
Distributed Knowledge Management for Autonomous Access Control in 

Computer Networks
1

Alexandr Seleznyov and Stephen Hailes

Department of Computer Science, University College London 

Gower Street, London, WC1E 6BT, UK 

Email: {A.Seleznyov, S.Hailes}@cs.ucl.ac.uk 

1

 This work was supported by BT Labs, Martlesham, as part of the UCL@Adastral.Park MARS project. 

Abstract

This work discusses a conceptual model for automatic 

acquisition and processing of knowledge about users and 

devices in computer networks. It employs autonomous 

agents for distributed knowledge management and 

integrates them into an autonomic middleware 

component. Agents grouped into distributed communities 

act as mediators between users, devices, and network 

resources. Communicating between each other they make 

decisions on whether a certain user or device can be 

given access to a requested resource. In other words, 

agents in our system perform user/device authentication, 

authorisation, and maintenance of user credentials. 

Keywords: trust, access control, knowledge management, 

autonomous agents, autonomic computing, middleware, 

pervasive computing. 

1. Introduction 

Our society has become increasingly dependent on the 

rapid access to and processing of information. Increased 

connectivity not only provides access to a larger number 

of more varied resources more quickly than ever before, it 

also gives an access path to resources from virtually 

anywhere on the network. The number of cross-domain 

applications is therefore increasing and the domains 

themselves have become less internally coherent in terms 

of the levels of trustworthiness one might expect from 

their users. 

Although security mechanisms, such as PKI, already 

exist and are being used for authentication and access 

control, they require significant amounts of manual 

intervention; PKI costs are dominated by the management 

of policies and procedures [1]. Thus, as the number of 

network entities grows, the cost of maintaining proper 

policies and procedures has become unreasonably high, 

leading to the failure of PKI as a viable technology for 

general use. 

There is growing acceptance that centralised 

authorisation and authentication architectures will never 

have the semantic richness adequately to describe the 

uncertainties in trust that are inevitable in realistic current 

and near future deployments. Instead, there is a pressing 

need for distributed generic, autonomous (and hence 

autonomic), trust management systems in which entities 

are capable of taking greater responsibility for their own 

protection. Such approaches are particularly important as 

enablers for promising technologies such as pervasive 

computing.

In this paper, we present our considerations for 

building a resilient, dependable and fault-tolerant access 

control system that is usable in environments with the 

degree of heterogeneity likely to be found in pervasive 

systems. In reality, this can only be achieved by making 

the system context aware and adaptive, both of which 

mean a move further from the simple certainties of PKI. In 

order to ensure that the complexities of such systems do 

not overwhelm either the user or the application 

developer, and in order to ensure the greatest degree of 

application independence, we believe that the correct 

place for this authorisation system is at the middleware 

level.

Our Autonomic Distributed Authorisation Middleware 

system (ADAM) [2] relies on facilitating self-protection 

through the collection and collation of the data that results 

from the dynamic web of interactions between network 

entities. Distributed knowledge acquisition and 

management is used to authenticate a user, reason about 

her credibility, and establish an appropriate trust level 

authorising (or denying) access to requested resources. 

The reminder of the paper is organised as follows: In 

section 2 we review the basis on which our model is 

constructed. In section 3 we discuss conceptual model of 

knowledge management used by ADAM. Section 4 

discusses different contexts of information, and, finally, 

section 5 concludes this paper. 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 



2. Premises 

There are four logical components that must be taken 

into account while making an access control decision 

(Figure 1): sets of principals, resources, actions, and 

policies.

ActionsActions PrincipalsPrincipals ResourcesResources 

Policies 

Figure 1. Trust relation’s components 

The first set defines network entities that can request a 

resource or service. It consists of users, devices, and 

applications/processes. The second set represents network 

resources or services that may be requested. When a user 

requests access to a resource it is necessary to determine 

(i) whether the user is who they claim to be 

(authentication) (ii) whether this user is eligible to access 

the requested resource and what kind of actions she can 

perform on it (authorisation). In this paper, we focus on 

authorisation.

In order to respect the dynamicity of changing context 

in pervasive environments, it is essential to ensure that 

authorisation decisions are made at the granularity of 

requests for individual actions. Thus, in our model, each 

resource may advertise sets of actions that are permissible 

at any given point in time to given classes of user. Overall 

control of this process of trust establishment and 

maintenance is determined by local policies – the fourth 

component.

Our approach in ADAM can be differentiated from 

other trust management systems thus: (i) It is designed to 

facilitate automatic trust establishment and maintenance 

between entities situated in different network domains, 

which provides the flexibility necessary to allow it to 

function in a pervasive environment. (ii) The model 

allows each user to have multiple electronic identities. (iii) 

It only authorises, it does not authenticate; the 

authentication task is delegated to other components. (iv) 

Finally, instead of identity-based authorisation, we 

authorise each action. 

3. Knowledge Management in Distributed 

Environments

Most current models of access control require a 

statically defined set of rules to match against requests. 

Often, a central authority disseminates access lists or/and 

resources themselves have local authorisation rules. 

However, both approaches have a common problem – 

they use static information for which update mechanisms 

are slow and cumbersome.

In pervasive and mobile environments, greater 

dynamicity and greater decentralisation are required in 

view of the uncertainties associated with trustworthiness 

of entities and the rapidity of context change. 

Decentralisation can be achieved by utilising dynamically 

acquired information about interactions with other 

network entities in the decision to trust or not to trust a 

given principal. However, given the scale of the 

environment, it is essential to examine the form such 

interactions might take to determine whether (and how) it 

is practicable to exchange this information. 

It is fortunate for the decentralised approach that 

interactions between entities are non-random in nature. 

The physical structures of computer networks suggest that 

interactions between network entities form a small world 

network of preferable attachment [3] and this partially 

defines (and limits) the way that participants interact. 

Likewise, social cohesiveness is also a factor that limits 

the range of interactions and thus has the potential to be 

exploited both in managing the complexity of 

decentralised information gathering and in allowing 

behavioural stereotyping. A collected history of 

interactions is composed of a set of observations, and thus 

has two problems: (i) this history could become very 

extensive over time, (ii) there are no universally accepted 

semantics for observations. 

D
a
t
a

I
n
f
o
r
m
a
t
i
o
n

K
n
o
w
l
e
d
g
e

Voting

Lift ing

Decision

Making

Decision

Assessment

Transaction

History

Reputation

Data

Processing

D
a
t
a

I
n
f
o
r
m
a
t
i
o
n

K
n
o
w
l
e
d
g
e

VotingVoting

Lift ingLift ing

Decision

Making

Decision

Making

Decision

Assessment

Transaction

History

Transaction

History

Transaction

History

ReputationReputationReputation

Data

Processing

Data

Processing

Figure 2. Information flow in ADAM 

In ADAM, we collect this history and generalise it, to 

build knowledge about users. This knowledge is used as a 

credential whenever a user requests a network resource. In 

other words, trust decisions are based on knowledge built

by fusing information obtained from heterogeneous 

distributed sources, which is, in turn, based on data

obtained from direct observations (see Figure 2). 

Fortunately, the basic model of decision support – 

observe, orient, decide, act (OODA) – may be adapted 

here [4]. Agents observe histories of transactions (data), 

on which basis local reputations (information) are 

formulated. The orient functions include gathering 

different referrals and combining them (knowledge). To 

build this knowledge, the information must be correlated 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 



and lifted from one context to another since, to be able to 

decide how to proceed with the user request, it is 

necessary to compare observations based on different sets 

of parameters, taken from different environments 

(domains). After the decision has been made, agents act,

translating their decision into a set of authorisation 

restrictions, providing access, and monitoring resource 

manipulations within the given access restrictions. 

ADAM’s agents do not form a fixed structure. They 

cooperate by dynamically forming different communities. 

By analogy with social communities [5] we identify, from 

an information flow perspective, two types of agent 

groupings: groups of practice and groups of interest.

Groups of practice consist of agents resident in the 

same knowledge domain, sharing common practice or a 

long-term interest. Groups of practice have a relatively 

long lifespan and they exist as long as common practice or 

interest exists. For example, people who work together on 

particular projects or problems constitute a single 

knowledge domain. Agents resident within this type of 

domain are connected by strong ties [3]. Whilst groups of 

practice do not often undergo dramatic changes in their 

structure of shared knowledge, they are not static. Groups 

of practice adapt to environmental changes by changing 

membership and by updating common knowledge over 

time. Agents in a group of practice provide the means to 

support learning for recently created agents by sharing 

knowledge.

Agents involved in distributed knowledge management 

form groups of interest when processing a user request to 

access a resource. A group of interest exists only for as 

long as is required to process a user request. The only 

interest of the group is the collection of referrals from 

internal (intra-domain) and external (inter-domain) 

sources. Whatever the relationship between groups of 

interest and knowledge, agents are connected by weak ties 

[3] inside a group of interest.

Separation into groups of practice and interest is 

context-driven and is conditioned by the boundaries of 

knowledge domains. It allows the superposition of 

structure on an otherwise intractable problem, providing 

scalable and rapid access control mechanisms. It also 

solves some compatibility problems – it is possible to use 

different knowledge management techniques within 

different groups of practice as long as standardised 

protocols are used inside groups of interest. This means 

that it is possible to implement local knowledge 

management more efficiently, using techniques that 

perform better on this type of data in this context. 

4. Modelling Information and its Context for 

Access Control 

Figure 3 outlines the process of decision making in 

ADAM. When a user requests an action, a secure channel 

is established between the user terminal and user agent 

using a session key. In Figure 3 it is possible to see that 

user sends activation and gets acknowledgement, after 

which she can request network services. 

User

Authorisation

Agent

User

Agent

Activation

Ack.

Action Rq.

Link

Service

Rq.

Link

Service
Link

Group of

Practice

Rq. Credentials

Group of

Interest

Rq. Credentials

Network(s)

Figure 3. Decision-making process 

Once a transaction is requested, the user agent connects 

to the service and passes the user’s request. An 

authorisation agent is created to handle the request. It 

analyses the available user and connection data and 

returns information about service availability and 

requirements for a successful service request under 

current conditions. The user agent may, in turn, either 

provide the required information or ask the user to 

provide it. 

At this point, the authorisation agent needs to ascertain 

whether the user is who they claim to be; a task that it 

delegates to third trusted parties. After the user’s identity 

is confirmed, the authorisation agent must authorise the 

requested transaction. The main duty of this agent is to 

decide whether the requested transaction will lead to an 

event perceived to be beneficial (or neutral) to the 

resource,
+

Va , or harmful, 
−

Va  [6]. The relative strength 

of
−

Va  and 
+

Va  in arriving at a decision is defined by an 

agent’s attitude towards risk, which is formed with help of 

local policy during initialisation. According to Deutsch 

[6] a trusting choice will occur if the following holds: 

KPSVaPSVa +×>×

−−++

....  (1) 

where
+

..PS  is the subjective probability of attaining 
+

Va ,

and
−

..PS  of attaining 
−

Va . K is a “security level”, which 

is defined by policy. The values of 
+

..PS  and 
−

..PS  have 

to be determined and analysed by authorisation agent. 

For simplicity and speed, the request for referrals is 

first sent to the group of practice and, if there is 

insufficient information returned, members of the group of 

interest are asked to provide referrals. User agents may be 

resident in a different network from that in which the 

requested resource is situated (and the corresponding 

authorisation agent is resident). In this case, the user agent 

has no knowledge of local policy (access rules) nor of 

resource state (context) that would allow it to formulate an 

opinion about whether the request should be satisfied. An 

authorisation agent protecting a resource is, however, 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 



aware of the local policy. It translates a reputation query 

outcome (information about trustworthiness of the user’s 

identity provided by an authentication agent) into 

authorisation restrictions with help of local policy. In 

other words, a decision about the user request is a result of 

negotiation between user and authorisation agents.

Once the requested action has been performed, the 

authorisation agent evaluates its experience in terms of 

+

Va  and 
−

Va , and disseminates this before being 

destroyed.

4.1 Contextual Trust 

In our architecture, the assessment of user reputation is 

made according to information gathered from different 

sources situated in different knowledge domains. Each 

knowledge domain represents a group of practice that has 

own distinct interests, policies, and priorities. This means 

that each recommender agent bases its recommendation 

on some local information (possibly a history of 

transactions), the nature of which will be different in 

different domains. In addition to this, recommendations 

are biased by the domain’s practices. We use the TLA+ 

logic [7] to specify referrals. This logic allows the 

specification and checking of models of concurrent 

systems, and provides the ability to reason under 

uncertainty.

Trust cannot necessarily be generalised [8]. Thus, we 

define and use the notion of context to describe 

circumstances under which trust relationships or 

recommendations are valid. In other words, context of 

recommendation and context of trust are used to describe 

them more precisely, and to establish and express the 

boundaries of their existence. 

Context is an integral feature of any kind of 

information or knowledge [9]. The same information 

object can have different meanings and different names in 

two different contexts and be meaningless in a third. Thus, 

“the information contained in a context is dependent on 

that context” [9]. Fortunately, a range of different 

decontextualisation and lifting techniques have been 

developed and used in AI [10]. 

In order to be able to use information from different 

networks, we need to model it. In other words, we need to 

define different the types of data we expect to be available 

to our agents, describe it in such a way that we capture its 

meaning and make it understandable and useful for the 

agents. In ADAM there are numerous entities involved in 

information gathering and processing. Thus, there is a 

problem inherent in the data modelling task - differences 

of opinions (or even terminology) between agents. These 

are caused by differences of environments in which the 

agents are resident and the agents’ perception of these 

environments. Thus, it is necessary to ensure that 

assertions made in different knowledge domains with 

regard to user reputation are held in the local context of 

requested resource where the decision has to be made. 

Determination of information’s context and treatment of it 

as a separate object allows ADAM’s agents to deal with 

the inevitable uncertainty and inconsistency in the 

information base.

In most cases, the presence of inconsistency renders 

information meaningless. One method of dealing with 

inconsistency in data is by restoring its consistency before 

reasoning. However, this is not always possible; 

moreover, some important elements of knowledge may 

disappear. Inconsistent or contradictory information can 

be represented in the same information base as long as it 

is treated in different contexts [9]. Knowing this, it may 

sometimes be useful to retain inconsistent information 

[11], especially in the environment in which ADAM 

operates. Depending on the context of a request, one of 

the contradictory pieces of information would be chosen 

for reasoning. 

Currently, there is no generic definition of context. 

Different approaches define context for their own 

purposes, such as: lexical analysis [12], AI [13], mobile 

computing [15], etc. ADAM uses AI techniques and, 

therefore, should be able to use the definition of context 

established for AI [13]. However, in artificial intelligence, 

contexts have primarily been introduced as means of 

partitioning knowledge into manageable sets [14]. In 

ADAM, the grouping of information by context is not 

desirable. On the contrary, we need to combine pieces of 

information from different contexts by creating relative 

interpretations in a single context for all such pieces. 

Thus, in ADAM, context is any knowledge about the 

environment from which information or data was 

extracted. It is a set of assumptions about the environment 

formalised as an abstract object, relative to which the 

description of objects is given. In ADAM, it is not 

possible to separate knowledge from its context; 

knowledge exists only in the form of relative

interpretations.

There are several elements on which context can be 

based [9], categorised as temporal, spatial, functional, and 

structural. Below we define them for ADAM and explain 

how they affect knowledge acquisition. 

The first factor is temporal. The network environment 

changes over time and, therefore, knowledge about 

networks and their entities must be updated to reflect the 

changes. In other words, information may be correct in 

one temporal state of a knowledge domain and incorrect 

or meaningless in another. The temporal aspect of context 

raises a very important question of how to establish a 

tradeoff between accuracy of information and its 

freshness. ADAM assesses users’ reputations according to 

the history of transactions. The longer the history, the 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 



more accurate the resulting knowledge, and the more 

confidence ADAM can have in its decisions. On the other 

hand, older transactions may have been performed in a 

context that is no longer extant, which may result in 

inadequate decisions. Thus, to avoid these situations, the 

length of the history of transactions must be carefully 

tailored.

Another vital factor in context formation is spatial. As

mentioned above, ADAM agents function in a range of 

networks in which the same object may be described 

differently, information meaning may change, etc. It is 

crucial to preserve an object’s meaning when transferring 

it from one context (domain) to another. In ADAM, the 

functional factor is aligned with the spatial because, by 

definition, we divide domains according to their practices. 

The last main factor that may affect context formation 

is structural. If we have a complex object we may 

consider it from different points of view according to its 

main structural elements. Each point of view may 

constitute a different context. 

In addition to the above-mentioned factors, there are 

two levels of abstraction for which context is involved: 

resource and domain. The domain context is determined 

by the main practice of the domain. Likewise, each 

resource inside the domain has its own, narrower, context 

that depends on the nature of information and services the 

resource provides. Figure 4 shows the two context factors. 

Authorisation

agent

Authorisation

agent

Resource

1

Resource

1

Resource

N

Resource

N

…

Resource 1

Context

Resource N

Context

Domain N

Context

Domain 1

…

Domain 1

Context

Figure 4. Resources’ and domains’ contexts factors 

As can be seen from Figure 4, a model that takes into 

account both context factors would be most accurate and 

flexible. However, it is complex, since it requires two-step 

context combination process. In ADAM, we use both 

context factors, with some simplifications. For direct 

observations and recommendations, agents know and use 

contexts of the resources to which they are sending 

requests for referrals. If, however, an authorisation agent 

needs to ask some domain about a reputation, it has no 

knowledge of the concrete resources inside the domain. 

The domain itself identifies the sources and combines the 

information obtained from them into a trust value. 

5. Conclusions 

This paper presents a conceptual model of a knowledge 

management approach aimed at automation of the trust 

establishment process. The model relies upon two groups 

of agents: mobile user agents protecting user interests and 

authorisation agents protecting network resources. The 

access control decisions are results of negotiations 

between them. In this paper we also identified many 

problems that must be solved before the proposed model 

can be used efficiently in real life. 

6. References 

[1] Rothke, B. Security Strategies for E-Companies: an insiders 

view, Information Security Magazine. 2001. 

[2] Seleznyov, A., Hailes, S. A Conceptual Access Control 

Model Based on Distributed Knowledge Management, To 

appear in Proceedings of 18
th

 International Conference on 

Advanced Networking and Applications, Japan, 2004. 

[3] Buchanan, M. Nexus: Small Worlds and the 

Groundbreaking Science of Networks, W.W. Norton & 

Company, 2002. 

[4] Bass, T. Intrusion Detection Systems and Multisensor Data 

Fusion, Communications of the ACM, Vol. 43, Num. 11, pp 

99 - 105, 2000. 

[5] Fischer, G., Ostwald, J. Knowledge Management: 

Problems, Promises, Realities, and Challenges, IEEE

Intelligent Systems, Vol. 16, Num. 1, pp. 60-72, 2001. 

[6] Deutsch, M. The Resolution of Conflict, Yale University 

Press, New Haven, 1973. 

[7] Lamport, L. Specifying Concurrent Systems with TLA+. 

Calculational System Design, (Eds.) Broy, M. and 

Steinbrüggen, R., ISBN: 90 5199 459 1, 1999. 

[8] Barber B. Logic and Limits of Trust, New Jersey:Rutgers 

University Press, 1983. 

[9] Theodorakis, M. Contextualization: An Abstraction 

Mechanism for Information Modelling, PhD, Department 

of Computer Science, University of Crete, 2001. 

[10] Norrie, M., Wunderli, M. Coordination system modelling, 

Proceedings of the 13
th

 International Conference on The 

Entity Relationship Approach, Manchester, 1994. 

[11] Gabbay, D., Hunter, A. Making Inconsistency Respectable: 

Part 2 Meta-level handling of inconsistency, Symbolic and 

Qualitative Approaches to Reasoning and Uncertainty 

(ECSQARU'93), LNCS, pp. 129-136, 1993. 

[12] Buvac S. Resolving Lexical Ambiguity using a Formal 

Theory of Context, in Van Deemter and Peters (Eds.) 

Semantic Ambiguity and Underspecification, CSLI 

Publications, Stanford, 1996. 

[13] McCarthy, J. Generality in artificial intelligence, 

Communications of the ACM, 30(12), pp. 1030-1035, 1987. 

[14] Hendrix, G. Encoding Knowledge in Partitioned Networks. 

In Nicolas Findler, eds., Associative Networks. New York: 

Academic Press, 1979. 

[15] Julien, C., Roman, G.-C., and Huang, Q., “Declarative and 

Dynamic Context Specification Supporting Mobile 

Computing in Ad Hoc Networks,” Technical Report 

WUCSE-03-13, Washington University, CS Department, 

St. Louis, Missouri.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47


