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Cluster hash tables (CHTs) are key components of many large-scale Internet services due to their
highly-scalable performance and the prevalence of the type of data they store. Another advantage of
CHTs is that they can be designed to be as self-managing as a cluster of stateless servers. One key
to achieving this extreme manageability is reboot-based recovery that is predictably fast and has
modest impact on system performance and availability. This “cheap” recovery mechanism simplifies
management in two ways. First, it simplifies failure detection by lowering the cost of acting on false
positives. This enables one to use statistical techniques to turn hard-to-catch failures, such as node
degradation, into failure, followed by recovery. Second, cheap recovery simplifies capacity planning
by recasting repartitioning as failure plus recovery to achieve zero-downtime incremental scaling.
These low-cost recovery and scaling mechanisms make it possible for the system to be continuously
self-adjusting, a key property of self-managing systems.
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tem architectures; C.4 [Computer Systems Organization]: Performance of Systems—Reliability,
availability, and serviceability

General Terms: Design, Measurement, Reliability
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age systems design

1. INTRODUCTION

In current computer systems, the cost of administration dwarfs the cost of
hardware and software. With typical companies requiring one administrator
per 1-10 terabytes and data demands growing to the petabyte range, simplify-
ing state management is increasingly important [Gray 2003]; this is especially
true for Internet services, which must deliver content from massive datasets
for fractions of a penny per access. In recent years, to address the system
administration challenges, large research and development efforts have been
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undertaken to design systems that can be managed with little or no human
intervention [Gibbs 2002; Microsoft Corporation 2004; IDC 2003; Sun Microsys-
tems 2002; Ganger et al. 2003]. This article addresses a slice of the larger “self-
management” problem and focuses on designing extremely easy-to-administer
state stores for large-scale Internet services.

A practical illustration of a self-managing system is a cluster of stateless
HTTP frontends, which can be managed with a few simple mechanisms that
lend themselves to automation. First, proactive rolling reboots and reboots of
potentially anomalous nodes are used to resolve transient failure and perfor-
mance degradation, or “fail-stutter,” caused by factors like memory leaks and
other software aging effects [Arpaci-Dusseau and Arpaci-Dusseau 2001; Garg
et al. 1998]. Second, adding and removing nodes in a “plug-and-play” manner
enables one to reactively scale the system to match current load [Fox et al.
1997]. What makes these simple failure-handling and load-provisioning poli-
cies so effective is the existence of low-cost mechanisms for recovery and scaling.
The key property that makes these mechanisms low cost is interchangeability.
Since any node can serve any request, node shutdown, recovery, and scaling
can occur independently of other nodes.

In contrast, many stateful systems have higher recovery and scaling costs.
Relational databases and network file systems can take minutes to recover
from a failure, and scaling performance capacity requires administrator inter-
vention and nontrivial downtime [PASS Consulting Group 2001; Rowe 2002].
Even in systems that mask failures with failover nodes, when read-one-write-
all (ROWA) and primary-secondary replication schemes are used, the failover
process can take over a minute [Rowe 2002] and recovery may involve freezing
writes while missed updates are copied to the recovering node [Liskov et al.
1991; Gribble et al. 2000].

When recovery and scaling incur significant downtime and administration
cost, the burden of ensuring high availability falls on the accuracy of fail-
ure detection and capacity planning. In the presence of all types of tran-
sient failures, including fail-stutter, fast failure detection is at odds with ac-
curate failure detection—reacting quickly to potential failures may lead to
false positives, while waiting to collect enough observations to accurately iden-
tify failures may results in a higher mean-time-to-repair. In Internet services
where load can vary by an order of magnitude or more, resource provision-
ing involves a difficult tradeoff—heavy overprovisioning results in unneces-
sary operating costs, while allocating too few nodes results in higher ad-
ministration cost and system downtime due to having to scale the system
repeatedly.

These failure detection and capacity planning challenges would largely van-
ish if stateful systems could be managed with the same set of simple mecha-
nisms and policies that have been found to be so effective for stateless fron-
tends. This article provides some insight on how this can be accomplished by
examining the design of two “crash-only” state stores in which components are
designed to crash safely and recover quickly [Candea and Fox 2003]. First,
we demonstrate that by decoupling nodes, we can make recovery extremely
“cheap” in that it is predictably fast and has predictably small impact on system

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.



40 • A. Huang and A. Fox

Fig. 1. Tiered Internet application that uses cluster hash tables (CHTs) as part of its overall
storage solution.

availability and performance. In contrast, maintaining strict consistency among
replicas in ROWA causes coupling of performance and availability between
nodes [Gribble et al. 2000]. Second, we demonstrate that cheap recovery, by
lowering the cost of recovery and scaling, helps address the failure detection
and capacity planning challenges. More specifically:

(1) We simplify failure-handling by leveraging cheap recovery and aggressive
anomaly-detection to turn node degradation into failure followed by
recovery.

(2) We simplify capacity planning by recasting repartitioning as failure plus
recovery to achieve zero-downtime incremental scaling.

(3) We implement a decoupled persistent state store to serve as a testbed for
exploring the benefits of cheap recovery and developing self-management
principles.

2. THE EMERGENCE OF CLUSTER HASH TABLES

In large-scale Internet services, cluster hash tables (CHTs) have emerged as
a critical component in the overall state-storage solution (see Figure 1). One
primary advantage of a CHT is its ability to scale linearly to achieve high
performance [Gribble et al. 2000]. For this reason, single-key-lookup data such
as Yahoo! user profiles and metadata for Amazon catalog items is stored in
CHTs [Pal 2003; Vermeulen 2003].1 Another common design pattern involves
using a CHT as a base storage layer and placing more complex query logic in the
application. Inktomi’s search engine accesses several CHTs on each query, the
largest of which is a 1012-entry table that maps a word’s MD5 hash to a list of
document IDs for pages containing that word [Brewer 2004]. In Ebay, although
databases make up its storage layer, complex queries involving cross-node joins
and foreign-key constraints are performed in the application to achieve greater
scalability [Grossfeld 2003]. These examples show that certain types of data do
not require the full generality of databases and can instead be stored in a CHT
for improved scalability and performance.

1Although “personal communication” does not carry the same weight as published articles, since the
information typically comes from senior technical principals, we felt it was valuable to include the
citations as examples of existing successful practices in large-scale production services for which
there are rarely any publicly-available articles.
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To reveal the important principles for building self-managing systems, we
designed DStore (Decoupled Storage), a CHT that stores persistent data such as
user profiles, catalog metadata, and shared workflow data. This article shows
that just as CHTs have been built for immense performance and scalability,
by focusing on a particular class of data, we can design CHTs for extreme
manageability as well. In the rest of this article, we present DStore’s design,
implementation, and evaluation, followed by philosophical thoughts on building
self-managing systems in general.

3. ACHIEVING CHEAP RECOVERY

To make recovery cheap in DStore, we follow two design principles based on
the idea of decoupling. The first principle is to tolerate replica inconsistency by
using quorum-based replication [Gifford 1979]. In the basic quorum scheme,
reads and writes are performed on a majority of the replicas. Since the read
set and write set necessarily intersect, when we use timestamps to compare
the values returned on a read, the most up-to-date value is returned. Thus,
quorums allow some replicas to store stale data while the system returns up-
to-date data. What this means in practice is that a failed replica does not need
to execute special-case recovery code to freeze writes and copy missed updates.

Although a wealth of prior work uses quorums to maintain availability un-
der network partitions and Byzantine failures [Davidson et al. 1985; Pierce
2000], few real-life systems do this, perhaps because these failure modes are
too rare [Wool 1998]. Instead, we use quorums to simplify the mechanisms for
adding new nodes and rebooting failed nodes, which are frequent occurrences
in Internet services. The main cost of quorum-based replication is storage over-
head, which we address in the next section.

The second principle is to avoid locking and transactional logging by using
single-phase operations for updates. In replicated state stores that use two-
phase commit, recovery involves reading the log and completing in-progress
transactions by contacting other replicas. Meanwhile, replicas holding data
locks for in-progress transactions may be forced to block, causing data unavail-
ability during both failure and recovery. Although the quantity of data affected
by blocked transactions is likely to be small, since users are currently accessing
the data, the impact of making in-progress data unavailable is high compared
to taking an arbitrary portion of the dataset offline. By using single-phase
operations, we avoid locking data during failures and cleaning up those locks
on recovery. The main cost of single-phase operations are extra consistency
mechanisms that incur extra cost to certain read requests and to the application
logic.

Our design principles point to two forms of coupling—the strict consistency
in ROWA and the locking in two-phase commit. To completely eliminate cou-
pling, replicas must be completely interchangeable so that any request can be
serviced by any node. This is difficult in practice when persistent state is in-
volved. We, therefore, approximate this goal by making certain that a request
never depends on the availability of any specific replicas, but rather on some
minimum-sized subset of replicas.
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Fig. 2. DStore architecture: Dlibs are libraries, which expose a hash table API and service requests
from the application by issuing distributed quorum operations on bricks, which store persistent
data.

4. CHEAP RECOVERY TRADEOFFS

To understand the tradeoffs involved in using quorums with single-phase
writes, it helps to have a basic understanding of DStore’s architecture, shown in
Figure 2. Dlibs (DStore libraries) expose a hash table API and service requests
by acting as the coordinator for distributed quorum operations on bricks, which
store persistent data. Based on typical uses of CHTs, we assume the following
usage model: when a user issues a request to the Internet service, the request
is forwarded to a random application server, which performs one or more hash
table operations on the Dlib to fulfill the request.2 For the discussion on consis-
tency, we consider consistency from the point of view of individual Dlibs making
multiple requests, as well as from the point of the view of the end-user. How-
ever, if a single end-user issues requests from two separate browser windows,
we consider each window to be a separate user.

To handle a request, the Dlib first identifies the bricks responsible for storing
the given key (replica group). For writes, the Dlib issues the write to all bricks
in the replica group, and waits for a majority to respond. As is typical with
hash tables, writes completely overwrite the current value. For reads, the Dlib
queries a majority of bricks in the replica group and uses timestamps to deter-
mine which value to return. As in Phalanx [Malkhi and Reiter 1998], before
returning, if the timestamps do not match, the Dlib issues read-repair opera-
tions with the up-to-date value-timestamp pair to bricks that returned stale
values. This ensures that a majority of the bricks have the up-to-date value
upon returning from the read.

4.1 Quorums and Storage Overhead

Quorums require a higher degree of replication than ROWA to achieve an equiv-
alent level of fault tolerance because tolerating N failures requires N +1 bricks
with ROWA, and 2N + 1 bricks with quorums. To capture the entire cost, how-
ever, we must consider common failure scenarios and clarify what it means to
“tolerate failures.” When considering overall availability, one must take into
account availability during recovery. In ROWA, bringing the failed brick up to
date causes a big dip in write availability [Gribble et al. 2000], whereas in quo-
rums with read-repair, the cost of recovery is spread out over time as on-demand
repair operations cause a slight dip in write throughput and an increase in read

2Although session affinity is often used to route all of a user’s requests to the same application
server, we do not rely on this mechanism.
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latency for some reads. Therefore, if one needs to meet a certain minimum level
of service, using quorums can actually make provisioning for failures simpler
and less costly.

Quorums also require a greater number of replica groups to match the read
performance of ROWA. On a read, 1 brick is queried in ROWA, while �(N +1)/2�
bricks are queried in quorums. To alleviate this, we use a read-timestamp opti-
mization in which we read the value-timestamp pair from one replica and treat
the remaining replicas like witnesses, reading only timestamps even though
they also store the data [Paris 1986]. This technique is effective if the value
returned is up-to-date and if reading a timestamp is faster than reading the
actual value. Since writes are issued to all bricks, the value returned is usually
up-to-date, which avoids having to issue a second request to obtain an up-to-
date value. Furthermore, when the value size is large, compared to the 8-byte
timestamp size, most timestamps in the working set can be cached in the brick’s
RAM. Under these conditions and assuming that extra communication cost can
be absorbed by the network, the overhead of reading timestamps from an in-
memory cache is insignificant compared to the cost of reading a value from disk.
If, instead, timestamps do not fit in memory, the resulting performance penalty
can be resolved by adding more replica groups. However, since administration
costs make up a large fraction of the overall storage cost, the cost increase is
offset by the simplified management that cheap recovery provides.

4.2 Single-Phase Writes and Consistency

The main challenge in using single-phase operations is ensuring consistency.
Two-phase commit guarantees sequential consistency, a concept first defined
for shared-memory multiprocessor (SMP) systems:

[A system is sequentially consistent if] the result of any execution is
the same as if the operations of all the processors were executed in
some sequential order, and the operations of each individual proces-
sor appear in the order specified by its program. [Lamport 1979]

A “processor” in the above definition is analogous to a Dlib, which issues load-
and-store requests to execute the program logic. Meanwhile, an SMP memory is
analogous to a DStore brick, which executes load-and-store operations. There-
fore, sufficient conditions for sequential consistency in DStore are as follows:

C1 All Dlibs issue brick requests in program order.
C2 If a Dlib issues a get, the Dlib may not issue another request until the value

which is to be read has both been bound to the get operation and become
accessible to all other Dlibs.

C3 If a Dlib issues a put, the Dlib may not issue another request until the value
written has become accessible by all other Dlibs [Scheurich and Dubois
1987].

Since Dlibs do not reorder requests, C1 is satisfied. The rest of this section
describes the mechanisms DStore uses to meet C2 and C3 to achieve sequential
consistency.
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Fig. 3. Partial write: Delayed requests or Dlib failures can result in an inconsistent read.

4.2.1 Ordering Concurrent Writes. First, we describe how DStore orders
concurrent writes. Rather than locking data, Dlibs determine the global update
order by generating a globally-unique physical timestamp (local time, IP ad-
dress) on each update. Following the Thomas Write Rule [Thomas 1979], bricks
execute the update only if the new timestamp is more recent than the current
timestamp. Thus, bricks “agree” on the update order without explicit coordina-
tion. However, since timestamps are generated from local clocks, we must be
careful to avoid lost writes, in which a past write is effectively overwritten by a
more recent write because the clocks are out-of-sync:

U1: w1(k,a,ts1)
U2: a←r1(k) w2(k,b,ts2) a←r2(k)

� time.

Since r2(k) returns the previously-written value a, it must be the case that ts2 <

ts1, resulting in w2(k, b, ts2) being lost. However, w2 → w1 is inconsistent with
the order as seen by U2. To prevent inconsistency, bricks return a timestamp er-
ror for w2 along with the current timestamp ts1. This allows the Dlib to update
its clock, generate a new timestamp, and retry the request. As an optimization,
clocks can be synchronized to reduce the occurrence of timestamp errors.

4.2.2 Read Repair Satisfies C2. For a given key, if get(k) returns v, a
subsequent request by any Dlib must return a value no older than v. As long as
the quorum majority invariant is maintained, the most recent value is returned
on all get requests, satisfying C2. However, as shown in Figure 3, a delayed re-
quest, or a Dlib failing while processing a put, can cause a partial write, where
the write has reached some, but not a majority, of the bricks.3 When this occurs,
depending on which bricks are queried on a get, different values are returned.

Figure 4 shows how the read-repair mechanism described earlier resolves
partial writes by committing the partially-written value vnew before the get
request r2(k) returns. Once vnew is committed, all future get requests return
vnew. It follows that get requests issued prior to the commit point returned vold;

3Note that the unlabeled timeline next to the user’s timeline represents a random Dlib that may
be different for each user request.
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Fig. 4. Read repair: Once vnew is returned, all subsequent requests return a value at least as
recent as vnew.

Fig. 5. Inconsistent orsering: Read repairs delayed-commit semantics causes, U1 to see inconsis-
tent ordering.

otherwise, vnew would have been committed already. In summary, before each
get request returns, read repair ensures that the quorum invariant is upheld,
thus satisfying C2. Another way to look at it is that read repair binds all get
requests to a fixed value between commit points.

4.2.3 Write-In-Progress Cookie Satisfies C3. In Figure 4, as far as U2 can
tell, the write appears to have been executed atomically at the commit point.
However, as shown in Figure 5, since U1 knows when partial write w1 was
issued, seeing the update being committed at a later time results in inconsis-
tency. In general, if a user issues a put and issues another request before the
write is commited, C3 is violated.

When the application server a Dlib resides on fails, the Web server tier can
retry the request on a different application server, or an application-level error
can cause the user to resubmit the request via HTTP Retry-After. In either
case, any partial write that occurred is overwritten and U1 sees consistent
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Fig. 6. Write-in-progress cookie: Before U1 issues another request, any partial writes are commit-
ted or aborted, thus ensuring consistent ordering.

event ordering. If instead, U1 issues a get before retrying, we must commit any
partial writes made by U1, before processing any other requests. To accomplish
this, we must record the fact that a write is issued but has not completed.
Rather than adding another phase to the write protocol to keep a write history
on the bricks, we effectively store the “state” associated with two-phase commit
at the client. When U1 clicks submit, client-side JavaScript code writes an in-
progress cookie on the client before the request is submitted. Upon success,
the server returns a replacement cookie with the in-progress flag cleared. On a
subsequent read, the cookie is sent along with U1’s request. Shown in Figure 6,
if the cookie’s in-progress flag is not cleared, the Dlib reads the values from all
bricks to find the most recent value and writes that value to a majority of the
bricks, reestablishing the quorum invariant. Thus, C3 is satisified because U1
is not allowed to issue another request until U1’s previous put is committed.
As an alternative to using the write-in-progress cookie, Internet services can
implement other application-level techniques to force a user to reissue the put
request before performing another operation.

4.2.4 Recovery Tradeoffs Summary. In summary, quorums can be used
to simplify recovery and keep data available throughout recovery at the cost
of extra storage and communication overhead. Although two-phase commit
can be used on top of quorums, we use single-phase operations to further
simplify recovery and keep all data available during failure. Together, these
techniques allow us to research the extreme design point of cheap recovery.
Table I summarizes the practical tradeoffs between two-phase commit and
single-phase operations.

To make the consistency discussion more concrete, we conclude this section
by listing some applications for which DStore’s API and consistency guarantees
would and would not be appropriate:

—Single-user data (yes): user profiles, shopping carts, workflow data for tax
returns,
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Table I. Practical Tradeoffs Between Two-Phase Commit and Single-Phase
Operations

Property 2-Phase Commit Single-Phase Operations
Recovery Read log to complete No special-case recovery

in-progress transactions
Availability Locking may cause requests No locking

to block during failures
Performance 2 synchronous log writes 1 synchronous update

2 roundtrips 1 roundtrip
Other costs Supports multi-operation Read repair causes slight
and benefits transactions performance degradation

Relies on client to store
write-in-progress cookie

—Single-producer multi-consumer (yes): catalog metadata, search engine data
(retailers/crawlers make updates, which are reflected on the site)

—Multi-producer multi-consumer (probable): auction bids (users submit bids,
which other users see after some delay)—requires application-level checks
that may require atomic compare-and-swap [Gribble et al. 2001],

—Non-overwriting objects (no): workflow data for insurance claims (multiple
users update separate portions of a single document)—since updating stale
data on a quorum replica has undefined results, use ROWA instead.

5. IMPLEMENTATION DETAILS

In this section, we discuss details of the DStore implementation. Recall that
DStore is composed of two components, Dlibs and bricks. A Dlib is a Java class
that presents a single-system image with the consistency model detailed in the
previous section. The Dlib API exposes put(key,value) and get(key) meth-
ods where keys are 32-bit integers and values are byte arrays. Dlibs service
requests by issuing read/write requests to bricks via TCP/IP socket connec-
tions. In order to act as the coordinator for these distributed operations, Dlibs
maintain soft state metadata about how data is partitioned and replicated. For
each brick, Dlibs also maintain TCP-style (additive-increase, multiplicative-
decrease) sending windows to help prevent overload. Finally, Dlibs maintain
request latency statistics, which are used in making repartitioning decisions.

Bricks store persistent data accessed via the brick API—write(key,value,
ts), read val(key), and read ts(key). For reading data, read val returns
a value-timestamp pair, while read ts returns only the timestamp. On a
write, the brick checksums the key-value-timestamp object and writes it
synchronously to disk. Bricks also cache timestamps in an in-memory Java
Hashtable, and use the file system buffer cache to cache values. Since the times-
tamp cache is updated after the value is written to disk, if a brick fails while
processing a write, on a read, it conservatively returns a timestamp that is no
newer than the timestamp of the value on disk.

Currently, data is stored in files as fixed-length records where the record size
is configured at table-creation time. Although this scheme is constrained by its
fixed-length nature, it is appropriate for datasets with low value-size variance,
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such as Amazon’s catalog metadata database, which has fixed-size entries
[Vermeulen 2003]. Since the underlying storage scheme is orthogonal to
DStore’s design techniques and is not critical for evaluating the system’s
recovery and manageability, simplicity is the main reason this scheme is used.
Nevertheless, bricks are designed so that it is easy to plug in different storage
schemes. For example, implementing wrapper code for Berkeley DB [Olson
et al. 1999] took less than an hour and changing storage schemes takes a
matter of seconds.

Bricks maintain two open TCP/IP socket connections (send and receive) per
Dlib, one control channel used for initiating recovery and repartitioning, and
three message queues (read, put, and ts) serviced by individual thread pools.
Like router QoS queues, differentiating requests enables administrators to pro-
vision resources and maintain a minimum level of service for each request type.
Furthermore, differentiating longer-running write requests from read requests
reduces the service time variance, and subsequently, the average queuing de-
lay [Trivedi 2002].

5.1 Keyspace Partitioning

Storage and throughput capacity is scaled by horizontally partitioning the hash
table across bricks. Each partition is replicated on a set of bricks to form a replica
group, the unit upon which quorum operations are performed. Keys are parti-
tioned across replica groups based on the keys’ least-significant bits, called the
replica group ID (RGID). Later we show how the keyspace can be dynamically
repartitioned without loss of availability to compensate for an uneven workload
or heterogeneous brick performance.

Upon startup, each brick is configured with an RGID-mask pair, which it
beacons periodically to distribute metadata and indicate liveness. For example,
if brick B beacons (1, 11), this tells Dlib’s to use the last two bits of the key
to find B’s RGID, 01. Using this information, Dlibs build a soft-state RGID-to-
brick mapping (RGID map). To find the replica group storing a given key, Dlibs
find the entry with the longest matching suffix.

The beaconing period is a system-configurable parameter (currently set to
two seconds), so in between beacons, a Dlib’s RGID map may become stale.
Since each brick is the ultimate authority of its own RGID, if a Dlib sends a
request to the wrong brick, the brick returns a WRONG REPLICA GROUP error. Once
the Dlib’s RGID map is updated on the next beaconing period, the request is
sent to the correct set of bricks. Finally, a brick can be a part of more than one
replica group by announcing multiple RGIDs. This feature is used to spread
load across a heterogeneous set of bricks and in the repartitioning algorithm
described later.

5.2 Detailed Algorithms

DStore’s put and get algorithms, which were outlined earlier, are described
here in full detail. For this discussion, let N be the number of bricks in a
replica group, let WT (write threshold) be the minimum number of bricks that
must reply before a put returns, and let RT (read threshold) be the minimum

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.



Cheap Recovery: A Key to Self-Managing State • 49

number of bricks that are queried on a get. In DStore, we choose WT and RT
to be a majority—�(N + 1)/2�. However, in general, WT and RT can be chosen
such that the read and write sets intersect: WT + RT > N .4

Dlib put: On a put, the Dlib generates a physical timestamp from its local
clock and appends its IP address. The timestamped value is sent to the entire
replica group, but the Dlib only waits for the first WT responses to ensure
the quorum majority invariant holds, and ignores any subsequent responses.
Pseudo-code for all algorithms are provided in the appendix.

Brick write: A brick overwrites a value only if the new value has a more
recent timestamp. Otherwise, the brick returns TIMESTAMP ERROR.

Dlib get: On a get, the Dlib selects RT bricks from the replica group, and
issues a read val request to one brick and read ts requests to the remaining
RT−1 bricks. Since the relative sending window capacities reflect relative brick
load, Dlibs use this measure to perform simple load-balancing for read requests.
After the value and all the timestamps are returned, the Dlib calls the check
method to confirm that the value is up to date.

Dlib check: On each get, two checks are performed on the timestamps. First,
the Dlib checks whether the timestamp for value is the most recent one re-
turned. If it is, value is returned—Otherwise, the value is read from the brick
that returned the most recent timestamp. Second, the Dlib checks whether at
least WT bricks have the most recent timestamp. If not, the most recent value
and timestamp are written back to ensure that enough bricks contain an up-to-
date value. This repair mechanism is used to repair partial writes arising from
Dlib failures.

5.3 Recovery Mechanism

The final implementation detail we discuss is the brick recovery mechanism,
which is used by the failure detection mechanisms described later. To restart a
failed brick Bf , a Dlib scans its RGID map for the brick with the next-highest
IP address Br , and sends a RESTART BRICK message to Br ’s control channel. If
Br does not respond because it too has failed, the brick with the next-highest
IP address is asked to restart both bricks. The Dlib also removes Bf from its
RGID map so that requests are not sent to Bf until it recovers.

To restart the brick, Br runs a script that first sends a kill -9 to Bf ’s brick
processes. Next, the script attempts to restart the brick processes. If instead,
Bf ’s machine does not respond at all, the node can be restarted using an IP-
addressable power source. Since multiple Dlibs are likely to detect Bf ’s failure,
Br does not perform recovery more than once every four seconds (two times
the beaconing interval). Further, since restarting a brick only cures transient
failures, if the brick has been restarted more than a threshold number of times
in a given period, it is assumed the brick has a persistent fault and should be
taken offline. Automatically reconstructing data after disk failures and allowing
failed components to be replaced en-masse, say on a weekly basis, are next steps
in our future work.

4Quorum systems generally also require that 2 ∗ WT > N so that simultaneous writes can be
ordered. However, we use physical timestamps, which eliminates this requirement.
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When a brick recovers, it does not freeze writes to copy missed updates or
read a log to complete in-progress transactions. Rather, the recovered brick is
incrementally updated using on-demand read-repair. When a recovered brick
starts up, the timestamp cache must be loaded before system capacity is fully
restored. Timestamp loading can be configured in one of two ways. If cache
preloading is on, capacity is restored once the brick comes online. Otherwise,
timestamps are loaded after start up in an on-demand fashion.

6. RECOVERY BENCHMARKS

In this section, we evaluate how well DStore achieves its goal of cheap recov-
ery. We first measure basic performance and scalability, and then show system
behavior during failure and recovery.

6.1 Benchmark Details

All benchmarks are run on the UC Berkeley Millennium cluster, which has
40 PCs with dual 1GHz Pentium III CPUs, 1.5GB RAM, and dual 36GB IBM
UltraStar 36LZX hard drives. Nodes are connected by a 100Mb/s switched Eth-
ernet. A single instance of a brick or client application is run on each node
using Sun’s JDK 1.4.1 on top of Linux 2.4.18. DStore is configured with three
bricks per replica group (N = 3), and 1-KByte records. The number of threads
allocated to service the write, read val, and read ts queues is 14, 32, and 10,
respectively, which produces a workload mix of around 2.5 to 5 percent writes.
To generate load, clients perform closed-loop operations5 on random keys and
1-KByte values. This 1-KByte value size falls within the range of typical hash
table object sizes in Internet services [Pal 2003]. Enough clients are run to sat-
urate the bricks in steady-state with writes accounting for approximately 2%
of the workload.

6.2 Steady-State Performance

Although designed for manageability, DStore retains the high performance and
scalability of CHTs. First, we show that under reasonable cache hit rates, the
read-timestamp optimization gives quorums read performance comparable to
ROWA. Second, we show that DStore throughput scales linearly with the num-
ber of bricks.

Timestamp read overhead. To evaluate the effectiveness of DStore’s read-
timestamp optimization, we compare the read performance of ROWA versus
quorums under different cache hit rates. We run a three-brick DStore with 2GB
of data and induce approximate cache hit rates between 60 and 100 percent. The
client induces a hit rate c by generating a random integer i, between 1 and 100,
on each request. If i ≤ c, the key k is chosen to fall within the 1.2GB working
set: 0 ≤ k < 1.2M . If i > c, k is chosen to induce a disk access: 1.2M ≤ k < 2M .

Figure 7 shows that although ROWA outperforms DStore when the work-
ing set fits in memory, the disk quickly becomes the bottleneck for lower,
more realistic cache hit rates and performing the extra timestamp read

5closed-loop = a new request is immediately issued after the previous request returns.
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Fig. 7. ROWA vs. Quorums: In quorums, under realistic cache hit rates, reading extra timestamps
from cache has little effect on performance because the disk is the bottleneck.

Fig. 8. Linear scaling: GET and PUT throughput scale linearly with the number of bricks (cache
hit rate = 85%).

becomes largely insignificant. If timestamps do not completely fit in memory,
the 100 percent cache hit rate measurements can be seen as the worst-case
overhead.

Linear performance scaling. To evaluate DStore’s scaling properties, we in-
duce an 85 percent cache hit rate as described above and measure GET and
PUT throughput separately. Figure 8 shows throughput scaling linearly up to
21 bricks, servicing over 18,000 request per second for gets, and 27 bricks, ser-
vicing approximate 1,200 request per second for puts, after which, we did not
have enough nodes to scale the benchmark further.

6.3 Fast, Nonintrusive Recovery

Next, we show that recovery is fast and leaves data available for reads and
writes throughout failure and recovery. For these benchmarks, we run a three-
brick DStore, and induce a single brick failure at time t = 5 min. To show the
system behavior during failure and recovery, we turn off all failure-detection
mechanisms and manually restart the failed brick at t = 10 min.

6.3.1 Basic Recovery Behavior. The graphs in Figures 9 and 10 show get/
put throughput and repair operations per second. Each point represents a single
measurement (taken once per second) as seen from the clients, and the shaded
areas highlight the brick-recovery period. Figure 9 shows recovery behavior
when bricks have a 100 percent cache hit rate. As expected, get throughput
drops by one third during failure, and put throughput remains steady because
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Fig. 9. Unrealistic recovery behavior: Under an unrealistic cache hit rate of 100%, the dispar-
ity between disk-bound recovery performance and in-core steady-state performance causes poor
recovery behavior.

writes are issued to the entire replica group causing bricks to see roughly the
same load no matter how many bricks are available. After recovery, the increase
in read-repair operations causes get and put throughput to drop dramatically.
Although the percentage of repairs is small, the high cost of disk writes causes
reads to become disk-bound. The sudden contention for disk causes put through-
put to fall as well. Only after ten minutes does throughput return to normal.
Therefore, under an unrealistic cache hit rate, recovery behavior is neither fast
nor nonintrusive. However, under more realistic cache hit rates, the recovery
behavior differs significantly.

In Internet services, workloads for large data sets are typically disk-bound
with cache hit rates ranging from 60 to 90 percent [Pal 2003]. Figure 10 shows
recovery behavior under a cache hit rate of 85 percent using two different
timestamp-loading schemes. In 10(a), after the brick preloads its timestamp
cache and starts up, full system capacity is restored immediately. In 10(b), the
brick starts up immediately with capacity gradually ramping up as the brick
warms its cache. During cache-warming, load balancing prevents a dip in over-
all system performance.

The timestamp-loading scheme one chooses depends on the number of put
requests that are likely to be missed during recovery. In general, the longer it
takes to recover, the more repair operations will be required after start up. If
preloading incurs too much downtime, the incremental-loading scheme should
be used. In either case, Figure 10 shows that even after five minutes of down-
time, get throughput quickly returns to normal and put throughput is barely
affected because the small number of repair operations adds little to the disk
contention that already exists due to cache misses.

6.3.2 DStore Versus ROWA Recovery. Restarting a failed DStore brick
takes approximately 12 seconds, which includes the time to detect the failure
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Fig. 10. Expected recovery behavior: With an 85% hit rate, repair operations have little impact on
the already disk-bound workload. Timestamp preloading in (a), or window-based load balancing in
(b), prevents a cache-warming-induced dip in performance.

and initiate restart (<1 second), start the brick process (∼1.5 seconds), and
receive beacons from the recovered brick (≤10 seconds). Note that since the
beaconing period and the frequency with which Dlibs update their RGID
tables are configurable, the duration of the last step can be reduced as
needed.

Drawing a fair comparison between recovery in DStore and ROWA is diffi-
cult because there are many factors involved. As one point of comparison, re-
covery in DDS, a ROWA-based CHT, takes 80 seconds, during which writes are
frozen while the entire 100-megabyte dataset is copied to the recovered brick
[Gribble et al. 2000]. Adding mechanisms to log all updates can drastically
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reduce the amount of data that needs to be copied. We next provide a quan-
titative and qualitative analysis comparing DStore to ROWA with log-based
recovery.

Let N be the number of updates missed due to failure and c be the cost of
a single read repair operation. If every missed update eventually results in a
repair operation, the performance cost of data repair for DStore is cN . It is often
the case, however, that some updates are overwritten before the recovered brick
is queried, making repair unnecessary. If δ denotes the percentage of updates
that result in read repair, the data-repair cost is δcN .

For ROWA, let us assume the best case scenario where we know exactly
when the brick failed and copy only the N missed updates from the update log
and two-phase-commit logs. If we also assume that copying data in bulk is ρ

percent cheaper than issuing individual repair operations, the data-repair cost
in ROWA is ρcN . Therefore, based on performance alone, data-repair in DStore
is cheaper than in ROWA, if δ < ρ.

Since it is unlikely that δ 	 ρ or δ 
 ρ, one might conclude that DStore
and ROWA have comparable recovery costs. However, one should also consider
the qualitative differences in recovery behavior. First, recall that during ROWA
recovery, data is unavailable for writes. Second, during failure, data that was
being updated may become unavailable for both reads and writes. Although
blocking in two-phase commit affects a relatively small amount of data, it can
have a significant impact on end users because all the data affected is currently
in use. Third, although repairing data in bulk may take less time overall, it is
likely to have an adverse effect on system performance. In contrast, DStore
maintains data availability throughout failure and recovery for both reads and
writes, and a predictable level of performance by spreading repairs over a longer
period of time.

6.3.3 Recovery With Overprovisioning. In practice, cluster operators sig-
nificantly overprovision their clusters to prevent overload [Duvur 2004;
Messinger 2004]. Thus, for the last set of recovery benchmarks, we present
an offered load approximately 65 percent of full capacity and induce the same
type of failure as in the previous benchmarks. Note that for these and all subse-
quent benchmarks, we induce an 85 percent cache hit rate and configure bricks
to load timestamps incrementally after start up.

As shown in the previous set of benchmarks, losing one brick results in a
one-third reduction in throughput capacity. Therefore, in an overprovisioned
system, as Figure 11 shows, there is little effect in throughput capacity during
brick failure. Latency, however, is affected, because the nonfailed bricks must
handle a higher load. Figure 12 shows that latency increases during failure and
for awhile after recovery due to the increased number of read-repair operations.

To analyze latency further, Figure 13 shows latency distributions before,
during, and after failure. First, notice that the get distribution is bimodal;
the large peak results from file-cache hits and the small peak results from
cache misses and requests requiring read-repair. During failure, the size of the
large peak does not change because the cache hit rate and number read-repair
operations remains roughly the same. However, increased disk load increases
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Fig. 11. Overprovisioned throughput: There is little effect in throughput capacity during brick
failure and recovery when the system is overprovisioned.

Fig. 12. Overprovisioned latency: Extra read load on the nonfailed bricks causes latency to in-
crease. After recovery, latency gradually decreases as the cache is warmed.

the latency for cache misses, causing the small peak to spread out towards
the right. After recovery, an increase in the number of read-repair operations
causes a decrease in the large peak’s size and an increase in the small peak’s
size.

For put requests, during failure, the number of requests remains roughly
constant because requests are always sent to all available bricks. The increase
in latency is due to increased disk contention from the extra get requests. After
recovery, the extra get load is removed and is replaced by increased read-repair
load. However, the number of repair operations is relatively small, making the
latency after recovery roughly equivalent to the distribution before failure.
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Fig. 13. Latency distributions: Histograms show the latency distributions before, during, and
after brick failure. For both get and put requests, the relatively small shifts in distribution are due
mainly to varying I/O requirements during the different periods of operation.

6.3.4 Recovery From Hard Failures. Thus far, we have only discussed tran-
sient failures. We conclude this section with a discussion on how we intend to
handle hard failures, a next step in our future work. When data is not lost due
to a hard failure, data can simply be copied to a replacement node. If instead,
a disk fails, data must be reconstructed from data on the remaining bricks. In
RAID, reconstruction [Chen et al. 1994] involves issuing low-priority reads to
rebuild the lost data. Similarly, DStore can issue quorum reads to rebuild an
up-to-date dataset. A second option that we are exploring involves first copy-
ing the entire dataset from one brick, then reading the timestamp tables from
RT − 1 other bricks, and finally, issuing read requests for the values in the
copied dataset that are stale. As with online repartitioning described later in
Section 8, we can use quorums to take bricks offline while copying data and still
maintain data availability. This technique allows us to recast reconstruction as
failure plus recovery.

7. AGGRESSIVE FAILURE DETECTION

Two failure detection mechanisms can cause DStore to initiate brick recovery
as described earlier in Section 5. First, Dlibs initiate recovery if a brick misses
two consecutive RGID beaconing periods. This simple beaconing mechanism is
usually sufficient to detect stopping failures like node crashes, or faults that
can be mapped to stopping failures using fault-model enforcement, like certain
types of memory corruption and bit flips [Nagaraja et al. 2002].

Whereas stopping failures are relatively easy to detect, fail-stutter is difficult
to detect reliably because it is hard to determine if degradation is due to a
faulty component or some other factor, like garbage collection or cache warming.
To detect fail-stutter behavior and other anomalous behaviors that may be
indicative of a current or pending failure, a brick periodically reports operating
statistics which are compared to the operating statistics of other bricks to detect
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Table II. Operating Statistics That Are Monitored to Detect Anomalies in
Brick Behavior

Statistic Description
CPU load Load average as reported by uptime

Memory usage Memory usage as reported by free

Queue length Current GET, PUT, TS queue lengths
Success GET, PUT, TS requests processed since last report
Dropped GET, PUT, TS requests dropped since last report
Queue delay Exponential moving average (EMA, α = .0002) delay for

each queue type
Latency Request processing time EMA (α = .0002) for each request

type

deviant behavior. If a brick’s operating statistic deviates by more than a certain
deviation threshold, an anomaly is raised. If the number of anomalies for one
brick exceeds a certain anomaly threshold, the brick is restarted. The set of
operating statistics bricks report is listed in Table II.

We use two statistical methods for generating a model of “good behavior”
and detecting anomalies. The first method is median absolute deviation, which
compares one brick’s current behavior with that of the majority of the system.
This metric was chosen for its robustness to outliers in small populations, which
is important for small DStore installations. The second method is the Tarzan
algorithm [Keogh et al. 2002] for analyzing time series, which incorporates a
brick’s past behavior and compares it with that of the rest of the bricks. For every
statistic of each brick, we keep an N-length history, or time-series, of the state
and discretize it into a binary string. To discover anomalies, Tarzan counts the
relative frequencies of all substrings shorter than k within these binary strings.
If a brick’s discretized time series has an abnormally high or low frequency of
some substring as compared to the other bricks, an anomaly is raised. We set
k = 3, N = 100, deviation threshold to 0.5, and we vary the anomaly threshold.

We note that although such methods are potentially powerful tools for iden-
tifying deviant behavior, identifying the “best” algorithms to use is a nongoal
of this work. Rather, our goal is to demonstrate that DStore’s cheap recovery
allows us to take advantage of these relatively simple, application-generic tech-
niques. Even though anomalous conditions may be false positives that predict
an eventual brick failure, the low cost of recovery enables us to act on some false
positives without serious adverse effects. In fact, at times, it may be beneficial
to reboot a brick even if an anomaly is transient.

7.1 Failure Detection Benchmarks

In this section, we show how DStore takes advantage of cheap recovery to re-
solve hard-to-catch slowdown failures using statistical anomaly detection. In
these benchmarks, we run a six-brick DStore, and at t = 5 min gradually
degrade one brick’s throughput capacity by increasing the request-processing
latency. We model degradation as lost CPU cycles, which is reasonable for slow
downs due to memory leaks and virtual memory thrashing. We simulate degra-
dation by performing extraneous floating point operations before processing
each request, the number of which is increased every ten seconds.
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Fig. 14. Beacon-based detection: With beacons alone, DStore does not detect fail-stutter behavior.

Fig. 15. Anomaly-based detection: Statistical techniques detect the degradation after a slight dip
in system performance.

Figure 14 shows the result of injecting a performance degradation when
only beacon-based detection is used. The degradation is not caught because the
degraded brick continues sending beacons. However, overall performance de-
grades to the point where the brick performs almost no useful work. Figures 15
and 16 show the same degradation when statistical anomaly detection is ap-
plied with varying degrees of aggressiveness. Recall that the anomaly threshold
corresponds to the number of brick statistics that must indicate deviant behav-
ior before a brick is rebooted. By trial-and-error, we selected two thresholds,
one that showed some system degradation before recovery was initiated, and
another that caused spurious reboots in bricks in which we did not inject faults.
With an anomaly threshold of 11, DStore detects the injected slowdown failure
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Fig. 16. Low cost of false positives: With aggressive thresholds, degradation is detected almost
immediately; although false positives are also raised, the cost of acting on those false positives is
small compared to prolonged degradation.

and reboots the node after a small, but noticeable, degradation in system per-
formance. With a more aggressive policy where the threshold is set to 8, the
degrading brick is caught more quickly, but DStore also reboots other bricks
in which no faults were injected. However, the cost of acting on those false
positives is small compared to prolonged degradation.

Although finding the best detection algorithm is not a goal of this work,
what a system like DStore provides is an operating environment on which new
algorithms can be tested. These benchmarks show that failure detection need
not be so accurate if recovery is cheap. Having this type of latitude to make
mistakes, allows an operator or the system itself to try new algorithms and
learn from experience which ones are most effective for the given application
and workload.

7.2 Remarks On Rolling Reboots

Along with beacon-based and statistical anomaly-based failure detection, cheap
recovery enables a third, complementary failure handling mechanism—rolling
reboots. By proactively rebooting bricks, software rejuvenation [Huang et al.
1995] can prevent failures that arise due to aging effects like memory leaks.
Although rolling reboots catch a superset of the problems we can detect using
beacons and statistical anomaly-detection, DStore detects and deals with fail-
ures more quickly than if we had to wait for the reboot to cycle to the affected
brick. Thus, all three are complementary mechanisms.

8. ZERO-DOWNTIME INCREMENTAL SCALING

Cheap recovery is the basis for our online repartitioning algorithm. Currently,
repartitioning is initiated when an administrator issues a command to ei-
ther add new bricks or remove existing ones. However, DStore is also well-
suited for systems that monitor workload and predict resource utilization to
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automatically decide when to bring more resources online [Lassettre et al.
2003]. In either case, once the addition or removal process is initiated, DStore
automatically decides which bricks to repartition and integrates new bricks or
removes existing bricks.

8.1 Scaling Up By Splitting Bricks

To increase the number of bricks used by the hash table, the current DStore
implementation uses a linear hashing scheme for partitioning data [Litwin
1980]. The following repartitioning algorithm details how data is copied and
bricks are split to implement this scheme. However, note that this algorithm
can easily be modified to implement other hashing schemes.

(1) Discover RGID information: The new brick, Bnew,
constructs an RGID map by listening to RGID
beacons.

(2) Select the repartition brick: Bnew listens for Dlib la-
tency beacons and selects the most heavily-loaded
brick, Br .

(3) Logically split Br ’s replica group: A SPLIT RG com-
mand is sent to each brick in Br ’s replica group.
Each brick in the replica group begins announc-
ing two new RGIDs, one of which is obtained by
prepending a 0 to the original RGID, the other, by
prepending a 1. For example, if the original RGID
is 0, a brick begins announcing both 00 and 10.
Note that after this logical split, nothing changes
in terms of which keys are sent to which bricks.

(4) Take Br offline: An OFFLINE command is sent to Br ,
causing Br to prepend an “offline” flag to its RGID.
When Dlibs see the change in RGID beacons, they
stop sending requests to Br . The result is similar to
the failure of Br , only Dlibs do not initiate recovery.

(5) Copy data: Data for half of Br ’s keyspace is copied
to Bnew. In our example, the 10 partition is copied.

(6) Assign RGIDs and bring bricks online: The RGID
for the copied partition, 10, is assigned to Bnew and
the complementary RGID, 00, is assigne,d to Br . Af-
ter both bricks begin announcing their new RGIDs,
they are brought back online.

The repartitioning algorithm is both online and automatic. First, consider the
online aspect. Taking Br offline and bringing it back online has the same effect
as if Br had failed and recovered; the only difference is that upon “recovery,” two
physical bricks have taken Br ’s place. Therefore, any updates that occur during
repartitioning are executed by the online bricks with updates being propagated
to the offline bricks via the read-repair mechanism. Since repartitioning has
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the same effect as a failure, when multiple bricks are added to the same replica
group, they are integrated into the system one at a time. If a failure occurs
while repartitioning and the number of online bricks falls below a majority, the
repartitioning process is halted and Br is brought back online. The resulting
effect is no different than if the Br had simply failed and recovered. Although
it is possible to add bricks simultaneously, without taking bricks offline, by
adjusting the read and write thresholds accordingly, we use this recovery-based
mechanism because it makes the performance impact and time for adding new
bricks more predictable.

Second, consider the automatic aspect of the algorithm. DStore’s simple hash
table API removes implicit data dependences, which enables our algorithm to
select Br based solely on load information, without worrying about splitting up
data that is accessed together. The generalized form of the algorithm is to glob-
ally repartition the system by selecting the N -most loaded bricks and moving
portions of the keyspace to the new brick as necessary. However, for simplic-
ity, the current algorithm splits only the heaviest-loaded brick, approximated
by the exponential-moving-average request latency with a smoothing constant
α = 0.5.

8.2 Scaling Down By Coalescing Bricks

Removing a brick is analogous to adding a new brick, and therefore, uses the
same mechanisms of taking bricks offline, copying data, and bringing the re-
maining bricks back online. The basic idea is that before removing a brick,
Bremove, its data must be coalesced with another brick, Bkeep. The steps for scal-
ing down are as follows:

(1) Select the bricks to coalesce: Identify the least-loaded brick Bkeep, which
will accept the load of the removed brick. Choose Bremove such that its RGID
differs from Bkeep’s RGID in only the most significant bit. To understand how
this selection is made, recall that when splitting a brick, a high-order bit is
added. Conversely, when coalescing bricks, the high order bit is removed to
obtain Bkeep’s new RGID.

(2) Take Bremove and Bkeep offline:
(3) Copy data: Data in the partition that Bremove man-

ages is copied to Bkeep.
(4) Assign Bkeep’s RGID, kill Bremove, and bring Bkeep on-

line: Before killing Bremove and bringing Bkeep online,
Bkeep must first begin announcing both its original
RGID and Bremove’s RGID.

When copying data from Bremove to Bkeep, we must consider how the data
layout affects the copy step. When a brick is split, in terms of correctness, Borig’s
entire data set can be copied to Bnew even though only a portion of the data set
is accessed. However, when two bricks are coalesced, only the data that Bremove
is supposed to manage should be copied to Bkeep.

We consider two file layouts shown in Figures 17 and 18: high-bit files and
low-bit files. With high-bit files, the key’s most significant bits determine the file
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Fig. 17. High-bit files.

Fig. 18. Low-bit files.

name, and the least significant bits determine the index into the file. Since the
current implementation of DStore partitions data based on the least significant
bits, using high-bit files causes data from different partitions to be intermingled
within each file. For example, data in the 0 partition (keys 0, 2, 4, etc.) resides
on every file occupying every other entry. Therefore, when data is copied upon
removal of a brick, every other entry must be copied from Bremove to Bkeep. In
contrast, when the least significant bits determine the file name as well as the
partition, partitions occupy entire files. For example, the 0 partition is fully and
exclusively stored in the even files making copying data simpler.

This same idea applies if, rather than relying on the file system, we stored
data directly on disk blocks. By using a scheme in which data from only one par-
tition is stored on any given disk block, copying can be done at the granularity
of disk blocks rather than per key.

8.3 Scaling Benchmarks

The benchmarks in this section show that scaling, like recovery, has a pre-
dictably small impact on availability and performance. Before describing the
benchmarks, we note that there are typically two dimensions along which a
system can be scaled: storage- and load-capacity.

In our benchmarks, we do not add any data to the original data set. However,
by taking advantage of the file layout scheme and the 4-K file block size, we are
able to model both types of scaling. To scale in both storage- and load-capacity,
we use high-bit files with 512-byte entries. With high-bit files, if the data set
is split into N partitions, only every N th entry in each file is relevant to a
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Fig. 19. Scaling in storage and load: Three new bricks are added to a three-brick DStore to double
throughput without causing unavailability.

particular brick’s partition. However, as long as N < 8, per-brick performance
of disk and cache are not improved by repartitioning because an entire 4K-block
has to be read on each access. In contrast, to measure performance scaling
alone, we use low-bit files so that doubling the number of bricks halves the
amount of data each brick stores. Note that in practice, DStore would likely be
configured to use the low-bit file layout because it simplifies the data-copy step
when scaling down, and it has better space utilization when scaling up.

We first show basic storage- and load-capacity scaling behavior by running
a three-brick DStore and adding three new bricks, one every thirty minutes.
Since recovery forms the basis for repartitioning, as Figure 19 shows, adding a
brick looks very much like brick recovery. For each brick added, get throughput
increases linearly, as denoted by the dotted line. However, put throughput does
not increase until the entire replica group is repartitioned. Whereas get re-
quests are load-balanced so that the repartitioned bricks receive more requests
than the nonrepartitioned bricks, put requests are sent to the entire replica
group, so throughput is limited by the nonpartitioned brick(s). Note that put
throughput actually rises while the third brick is being repartitioned because
the rate-limiting brick is removed, leaving the system with two replica groups,
each with two bricks.

The second benchmark shows DStore’s behavior as bricks are added and
removed to scale load capacity while keeping storage capacity constant. We run
a three-brick DStore, but instead, use a four-gigabyte dataset stored in low-
bit files. A brick is added or removed once every thirty minutes, going from
three bricks to six, and back down to three. Figure 20 shows that doubling the
number of bricks more than doubles the get throughput. This is due to the
fact that adding a brick halves the amount of data each brick handles, which
increases the effective cache hit rate. Since writes are unaffected by the cache,
put throughput increases linearly as it does when scaling in both load- and
storage-capacity.
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Fig. 20. Scaling in load: When scaling in load alone, throughput more than doubles because bricks
split the dataset and achieve higher cache hit rates.

Fig. 21. Hot spot scaling: DStore repartitions hotspot bricks to achieve higher performance than
a naive partitioning, which is shown by the dashed line.

The third benchmark shows that the latency-based brick-selection scheme
handles hotspots by repartitioning the most heavily-loaded bricks. In
Figure 21, we start with a six-brick DStore and two replica groups, RGID = 0
and RGID = 1. Rather than spreading requests evenly across the keyspace,
clients request keys in a biased fashion, producing a data hotspot in keys end-
ing in 00. Three bricks are added at t = 10 m to split the 0 partition. This
addition brings the throughput to the same level as a naive partitioning in
which the replica groups are split evenly across the entire keyspace while the
00 remains heavily overloaded (represented by the dashed line). Instead, when
the second set of bricks is added at t = 50 m, DStore splits the 00 partition into
000 and 100 to achieve much higher performance.

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.



Cheap Recovery: A Key to Self-Managing State • 65

Fig. 22. Plug-and-play scaling: Repartitioning is used to scale DStore from 3 to 24 bricks in an
automatic, fully online fashion.

In the final benchmark, we use online repartitioning to scale DStore up to
24 bricks, after which, we do not have enough nodes to scale the benchmark
further. Figure 22 shows that DStore can be scaled linearly in a plug-and-play
fashion with zero downtime and predictable performance.

Scaling is cheap because repartitioning is expressed in terms of failure and
recovery, which are themselves cheap by design. Like with failure detection,
having a low cost scaling mechanism means that load prediction need not be so
accurate, which allows for experimentation with different algorithms. Further-
more, because bringing resources online takes a predictable amount of time
and incurs a predictably small performance impact, DStore is amenable to the
use of automatic resource provisioning algorithms developed for application
servers [Lassettre et al. 2003].

9. DISCUSSION

In DStore, HTTP frontends served as a concrete example of a self-managing
system. Having extracted principles aimed at developing low-cost mechanisms
for failure handling and scaling, we now explore the more general question of
what it means for a system to be self-managing. In this section, we use our
experience with DStore to develop general design guidelines for building self-
managing systems.

First, consider the three aspects of DStore’s failure-handling shown in
Figure 23. We start with an indicator of system health; bricks periodically bea-
con operating statistics such as memory usage and request latency. The second
aspect is monitoring; statistical methods are applied to the operating statistics
to detect when a brick is outside its “normal” operating window. Finally, there
is a treatment; when a brick is flagged as anomalous, a reboot is triggered.

We can generalize the concept of indicators, monitoring, and treatments to
include other dimensions of system health as shown in Figure 24. For example,
monitoring overall system load can trigger the addition and removal of nodes
as needed to meet current load demands. Further, monitoring disk failures can
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Fig. 23. Aspects of self-management.

Fig. 24. System’s operating envelope.

determine when disks are replaced and when data reconstruction is initiated.
Combining these and other relevant indicators of system health produces an
operating region within which the system’s behavior is well understood. The
resulting self-managing system comprises a set of monitors working together to
detect when the system may be moving outside of its desired operating region
and triggering the appropriate treatment when needed.

As is the case with recovery and scaling, low-cost treatments are critical for
enabling simple monitoring policies which need not closely involve human op-
erators. For example, in the area of human health care, treatments consisting
of low-risk, low-side effect drugs encourage early prevention of more serious
future problems. However, when surgery is the sole treatment option, doctors
tend to be more conservative in diagnosing and prescribing treatment, some-
times waiting until it is too late to fully resolve the problem. Analogously, when
management and recovery “treatments” are low-cost adjustments to the system
behavior rather than heavyweight fixes, it is less critical that the monitoring
system never make a mistake. This not only allows the monitoring to attempt
early treatment, it also provides a testbed on which newly-developed treatments
and monitoring techniques can be tried with minimal system impact.

10. RELATED WORK

The idea of achieving ease-of-manageability via cheap recovery has also been
explored in the context of microreboots for application servers [Candea et al.
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2004] and SSM [Ling et al. 2004], a RAM-only CHT for session state that en-
sures consistency by storing metadata about where state is replicated in a
cookie on the user’s Web client. SSM’s design relies on the fact that session
state is accessed by a single user and has a bounded lifetime, typically minutes
or hours.

Designing state stores for single-key lookup data is well established.
Providing motivation for our work, Distributed Data Structures [Gribble et al.
2000] is a scalable, high-performance CHT, which uses ROWA and two-phase
commit. Berkeley DB [Olson et al. 1999], which can serve as underlying storage
for DStore bricks, is a single-node hash table that can be replicated using a
primary-secondary scheme, but does not provide a single-system image across
a cluster.

Brick-based disk storage systems are low-cost alternatives to high-end
RAID [Chen et al. 1994] disk arrays. Federated Array of Bricks [Frolund et al.
2003] uses quorums and a nonlocking two-phase protocol to ensure lineariz-
ability. RepStore [Zhang et al. 2004] optimizes for storage overhead through
selective use of erasure-coding over replication. In contrast to distributed disk
and file systems [Ganger et al. 2003; Thekkath et al. 1997] with similar self-
management goals, DStore exploits specific workload characteristics for con-
sistency management and exposes a higher-level interface with guarantees on
variable-sized elements. Similarly, the Google File System [Ghemawat et al.
2003] is designed for its large-file, append-mostly workload to achieve scalabil-
ity and manageability.

Consistency is traded for performance and availability [Brewer 2001; Yu and
Vahdat 2000], and quorums [Gifford 1979] provide availability under network
partitions [Davidson et al. 1985] and Byzantine faults [Malkhi and Reiter 1998;
Pierce 2000]. However, DStore uses quorums and trades consistency for ex-
tremely simple persistent state management. Like DStore, Coda [Kistler and
Satyanarayanan 1992] tolerates replica inconsistency, but in a nontranspar-
ent fashion. Bayou’s [Terry et al. 1994] Monotonic Reads and Read-Your-Writes
provide guarantees similar to those provided by DStore’s read-repair and write-
in-progress cookie mechanisms. However, Bayou makes guarantees for a single
user session, not across users. The Porcupine Mail Server [Saito et al. 1999] has
self-management goals, but its eventual consistency guarantees allow users to
see data waver between old and new values before replicas eventually become
consistent.

Finally, DStore owes its statistical failure detection to Pinpoint [Chen
et al. 2002], a comprehensive, ongoing investigation of anomaly-based failure
detection.

11. CONCLUSION

We combined two techniques that reduce coupling—quorums to tolerate
replica inconsistency, and single-phase operations to avoid locking—to make
reboot-based recovery fast and nonintrusive in a persistent cluster hash ta-
ble. One consequence of this cheap recovery is that we successfully applied
aggressive statistical anomaly-based failure detection to automatically detect
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and recover from both fail-stop and fail-stutter transients. Furthermore, we
used the same recovery mechanism to solve the distinct problem of incremen-
tal scaling without service interruption. The net result is a state store that can
be managed with the same types of simple recovery and scaling mechanisms
as used for stateless frontends.

Taking a larger view, we believe low-cost mechanisms like cheap recovery
and zero-downtime scaling are important components of self-managing sys-
tems. When such mechanisms are predictably fast and have predictably small
impact on system availability and performance, the line between “normal” and
“recovery” operation becomes blurred. Thus, rather than relying on the moni-
toring system to be flawless, the resulting system can stay within its desired
operating region by continuously self-adjusting, a key property of self-managing
systems.

APPENDIX

A. ALGORITHM PSEUDO-CODE

put(key, value, ts)
1 if (ts == NULL)
2 ts = generate_timestamp()
3 foreach b in <replica group

bricks>
4 send(b, WRITE, key, val,

ts)
5 for (c = 0 to WT-1)
6 err = receive(W_RESP,

W_TIMEOUT)
7 if (err == TIMEOUT)
8 return TIMEOUT

write(key, value, ts)
1 current_ts = read_ts(key)
2 if (ts < current_ts)
3 return TIMESTAMP_ERROR
4 else
5 WRITE(key, value, ts)
6 return SUCCESS

get(key)
1 rset[0...RT-1] = choose_bricks(RT)
2 send(rset[0], READ_VAL, key)
3 for (i = 1 to RT-1)
4 send(rset[i], READ_TS, key)
5 for (i = 1 to RT-1)
6 err = receive(TS_RESP, ts[i],

R_TIMEOUT)
7 if (err == TIMEOUT)
8 return TIMEOUT
9 err = receive(VAL_RESP, ts[0], value,

R_TIMEOUT)
10 if (err = TIMEOUT)
11 return TIMEOUT
12 return check(key, value, ts[], rset[])

check(key, value, ts[], rset[])
1 {maxts, index} = findmax(ts[])
2 timeouts = 0
3 if (ts[0] != maxts)
4 send(rset[index], READ_VAL, key)
5 err = receive(VAL_RESP, maxts,

value, R_TIMEOUT)
6 if (err == TIMEOUT)
7 return TIMEOUT
8 for (i = 0 to RT-1)
9 if (ts[i] != maxts)
10 send(rset[i], WRITE, key, value,

maxts)
11 err = receive(W_RESP, W_TIMEOUT)
12 if (err != TIMEOUT)
13 timeouts++
14 if (RT - timeouts < WT)
15 put(key, value, maxts)
16 return value
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