
Benchmarking Autonomic Capabilities: Promises and Pitfalls 

Aaron B. Brown
1
, Joseph Hellerstein

1
, Matt Hogstrom

2
, Tony Lau

3
,

Sam Lightstone
3
, Peter Shum

3
, Mary Peterson Yost

4

1
IBM® T.J. Watson Research Center (Hawthorne, NY), 

2
IBM® Raleigh Laboratory (Raleigh, NC), 

3
IBM® Toronto Laboratory (Toronto, ON), 

4
IBM® Autonomic Computing (Hawthorne, NY) 

Contact e-mail: abbrown@us.ibm.com 

1. Introduction 

Benchmarks provide a way to quantify progress in a 

field. Excellent examples of this are the dramatic im-

provements in processor speeds and middleware perform-

ance over the last decade, driven in part by SPEC
®
 and 

TPC™ benchmarks. We feel that developing appropriate 

benchmarks for autonomic computing will similarly drive 

progress towards self-managing systems. Our goal is to 

produce a suite of benchmarks covering the four catego-

ries of autonomic capabilities: self-configuring, self-

healing, self-optimizing, and self-protecting [2]. This is 

not an easy task, however, and in this paper we identify 

several of the challenges and pitfalls that must be con-

fronted to extend benchmarking technology beyond its 

traditional basis in performance evaluation. 

Basics of autonomic benchmarks. Benchmarks in the 

performance space have followed a structure like that de-

picted in Figure 1(a). A system under test (SUT) is de-

ployed in a stable benchmark environment and subjected 

to a synthetic workload designed to be representative of 

typical system use. Benchmark results are derived from 

how quickly the SUT can satisfy the imposed workload, 

as measured by the benchmark driver. During measure-

ment collection, there is no administrator intervention. 

Figure 1(b) illustrates in general terms how existing 

benchmarks should be extended in order to quantify the 

autonomic characteristics of the SUT. We retain the sali-

ent features of a representative workload and a benchmark 

driver. But to capture the essence of autonomic comput-

ing—adaptation—we must now introduce change into the 

heretofore stable benchmarking environment. For exam-

ple, we might inject faults into the SUT to evaluate its 

ability to self-heal, as in dependability benchmarks [3] 

[5]. Another example is modifying the workload driver to 

inject “flash events” [4]. Still another example is injecting 

configuration change requests to evaluate self-

configuration. Finally, a benchmark for self-protection 

might employ simulated attacks to quantify this aspect of 

autonomic capability. 

2. Challenges in Autonomic Benchmarking 

By injecting changes into the benchmarking environ-

ment, we significantly expand the scope of the bench-

marking process. An autonomic benchmark must supple-

ment the performance workload with a representative, re-

producible set of changes to inject. It needs a much 

broader set of metrics to capture the SUT’s responses, 

supplementing traditional performance metrics with quan-

titative measures of how well the SUT adapts to the in-

jected changes. And, to handle systems that are only par-

tially-autonomic (as are most systems today), the bench-

marking process must make accommodation for systems 

that require active human administrator support, and for 

unexpected behavior in the SUT, such as crashes and er-

roneous responses. An overarching challenge is to accom-

plish this expansion in scope while retaining the familiar 

structure of performance benchmarks. Not only must we 

surmount considerable technical hurdles, but we must also 

educate benchmark consumers about the need for these 

extensions.

Injecting changes. Besides selecting the set of 

changes to introduce (itself a nontrivial, albeit practical 

problem), there are two key challenges in injecting 

changes. The first is to ensure that the benchmark remains 

reproducible despite injecting the change. We must en-
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sure that individual changes can be injected reproducibly, 

and must coordinate injected changes with the applied 

workload. For the benchmark to be useful in cross-system 

comparisons, changes must also be reproducible across 

different systems. There is a two-part approach that ad-

dresses all of these challenges: (1) use only the subset of 

the changes that is common to all systems being bench-

marked; and (2) synchronize the injector with the per-

formance workload. This approach sacrifices representa-

tiveness for reproducibility. It also raises the issue of 

gaming, or undesirable benchmark-specific optimization 

by the benchmark’s users. To address gaming, it may be 

necessary to develop equivalence classes of injectable 

changes, choosing among randomly-selected instances in 

each benchmark run. 

The second challenge concerns the representativeness

of the injected changes. Unlike a performance workload, 

which can be simulated in isolation, environmental 

changes might require a large-scale simulation infrastruc-

ture approaching the complexity of a real deployment. 

Such a requirement arises in multiple aspects of auto-

nomic computing: self-protection may require simulating 

a distributed denial-of-service (DoS) attack; self-healing 

may require injecting faults in a distributed systems infra-

structure; and self-configuration may require a complex 

multi-system deployment request. Significant resources 

may be needed to successfully inject these changes unless 

tricks can be found to simulate their effects with fewer 

resources. Furthermore, there may be additional concerns 

if some forms of injected changes are made too realistic: 

containment risks and legal issues with maintaining the 

viruses and DoS attacks needed to test self-protection; the 

risk of permanent system damage from fault injection into 

the hardware; and so on. Finding the balance between rep-

resentative changes and benchmark practicality reflects 

the art of benchmark design. 

Metrics and scoring. Autonomic benchmarks must 

quantitatively capture four dimensions of a system’s auto-

nomic response: the level of the response (how much hu-

man administrative support is still needed), the quality of 

the response (how well it accomplishes the necessary ad-

aptation), the impact of the response on the system’s us-

ers, and the cost of any extra resources needed to support 

the autonomic response. The quality and impact dimen-

sions can be quantified relatively easily by measuring 

end-user-visible performance, integrity, and availability 

both during and after the system’s autonomic response. 

The level dimension is harder to quantify because it re-

quires an assessment of human involvement with the sys-

tem. Scorecard-based approaches—where the bench-

marker assigns the system a score based on a qualitative 

assessment of its response—offer promise, but need fur-

ther investigation to determine if they are reproducible 

and effective at differentiating among systems at different 

levels of autonomic maturity. 

Other issues related to metrics and scoring involve the 

challenge of synthesizing multiple sub-metrics (e.g., for 

the different autonomic capabilities) into an overall meas-

ure of autonomicity, and calibrating scores across differ-

ent systems. The latter issue must be solved before com-

petitive autonomic benchmarking is possible; we are ex-

ploring an approach that requires systems to provide a ba-

sic predefined set of baseline autonomic mechanisms for 

establishing common cross-system comparison points. 

Handling partially-autonomic systems. Partially-

autonomic systems include some autonomic capabilities, 

but still require some human administrative involvement 

to adapt fully. For example, a system might diagnose a 

problem and suggest a course of action, but wait for an 

administrator’s OK before completing the self-healing 

process. An autonomic computing benchmark should pro-

vide useful metrics for such systems so that we can quan-

tify the steps towards a fully autonomic system. But the 

benchmark cannot easily simulate a “representative, re-

producible human administrator” to complete the SUT’s 

autonomic loop. Human involvement in the benchmark 

process itself may need to be considered, as in [1], in 

which case the benchmark scope expands to include as-

pects of human user studies, with statistical techniques 

used to provide reproducibility. An alternative approach is 

to break the benchmark into separate phases such that 

human intervention is only required between phases. Each 

phase would then be scored individually, with a penalty 

applied according to the amount of inter-phase human 

support needed. This could be a simple time penalty 

added to the benchmark result, or a more complex scoring 

scheme. The phase-based approach also may help with 

benchmarking of systems that crash or fail in response to 

injected changes, because failure in one phase can be 

treated independently from behavior in other phases.  

3. Conclusion 

While the promise of autonomic benchmarks is clear, a 

key question facing their developers is how we will ad-

dress the challenges enumerated above. We hope to open 

a dialog with others working in the areas of autonomic 

computing and non-traditional benchmarking to discuss 

these issues and potential solutions, and to understand 

how various solutions will impact the value and applica-

bility of an autonomic benchmark.  
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