 

corrupt individual systems.  To overcome such 

problems, Astrolabe includes a public-key infrastructure 

(PKI) which is built into the code.  We employ digital 

signatures to authenticate data.  Although machine B 

may learn of machine A’s updates through a third party, 

unless A’s tuple is correctly signed by A’s private key, 

B will reject it.  Astrolabe also limits the introduction of 

configuration certificates and aggregation queries by 

requiring keys for the parent zones within which these 

will have effect; by controlling access to those keys, it is 

possible to prevent unauthorized users from introducing 

expensive computations or configuring Astrolabe to pull 

in data from participating hosts without appropriate 

permissions.  Moreover, the ODBC and JDBC 

interfaces by means of which Astrolabe interfaces itself 

to other components offer additional security policy 

options. 

4.3 Query Limitations  

A final set of limitations arises from the lack of a 

join feature in the aggregation query mechanism.   As 

seen above, Astrolabe performs data mining by 

computing summaries of the data in each zone, then 

gluing these together to create higher level zones on 

which further summaries can be computed.   The 
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approach lacks a way to compute results for queries that 

require cross-zone joins.   

For example, suppose that Astrolabe were used to 

detect distributed denial of service attacks along the 

lines suggested earlier. One might want to express a 

data mining query along the following lines: “detect 

servers under attack and, for each such server, find a 

healthy server best positioned to take over its 

workload.”  The natural way to express this as a query 

in a standard database would involve a join.  In 

Astrolabe, one would need to express this as two 

aggregation queries, one to compute a summary of 

apparent attacks and the other, using output from the 

first as an input, tracking down the best backup 

machines.  In general, this points to a methodology for 

dealing with joins by “compiling” them into multiple 

current aggregation queries.  However, at present, we 

have not developed this insight into a general 

mechanism; users who wish to perform joins would 

need to break them up in this manner, by hand.  

Moreover, it can be seen that while this approach allows 

a class of join queries to compile into Astrolabe’s 

aggregation mechanism, not all joins can be so treated: 

the method only works if the size of the dataset needed 

from the first step of the join, and indeed the size of the 

final output, will be sufficiently small. 

Configuring Astrolabe so that one query will use the 

output of another as part of its input raises a further 

question: given that these queries are typically 

introduced into the system while it is running, how does 

the user know when the result is “finished”?  We have a 

simple answer to this problem, based on a scheme of 

counting the number of sub-zones reflected in an 

aggregation result.  The idea is that as a new aggregate 

value is computed, a period passes during which only 

some of the leaf zones have reported values.  At this 

stage the parent aggregation zone is not yet fully 

populated with data.  However, by comparing a count of 

the number of reporting child zones with a separately 

maintained count of the total number of children, 

applications can be shielded from seeing the results of 

an aggregation computation until the output is stable.   

By generalizing this approach, we are also able to 

handle failures or the introduction of new machines; in 

both cases, the user is able to identify and disregard 

outputs representing transitional states.  The rapid 

propagation time for updates ensures that such 

transitional conditions last for no more than a few 

seconds.

5 Example 

In Section 2, we noted that Astrolabe has 

applications in many settings.  For the purpose of 

illustrating the ideas behind the system, however, we 

continue to focus on a hypothetical commercial web 

service application. 

The explosive growth of the web services market and 

unprecedented uptake of web services technology has 

caught many by surprise.  Part of the success of the 

technology is undoubtedly a consequence of its natural 

evolutionary fit into settings which had already become 

more and more object oriented.  Given that platforms 

such as .NET and J2EE were already relatively in their 

handling of objects and interfaces, extending them to 

use web-based standards for documenting the services 

offered by an application, representing requests and 

arguments, and communicating with services over 

HTTP is not a huge step.  Yet precisely because the 

transition to web services has been so straightforward, 

commercial users now face a wrenching new 

development.  Those traditional systems were often 

batch oriented, whereas web services are intended to be 

highly responsive, interactive applications.  Systems 

that used to be live comfortably in the isolated 

backwaters of large commercial data centers are 

suddenly being interconnected to web service 

applications in ways never before possible.  And with 

this sudden leap to turn all systems into spaghetti-like 

structures with layers and layers of interdependencies 

and interactions, managing those systems has become a 

potential nightmare. 

Suppose that a client is using a web service and his 

request times out.  The problem may be a network 

outage, sluggish response in the web services system 

itself, a crash of that platform, an internal queuing delay 

(many of these systems use message oriented 

middleware such as MQSeries or MSMQ), bursty 

behavior in old legacy software, or an inappropriately 

set parameter.  The server may even be under some 

form of attack.  We have few tools to assist in 

diagnosing such problems: Modern computing systems 

operate in the dark.  A vast amount of information is 

potentially relevant to their correct configuration and 

operation, yet little of this information is ever 

represented or available to the application. 

Consider first the problem as it arises within a data 

center.  With Astrolabe, we can easily instrument the 

many platforms that comprise the center, and 

reconfigure this instrumentation if an unexpected 

change in system behavior or responsiveness compels 
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the site administrator to hunt for problems of a type she 

has never seen previously.  The instrumentation 

mechanism taps into the full set of data items available 

on the various data center servers: parameters in their 

MIBs (such as paging and I/O rates, network statistics, 

etc), application-specific parameters, information in 

databases or files, etc.  Thus the center’s administrator 

can view all of this data as comprising a long “tuple” 

with one field for each potential data item.  She merely 

selects items of interest within the set, and Astrolabe 

will reach into the system and, given appropriate 

permissions, extract the data items in question and 

monitor them for subsequent changes.  Thus the systems 

administrator can think of the whole data center as a 

form of dynamically changing database.   

Were this the end of the story, Astrolabe might be 

best understood as a new kind of network monitoring 

system.  However, the goal of the technology is to offer 

a fundamentally new kind of operating systems service, 

accessible not just to human administrators but also to 

applications.  To this end, Astrolabe offers a consistent, 

robust state representation that can be exploited by the 

application itself.  When an event occurs that disrupts 

state – a machine crashes, or a service hangs – the 

deviation from the nominal state will become globally 

evident within seconds. Every healthy program will 

simultaneously notice failures or degradation.  

Observing the problem, the many programs that 

comprise the system can respond in a coordinated 

manner.  For example, some server might take over 

tasks that a failed server had been responsible for, and 

advertise its new role.  Other servers, seeing this, can 

establish new connections to the server in question and 

interrogate it about work in progress.   

In practice, we would not expect the applications 

themselves to detect degradation in an automated 

manner.  Instead, the administrator would do this, 

flagging degraded servers in the Astrolabe table by 

defining aggregation queries that identify such servers, 

with a sufficient degree of built-in delay to avoid a 

“flapping state” problem if a server fails intermittently 

only to quickly recover.  The application program thus 

uses Astrolabe to sense overall state but relies on a 

human-defined notion of “degradation” to identify 

servers that are operational but malfunctioning. 

Now, suppose that we stand on the data center and 

look out towards the client platforms.  To what degree 

can Astrolabe improve the experience of the end-user?  

As a first step, suppose that we use Astrolabe to monitor 

the states of client systems.  Merely by taking this step, 

the data center gains a completely new kind of 

functionality.  Traditionally, we have viewed a data 

center as being operational and “healthy” provided that 

the servers seem to be working properly.  Suddenly, the 

option of focusing on the client’s experience of the 

system becomes available.   

Perhaps our data center is one that streams media 

files to its clients.  The mere knowledge that the servers 

are not aware of problems tells us relatively little about 

the client experience.  A client connected to the closest, 

least loaded server may still be experiencing disrupted 

downloads and poor throughput because of network 

problems such as overloads and router or link failures.  

Sensing such conditions would enable responses such as 

redirecting that client to some other server, perhaps one 

that is handling a heavier load or seems to be more 

remote in the network, and yet that is capable of 

offering a better end-user experience. 

Similarly, Astrolabe can offer the client system better 

options for connecting to the server pool.  To the degree 

that we wish to expose such information, clients can be 

shown information about which servers are handling 

which categories of data, server load, average service 

response times, availability of data replicas, and so 

forth.  These kinds of information can be used as input 

to a client-side decision-making process concerning the 

best server to handle a given kind of request.  The 

administrator controls the configuration of Astrolabe 

and hence can easily select the data that clients can see.  

Keep in mind that the clients we have in mind are 

software – the client-side applications developed 

originally by the designers of the data center.  So we are 

not proposing that end-users would “see” the state of 

the data center, but merely that the software they 

downloaded to use the data center might be smarter 

about its current state, just as it could be smarter about 

their states.  The human user simply experiences better 

performance and higher availability, because problems 

are now sensed more rapidly and reaction is more 

automated. 

Our scenario started with a hypothesized timeout.  

With Astrolabe in use, the client and data center both 

“see” the system state in a consistent manner.  If a 

server has crashed, they both share this information, and 

the client can track the progress of the backup server in 

taking over, bringing itself back into sync with the state 

of the failed primary server, and eventually coming 

back online. Parameter settings advertised through 

Astrolabe become globally visible and updates are seen 

rapidly.  Thus, a wide range of autonomic adaptations 

become relatively straightforward. 

This paper has mentioned distributed denial of 

service attacks several time.  As we conclude this 
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section, consider briefly the challenges of responding to 

such an event.  Commercial data centers are bedeviled 

by such problems; few, if any, have escaped unscathed.  

However, few of these attacks target more than a small 

number of servers: they succeed precisely because the 

attacker is able to marshal the resources of large 

numbers of machines to overwhelm a small number of 

target systems.  Using Astrolabe, both servers and 

clients can sense localized disruptions, reallocating 

work and redirecting clients away from the disabled 

systems.  Even if an attack has never been seen 

previously, by having system administrators in the loop 

– for example, in a position to redefine the data-mining 

query used to identify “faulty” servers – the capability 

now exists for dynamically responding to attacks purely 

by recognizing their symptoms.  The effect is that the 

data center will seamlessly and automatically shift tasks 

away from faulty servers and towards those not 

currently under attack.  The DDoS attacker will lack the 

resources to attack all servers and thus will be 

frustrated.  As he discovers that his attack is having 

little impact on performance, he is likely to abandon the 

effort in favor of more promising targets. 

Earlier we spoke of the many ways that autonomic 

computing is viewed by potential developers and users.  

Astrolabe can support even more ambitious styles of 

computing, extending to the kinds of resource-location 

problems that need to be solved to support self-

aggregating computing platforms.  We see the 

technology as opening the door to a major advance in 

computing styles. 

Astrolabe has been designed to interoperate 

comfortably in a world of Web Services and data 

centers.  While the sorts of uses just summarized would 

require a substantial integration effort between the 

vendor of the Web Services platform and our 

development team, there are no obvious obstacles to 

undertaking such an effort. 

Some of the Astrolabe uses outlined here require a 

degree of caution on the part of the programmer.  Recall 

that consistency in Astrolabe is a probabilistic property.  

Data will converge over time (so that, given enough 

time – seconds or minutes – multiple viewers will see 

the same data) but not instantly.  Thus, some caution 

must be taken in the way that Astrolabe is used.  

Actions should be triggered only after a pause to give 

the system time to stabilize, and applications should be 

designed to watch for evidence of “flapping” systems or 

other anomalies.  However, if actions are based on 

stable states and delayed by long enough to give 

Astrolabe itself time to reach a quiescent state, the 

approach offers a high degree of robustness and actions 

taken will be coordinated with extremely high 

probability.  We are doubtful that any technology could 

offer stronger guarantees. 

To reiterate a point made previously, today, the 

developer of a sophisticated distributed computing 

system is asked to work in the dark.  This limits 

availability and makes such systems far more expensive 

to administer than need be the case.  With new services 

such as the Astrolabe service, we can turn on the lights, 

enabling a new generation of far more automated 

computing systems that perform well under all sorts of 

conditions, adapt as conditions change, and configure 

themselves without requiring endless human 

intervention.  

6 Performance 

The dual goals of keeping this paper brief and of 

avoiding repetition of material reported elsewhere led us 

to omit any detailed performance section from this 

paper.  However, Astrolabe is a real system and we 

have evaluated it in great detail.  The interested reader is 

referred to [7]. 

Broadly, this evaluation consists of four parts.  In a 

first step, we used formal methods to develop a 

theoretical analysis of the scalability and propagation 

properties of the system.  Such an analysis is interesting 

to the extent that it seems to confirm our observations of 

behavior, but also limited insofar as we are forced to 

simplify the real world in order to reason about the 

technology.  The analysis predicts the logarithmic 

scalability properties outlined earlier, and also lets us 

predict the distribution of update delays.  Our work 

suggests that the exponential wave of infection that 

propagates updates not only makes the protocol itself 

robust to failures or network disruption, but also makes 

our analysis robust to these simplifications.  In effect, 

when simplifying the model of a network, one perhaps 

arrives at behavioral predictions that are overly 

optimistic or pessimistic.  But because that behavior is 

so strongly dominated by the exponential spread of 

information, such an error only leads to a minor 

inaccuracy.  Our experience has been that the formal 

analysis of Astrolabe is highly predictive of its 

behavior. 

A second style of evaluation focuses on two kinds of 

simulation.  First, using network simulation systems 

(NS/2) we have simulated Astrolabe to understand its 

behavior in a variety of network topologies and under a 

variety of loads and scales.  Second, we have looked at 

the behavior of our Astrolabe implementation by 

running the real software over a simulated network.  We 
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do this by injecting packet loss or delays so as to 

emulate conditions that might be encountered in the 

field.

Finally, we have worked with Astrolabe in real 

world settings, and evaluated its behavior as it runs.  

While such an approach has the benefit of being an 

evaluation of a real system in a real setting, one also has 

less control over competing applications which share 

resources, less ability to reproduce scenarios to 

understand precisely how they gave rise to an observed 

behavior, and less opportunity to systematically vary 

parameters which determine behavior. 

Jointly, these studies have confirmed that Astrolabe 

indeed exhibits the predicted logarithmic growth in 

update propagation latency, and that the system has 

stable, low, computing and communication loads.  We 

have subjected Astrolabe to a variety of stresses 

(failures, packet loss) and found it to be robust even 

under rather severe attacks.  In particular, conditions 

similar to those seen during distributed denial of service 

(ddos) attacks slow Astrolabe down, but not very much, 

and do not trigger any substantial growth in message 

rates or loads associated with the technology.  This 

suggests that Astrolabe may remain useful even when a 

network is experiencing severe disruption.  The 

possibility of using Astrolabe for distributed detection 

of such episodes and to trigger a coordinated response 

appears to be very promising.  

7 Related Work 

Our work draws heavily on prior research in peer-to-

peer computing and databases.  In the database area, the 

idea of building replicated databases using gossip 

communication dates to the Xerox Clearinghouse 

server, a flexible directory service for large networks.  

Discussion and analysis of the protocols used in this 

system appears in [2].  Subsequent Xerox work on a 

database system called Bayou takes the idea even 

further [6], and also includes a formal analysis of the 

scalability of push and pull gossip.  The idea of building 

large-scale information systems hierarchically is an old 

one; many elements of our approach were anticipated 

by Lampson [5] and Golding [3].  Work on treating 

large sensor networks as databases can be found in [1].  

The Ninja system replicates data using a peer-to-peer 

protocol similar to the one we use in Astrolabe, but 

lacks an aggregation mechanism [4]. 

8 Conclusions 

The Astrolabe system creates a new option for 

developers of ambitious autonomic computing 

applications which run in large networks.  Whereas 

traditional approaches collect data in a centralized 

server, Astrolabe implements a novel peer-to-peer 

protocol whereby queries can be computed directly in 

the network by the participating computers themselves.  

Although the loads imposed on participating computers 

are very small (and independent of the size of the 

system), the aggregated computing capability may be 

huge, hence we are able to solve problems that would 

be infeasible in a centralized solution.  Moreover, the 

approach scales much better than centralized ones, is 

robust against failures and attack, and propagates 

updates within seconds or tens of seconds even in 

networks with huge numbers of computing nodes.   
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