
Benchmarking Autonomic Capabilities: Promises and Pitfalls

Aaron B. Brown
1
, Joseph Hellerstein

1
, Matt Hogstrom

2
, Tony Lau

3
,

Sam Lightstone
3
, Peter Shum

3
, Mary Peterson Yost

4

1
IBM® T.J. Watson Research Center (Hawthorne, NY),

2
IBM® Raleigh Laboratory (Raleigh, NC),

3
IBM® Toronto Laboratory (Toronto, ON),

4
IBM® Autonomic Computing (Hawthorne, NY)

Contact e-mail: abbrown@us.ibm.com

1. Introduction

Benchmarks provide a way to quantify progress in a

field. Excellent examples of this are the dramatic im-

provements in processor speeds and middleware perform-

ance over the last decade, driven in part by SPEC
®
 and

TPC™ benchmarks. We feel that developing appropriate

benchmarks for autonomic computing will similarly drive

progress towards self-managing systems. Our goal is to

produce a suite of benchmarks covering the four catego-

ries of autonomic capabilities: self-configuring, self-

healing, self-optimizing, and self-protecting [2]. This is

not an easy task, however, and in this paper we identify

several of the challenges and pitfalls that must be con-

fronted to extend benchmarking technology beyond its

traditional basis in performance evaluation.

Basics of autonomic benchmarks. Benchmarks in the

performance space have followed a structure like that de-

picted in Figure 1(a). A system under test (SUT) is de-

ployed in a stable benchmark environment and subjected

to a synthetic workload designed to be representative of

typical system use. Benchmark results are derived from

how quickly the SUT can satisfy the imposed workload,

as measured by the benchmark driver. During measure-

ment collection, there is no administrator intervention.

Figure 1(b) illustrates in general terms how existing

benchmarks should be extended in order to quantify the

autonomic characteristics of the SUT. We retain the sali-

ent features of a representative workload and a benchmark

driver. But to capture the essence of autonomic comput-

ing—adaptation—we must now introduce change into the

heretofore stable benchmarking environment. For exam-

ple, we might inject faults into the SUT to evaluate its

ability to self-heal, as in dependability benchmarks [3]

[5]. Another example is modifying the workload driver to

inject “flash events” [4]. Still another example is injecting

configuration change requests to evaluate self-

configuration. Finally, a benchmark for self-protection

might employ simulated attacks to quantify this aspect of

autonomic capability.

2. Challenges in Autonomic Benchmarking

By injecting changes into the benchmarking environ-

ment, we significantly expand the scope of the bench-

marking process. An autonomic benchmark must supple-

ment the performance workload with a representative, re-

producible set of changes to inject. It needs a much

broader set of metrics to capture the SUT’s responses,

supplementing traditional performance metrics with quan-

titative measures of how well the SUT adapts to the in-

jected changes. And, to handle systems that are only par-

tially-autonomic (as are most systems today), the bench-

marking process must make accommodation for systems

that require active human administrator support, and for

unexpected behavior in the SUT, such as crashes and er-

roneous responses. An overarching challenge is to accom-

plish this expansion in scope while retaining the familiar

structure of performance benchmarks. Not only must we

surmount considerable technical hurdles, but we must also

educate benchmark consumers about the need for these

extensions.

Injecting changes. Besides selecting the set of

changes to introduce (itself a nontrivial, albeit practical

problem), there are two key challenges in injecting

changes. The first is to ensure that the benchmark remains

reproducible despite injecting the change. We must en-

System Under TestSystem Under TestBenchmark DriverBenchmark Driver

Workload

Response

Benchmark
Specification:
workload &
metrics

Benchmark
Specification:
workload &
metrics

Benchmark EnvironmentResults

System Under TestSystem Under TestBenchmark DriverBenchmark Driver

Workload

Response

Benchmark
Specification:
workload,
metrics, changes

Benchmark
Specification:
workload,
metrics, changes

Benchmark EnvironmentResults

Injected changes Operator

Figure 1(a). Traditional Performance Benchmark

Figure 1(b). Benchmark for Autonomic Capability

Response
to changes

IBM is a registered trademark of International Business Machines Corporation
in the United States, other countries, or both. Other company, product and
service names may be trademarks or service marks of others.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

sure that individual changes can be injected reproducibly,

and must coordinate injected changes with the applied

workload. For the benchmark to be useful in cross-system

comparisons, changes must also be reproducible across

different systems. There is a two-part approach that ad-

dresses all of these challenges: (1) use only the subset of

the changes that is common to all systems being bench-

marked; and (2) synchronize the injector with the per-

formance workload. This approach sacrifices representa-

tiveness for reproducibility. It also raises the issue of

gaming, or undesirable benchmark-specific optimization

by the benchmark’s users. To address gaming, it may be

necessary to develop equivalence classes of injectable

changes, choosing among randomly-selected instances in

each benchmark run.

The second challenge concerns the representativeness

of the injected changes. Unlike a performance workload,

which can be simulated in isolation, environmental

changes might require a large-scale simulation infrastruc-

ture approaching the complexity of a real deployment.

Such a requirement arises in multiple aspects of auto-

nomic computing: self-protection may require simulating

a distributed denial-of-service (DoS) attack; self-healing

may require injecting faults in a distributed systems infra-

structure; and self-configuration may require a complex

multi-system deployment request. Significant resources

may be needed to successfully inject these changes unless

tricks can be found to simulate their effects with fewer

resources. Furthermore, there may be additional concerns

if some forms of injected changes are made too realistic:

containment risks and legal issues with maintaining the

viruses and DoS attacks needed to test self-protection; the

risk of permanent system damage from fault injection into

the hardware; and so on. Finding the balance between rep-

resentative changes and benchmark practicality reflects

the art of benchmark design.

Metrics and scoring. Autonomic benchmarks must

quantitatively capture four dimensions of a system’s auto-

nomic response: the level of the response (how much hu-

man administrative support is still needed), the quality of

the response (how well it accomplishes the necessary ad-

aptation), the impact of the response on the system’s us-

ers, and the cost of any extra resources needed to support

the autonomic response. The quality and impact dimen-

sions can be quantified relatively easily by measuring

end-user-visible performance, integrity, and availability

both during and after the system’s autonomic response.

The level dimension is harder to quantify because it re-

quires an assessment of human involvement with the sys-

tem. Scorecard-based approaches—where the bench-

marker assigns the system a score based on a qualitative

assessment of its response—offer promise, but need fur-

ther investigation to determine if they are reproducible

and effective at differentiating among systems at different

levels of autonomic maturity.

Other issues related to metrics and scoring involve the

challenge of synthesizing multiple sub-metrics (e.g., for

the different autonomic capabilities) into an overall meas-

ure of autonomicity, and calibrating scores across differ-

ent systems. The latter issue must be solved before com-

petitive autonomic benchmarking is possible; we are ex-

ploring an approach that requires systems to provide a ba-

sic predefined set of baseline autonomic mechanisms for

establishing common cross-system comparison points.

Handling partially-autonomic systems. Partially-

autonomic systems include some autonomic capabilities,

but still require some human administrative involvement

to adapt fully. For example, a system might diagnose a

problem and suggest a course of action, but wait for an

administrator’s OK before completing the self-healing

process. An autonomic computing benchmark should pro-

vide useful metrics for such systems so that we can quan-

tify the steps towards a fully autonomic system. But the

benchmark cannot easily simulate a “representative, re-

producible human administrator” to complete the SUT’s

autonomic loop. Human involvement in the benchmark

process itself may need to be considered, as in [1], in

which case the benchmark scope expands to include as-

pects of human user studies, with statistical techniques

used to provide reproducibility. An alternative approach is

to break the benchmark into separate phases such that

human intervention is only required between phases. Each

phase would then be scored individually, with a penalty

applied according to the amount of inter-phase human

support needed. This could be a simple time penalty

added to the benchmark result, or a more complex scoring

scheme. The phase-based approach also may help with

benchmarking of systems that crash or fail in response to

injected changes, because failure in one phase can be

treated independently from behavior in other phases.

3. Conclusion

While the promise of autonomic benchmarks is clear, a

key question facing their developers is how we will ad-

dress the challenges enumerated above. We hope to open

a dialog with others working in the areas of autonomic

computing and non-traditional benchmarking to discuss

these issues and potential solutions, and to understand

how various solutions will impact the value and applica-

bility of an autonomic benchmark.

4. References
[1] A. Brown, L. Chung, et al. Dependability Benchmarking of Hu-

man-Assisted Recovery Processes. Submitted to DSN 2004.

[2] IBM. Architectural Blueprint for Autonomic Computing.

http://www.ibm.com/autonomic/pdfs/ACwpFinal.pdf, 2003.

[3] K Kanoun, H. Madiera, and J. Arlat. A Framework for Depend-

ability Benchmarking.. 2002 Workshop on Dependability Bench-

marking (DSN 2002). Washington, D.C., June 2003.

[4] E. Lassettre, DW Coleman, Y. Diao et al. Dynamic Surge Protec-

tion: An Approach to Handling Unexpected Workload Surges With

Resource Actions that Have Lead Times. DSOM, 2003.

[5] H. Madeira and P. Koopman. Dependability Benchmarking: mak-

ing choices in an n-dimensional problem space. Proc. EASY ’01,

Göteborg, Sweden, 2001.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

