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Abstract

Threshold violations reported for system components
signal undesirable conditions in the system. In complex
computer systems, characterized by dynamically changing
workload patterns and evolving business goals, the pre-
computed performance thresholds on the operational values
of performance metrics of individual system components
are not available. This paper focuses on a fundamental en-
abling technology for performance management: automatic
computation and adaptation of statistically meaningful per-
formance thresholds for system components. We formally
define the problem of adaptive threshold setting with con-
trollable accuracy of the thresholds and propose a novel
algorithm for solving it. Given a set of Service Level Ob-
Jjectives (SLOs) of the applications executing in the system,
our algorithm continually adapts the per-component perfor-
mance thresholds to the observed SLO violations. The pur-
pose of this continual threshold adaptation is to control the
average amounts of false positive and false negative alarms
to improve the efficacy of the threshold-based management.

We implemented the proposed algorithm and applied it
to a relatively simple, albeit non-trivial, storage system. In
our experiments we achieved a positive predictive value of
92% and a negative predictive value of 93% for component
level performance thresholds.

1. Introduction

Autonomic computing requires computer systems to be
capable of self-management [26]. To this end, the au-
tonomous system needs to monitor its performance and
differentiate between normal and abnormal behavior. Self
healing requires that the system autonomously react to the
undesirable behavior, providing some remediation. Unde-
sirable behaviors can be roughly classified into two major

classes: degraded functioning known as performance prob-
lems, and failures, i.e., a total inability to carry out certain
function. This study focuses on performance problems.

Modern computer systems are complex multi-
component systems. Monitoring commonly takes place
at the component level whereas problem identification
and remediation are required at both the system and the
component levels. Usually, detection of performance
problems is done as follows. At the system level, the
system’s behavior is matched against the Service Level
Objectives (SLOs) of the applications that consume the
system’s services. SLO violations are considered the
system-level performance problems. At the component
level the monitored operational parameters are compared
against their preset thresholds. Threshold violations are
considered problematic at the component level, and may
also indicate performance problems at the system level.

Using pre-configured component-level thresholds for de-
tecting performance problems in a managed system is a
ubiquitous performance management approach. However,
it is well known that correlating component-level threshold
violations with the system-level SLO violations is challeng-
ing. In this work we address this problem.

The major weakness of threshold-based management
schemes that employ non-adaptive, pre-configured compo-
nent thresholds is the assumption that the thresholds on the
values of operational parameters are known in advance. In
practice, suitable thresholds are seldom known.  Some-
times useful values of a few thresholds might be provided
by component manufacturers. Typically, for a specific sys-
tem these values are far from optimal.  In general, even
if initial adequate thresholds on the parameters are given,
there is still a need to adapt them to changes in the system
that come in two forms: 1) evolution in the workload pat-
terns; 2) evolution of the business goals that the system has
to support.

Another weakness usually attributed to threshold-based
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management is that component-level thresholds are not very
useful in the absence of a semantic model that explicitly de-
fines the relationships and dependencies among the applica-
tions and system components and among the system com-
ponents themselves. Detecting a component-level thresh-
old violation may indicate that there exists a problem at
the system level or that such a problem is imminent. How-
ever, without knowing at least something about the system’s
structure it is very difficult to identify what this problem is
and which parts of the system are affected.

Often, the structure of a system is difficult to capture.
This situation is changing, however, as systems become in-
creasingly service-centric and component-based. In such
systems each component provides its services to other com-
ponents through well-defined interfaces and performance
guarantees of a component are explicitly defined in com-
ponent’s SLO (we discuss this in greater detail in Sec-
tion 3). Storage Area Networks (SANs) [18] are an exam-
ple of service-centric, component-based systems. In [7]
we presented a threshold-based performance problem root
cause analysis algorithm that explicitly constructs a seman-
tic model of component relationships in the SAN. In [3], an
explicit semantic model is constructed for electronic trans-
actions. In some systems, components’ interfaces and SLOs
are not well defined or difficult to analyze explicitly, let
alone building a satisfactory semantic model for their inter-
relationships. For such systems, machine learning or data
mining techniques may be used to extract some information
about the internal system organization [6, 11, 14, 19].

Current practices of system management do not auto-
mate threshold setting. Therefore, an administrator, if she
wants to deploy a threshold-based management scheme,
needs to resort to her intuition and experience with the
system and set the per-component performance thresholds
manually. This is an error-prone and tedious process. More-
over, this process has to be repeated each time workload
patterns of the system or its SLOs change considerably.
For modern computer systems which consist of hundreds
and even thousands of diverse components, e.g., SANs, the
manual approach does not scale.

Despite the drawbacks pertaining to the threshold-based
performance management we argue that this approach has
a very prominent advantage. This advantage is simplicity
and intuitive nature of thresholds. Even a novice adminis-
trator has no trouble understanding the concept. In system
management thresholds serve as a basic building block for
constructing sophisticated management functionality just as
simple Boolean gateways serve as the basis for creating
more complex logic. A bulk of research and practical work
in, e.g., Policy Based Management postulates availability
of relevant threshold-based mechanisms for alarm genera-
tion [5, 7, 12, 21, 22, 24].

Automatic derivation, setting and adaptation of statis-
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tically meaningful thresholds on the values of operational
parameters of system components is essential for the man-
agement of computer systems, and even more so for auto-
nomic, self managed systems. The mechanisms proposed in
this paper, perform on-line adjustment of component level
thresholds with controllable levels of false positive and false
negative alarms with respect to the performance SLOs of the
system as a whole. The core idea of the proposed solution
is modeling of SLO violations using logistic regression [4]
and subsequent retrospective adjustment of the thresholds.
The thresholds serve as independent explanatory variables
in the regression equation. However, while usually there is
no control over the explanatory variables in statistical mod-
els, component level thresholds are controlled by our algo-
rithm that plays the role of an ‘automated administrator’ and
adjusts them as needed.

We first present the basic generic algorithm and provide
an empirical study of its performance in a relatively simple,
albeit non-trivial, computer system. Then, we discuss the
way in which the basic algorithm can be applied to more
complex systems and which enhancements this may entail.

To the best of our knowledge, the problem of automated
adaptive threshold setting with controllable error levels with
respect to the application level SLOs was not solved to date.
The more important research in this direction is reported
in [3, 9, 16]. In general, however, while there is a consid-
erable effort devoted to using thresholds once they are de-
fined [15], until very recently there was almost no effort to
solve the problem of their automatic and adaptive computa-
tion.

Some similarity to our study can be found in [10], where
components’ performance metrics behavior is correlated
with SLO violations at the application level. In contrast to
our study, that work neither computes, nor uses component-
level performance thresholds. We discuss that paper in Sec-
tion 8 in more detail.

Thresholds computed by our algorithms can serve as
a basis for multiple performance management techniques.
Our initial feasibility study (described in Section 5) exam-
ined a relatively simple storage system. Additional experi-
ments are currently being performed to examine more intri-
cate SAN architectures. However, the scope of the concepts
presented in this paper have a far broader field of applica-
tion beyond SAN performance management. We believe
that automated threshold setting is an enabling technology
for the vision of autonomic computing.

2. Model and Problem Statement

Let C = {¢;} denote the managed system comprised
of components ¢; € C. Let A = {a;} be a set of appli-
cations. Let M = {my,} be a set of performance metrics
measured at {¢; } by means of some monitoring tools. Let
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AxC — [0,1] and Cx C' — [0, 1] be explicit dependencies
defined among the applications and system components and
among the system components themselves. A value in [0, 1]
denotes a strength of the dependency.

We assume that an alarm target exists — a processing en-
tity to which alarms following detected threshold violations
at the component level are sent. We assume a discrete time
model, i.e.,t € N.

Let SL = {si} be a set of SLOs such that for each
a; € A3 s, € SL. We focus on binary SLOs. Multilevel
SLOs are captured by a straightforward generalization of
our basic solution (discussed in Section 7.4). Let the binary
SLO of an application be defined as a first order predicate
slo(r), where r is an application level performance metric.
For example, » may be the average response time, and the
SLO of the application may be defined as r < R, where R
is a pre-specified value. At any time ¢, slo(r) evaluates to
either TRUE or FALSE. For this reason we refer to it as bi-
nary performance SLO. For brevity, wherever no ambiguity
arises, we use the term SLO referring to binary SLOs.

SLO violated | SLO not violated
Threshold violated X y
Threshold not violated u v

Table 1. Alarms and SLO violations distribution.

Let c be a system component. Let x be a metric mea-
sured on this component. Let ., be a threshold value de-
fined on ¢, u. We assume that, at regular time intervals w,
component-level monitoring agents compare the value of
each component metric against the threshold defined for the
metric. In case of a threshold violation, an alarm is propa-
gated to the alarm target.

Table 1 depicts the possible relations between compo-
nent threshold violations and SLO violations. In the table,
2 counts threshold violations detected for ., that coin-
cide with the SLO violations and y counts threshold viola-
tions that do not coincide with SLO violations. Similarly,
u counts non-violations of v, , that coincide with SLO vi-
olations, and v counts non-violations of ~.,, that coincide
with non-violations of the SLO. These counters are used to
define positive and negative predictive values of a threshold
as follows.

Definition 1 Positive Predictive Value (PPV) of a threshold

PPV, ., def :ciﬂ is the probability of violating ~y. .,

when there is indeed an the SLO violation of the applica-
tion.

Definition 2 Negative Predictive Value (NPV) of a thresh-
old

The NPV~ , def u_”H} is the probability of component
level threshold not being violated, when there is, indeed, no
SLO violation.
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Given the above definitions, the level of TYPE1 errors
for ¢, m, or false positive alarms ratiois 1 — PPV,,_ . The
level of TYPE2 errors, or false negative alarms ratio is 1 —
NPV, ..

LetO <oy <land0 < B, <1, ae,y # Be,u, be the
PPV and NPV desirable for the threshold on the component
performance metric.

Problem 1 On-Line Thresholds Setting Problem

At time 1, for each of the system components of interest
¢, and for each performance metric of interest . compute
threshold 7., (t+1), such that ast — oo, then PPV, —
Qe and NPV, — Be .

In other words, we need to compute performance thresh-
old values on-line such that, on average, the PPV and NPV
levels are maintained over the total operation period. This
requires that the system operates for a sufficiently long pe-
riod of time and the underlying stochastic process remains
stationary for sufficiently long. However, it does not pre-
clude time instances in which the threshold defined for the
component may violate its desired PPV and NPV levels.
From a practical perspective it is important that the thresh-
old setting algorithm converge fast to the desired PPV and
NPV levels when the underlying statistical process stabi-
lizes. In our feasibility study, convergence takes only a few
iterations of the algorithm (see Section 5 and Section 6).

Note that we do not assume that the system behaves as a
single stationary stochastic process during its operation. On
the contrary, we assume that the statistical nature of the sys-
tem’s behavior may change multiple times. We only assume
that each time such a change occurs, it lasts sufficiently
long. In other words, the system is not a chaotic one, as in
this case it would be unmanageable in the strong sense — no
amount of monitoring, analysis and remediation would help
its performance. We assume that the system may operate in
multiple normal and abnormal modes. We now formulate
the necessary condition for solving Problem 1.

Definition 3 Stochastic Monotonicity of a Metric (1st nec-
essary condition)

Let m1, ms be values of performance metric p at differ-
ent time instances t1 and ts, and r1,ry be the values of ap-
plication performance metric p at the same time instances.
Stochastic monotonicity requires that:

Pr(ry < rqolmy < mg) > Pr(ry > ra|mi < ma).

The second necessary condition for solving Problem 1 is
more difficult to formalize. Informally, it requires knowing
the relationships among the components. This is needed
for considering only SLO violations and component level
performance threshold violations that are relevant to each
other. In [7], explicit relationships between the system’s
components (SAN in that case) can be extracted from ana-
lyzing the system’s configuration data. This is an example

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE



Application Layer Management
SLOs L
ayer
Application Application Application SLO violations
— =
Component Component Component
Application
Q/ Monitoring
Threshold setting Pl
Component Component Threshold
—‘ Component alerts Setting
Componnet monitoring
Managed System Layer

Figure 1. Autonomous Management Architec-
ture

of a system in which the necessary condition of knowing
the system’s structure holds.

For simplicity, we first address the case of a single ap-
plication having an SLO, a single component that can be
monitored, and a single performance metric, ie., |A| = 1,
|C| = 1, and |M| = 1. Extensions that address multiple ap-
plications, multiple components, and multiple metrics are
discussed in Section 7.

Our example domain is storage-oriented, and in partic-
ular SAN-oriented. There are two reasons for this. First,
the relationships among the SAN components are well de-
fined. Second, our empirical studies show that in storage
systems stochastic monotonicity condition holds. Note that
our solution is applicable to any system that satisfies the sto-
chastic monotonicity, and for which information about the
relationships between system components is available.

3. Autonomic Threshold-Based Performance
Management Architecture

Figure 1 depicts the envisioned generic architecture of
autonomous, self-managing computer systems. It shows
the role that our contribution — the automated and adaptive
threshold setting mechanism (presented in grey) — serves
within this architecture.

The autonomic computing approach proposes organizing
computing systems as self-coordinating and self-managing
ensembles of hardware and software components. These
components communicate through well-defined standard-
ized interfaces. Components provide and consume ser-
vices from each other in complacency with the service level
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agreements (SLAs) defined among them. One crucial as-
pect of an autonomic component’s behavior is the perfor-
mance level that this component guarantees to other com-
ponents that may consume its services. This part of an SLA
is known as service level objective (SLO) and may include
a variety of parameters, e.g., reliability level, maximal aver-
age response time, minimal average throughput, efc.

Since the non-trivial services, such as data storage ser-
vice, on-demand computation service, connectivity service,
etc. are rarely provided by a single component, component-
based systems are organized as follows. There is a struc-
tured set of the system-level components that together pro-
vide a service; there exist multiple application-level com-
ponents that consume the service provided collectively by
the system-level components; this service consumption is
performed through the system front-end — a subset of the
system-level components.

The gradual move to service-oriented, componentized
(and eventually autonomic) systems, requires efficient per-
formance management. An automated threshold setting
mechanism is an essential building block of such manage-
ment solutions, as explained in the introduction (Section 1).
The current paper focuses on this building block.

4. Basic Algorithm

In this section, we present a generic on-line algorithm
for automated and adaptive setting of thresholds on the op-
erational values of component performance metrics. For
simplicity of presentation, we consider a system consisting
of one component of interest, having a single performance
metric that can be measured, a single control application
(i.e., the application for which a binary performance SLO
is defined), and, possibly, multiple other applications that
inflict an additional load on the system. Although such a
system may seem unnaturally simple, we show in Section 5
that real systems can be modeled this way. In Section 7, we
discuss more complex system settings and the application
of our basic algorithm in these settings.

Let I'(t) = {7(0),~(1),...,7(t)} denote the time series
of the thresholds used from time O to time ¢. Let A(t) denote
a stochastic binary variable, such that a(t) = 0, if slo(r) =
true, i.e., the SLO of the application is satisfied at time ¢,
and a(t) = 1 otherwise. Let 7., (t) be the threshold value
for performance metric © of component c at time ¢. Since
there is only one component and one metric, we omit the
indices. Let Y'(¢) denote a stochastic binary variable, such
that y(¢) = 1 if the operational value of 1 on ¢ violates ~(¢)
at time t, and y(¢) = 0 otherwise.

Let a and 3 be, respectively, the target PPV and NPV
levels desirable for v(t), s.t., « # 3. Let A denote a time
series of the application SLO behavior (a(t)). Let Y denote
a time series of the performance metric behavior (y(t). As-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE



suming stochastic monotonicity (Definition 3), we need to
solve Problem 1. That is, we need to compute (¢ + 1), the
threshold value for the next time step, such that as ¢ — oo,
the PPV — « and the NPV — (.

We use a statistical approach to solve this problem. We
treat Y (¢) (which encodes relationship between measure-
ments of 4 on ¢ and «(¢))) as a response variable. Us-
ing I'(¢) and A(t) as explanatory variables we construct a
regression model for Y (t). Then we solve the regression
equation treating (¢ 4+ 1) as an unknown variable to ob-
tain the threshold value with the specified PPV and NPV
for t + 1. Thus I" plays a dual role. It is an explanatory
variable in the regression model that explains the past be-
havior of the system. It is also an unknown variable when
the regression model is extrapolated to the next time step.

The reasons for using T'(¢) and A(t) variables as pre-
dictors are obvious. TI'(t) directly controls the behavior of
Y (t): if the threshold is set to a too large value, no threshold
violation events would follow, the value of Y (¢) will be 0
most of the time, and the percentage of false negative alarms
(TYPE2 errors) will rise sharply. If, on the other hand, the
threshold is set to a very low value, many threshold viola-
tion events will be generated, Y (¢) will equal 1 most of the
time, and the percentage of false positive alarms (TYPE1 er-
rors ) will increase beyond the desired level'. A(t) helps to
explicitly connect the application behavior to the behavior
of a performance metric in the system. Since it is assumed
that the operational values of the performance metric are in-
dicative of the application level problem, A(¢) is necessary
in order to achieve the desired levels of PPV and NPV, as
explained below.

Since Y (t) is a binary variable, we cannot use the regular
linear regression model of the form y = ¢ + b T, where
is the vector of explanatory variables. One reason for this is
that i exceeds 1 for sufficiently large values of . Another
reason for the regular linear regression being inapplicable
is that the significance testing of the regression coefficients
is based on the assumption that the residual errors of pre-
diction, e = 3’ — v, are normally distributed?>. Because y
only takes values 0 and 1, this assumption, obviously, does
not hold. Yet another important reason is that we need a
mixture of categorical, A(t) and continuous, I'(¢), predictor
variables in our model. For these reasons we use a variant
of Generalized Linear Model regression with the log:t link
function called Logistic Regression. This is a commonly
used statistical model for analyzing categorical data [4].

'In general, there exists a dependency between the PPV and NPV
of a threshold. PPV is is monotonically non-increasing with the thresh-
old value, while NPV is monotonically non-decreasing with the threshold
value. If the threshold is set too high, its PPV will decrease while its NPV
will increase. If, on the other hand, the threshold is set to a very low value,
the PPV of the threshold will increase, while its NPV will decrease.

2y’ are the values predicted by the regression model, and y are the
observed ones.
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The main idea behind using the logistic regression is to
predict the probability of Y (¢ + 1) to assume 1 conditioned
on the predictor variables values rather than predicting the
value of Y (¢ 4 1) directly.

Letp(Z) = PY =11 X =2) =1-P(Y =0|X =
Z). The Logit transformation of p(Z) is logit(p(Z)) =
%. The logit value can assume any value between
minus and plus infinity. Therefore, we may use the logit
value as a response variable in the regular linear regression

as follows:

In

logit(p(Z)) = c+ b - 7. (1)

The regression coefficients c, b are derived using the
Maximal Likelihood (ML) estimator [4]. Assuming that the
logistic regression is fitted successfully (i.e., the goodness
of statistic fit of the model is sufficient for the desired con-
fidence level), from Equation 1 we obtain:

1
B 1+exp(—c—b-2)

p(7) 2

Using our explanatory variables: z; = a(t) and zo =
~(t), we predict the probability of threshold violation, as
follows:

1
l+exp(—c—by-alt+1)—by-~(t+1))
3)
Since a(t + 1) may evaluate to either 0 or 1, we get, for
the case of the SLO not being violated:

p(t+1) =

1
plt+1) = 1+exp(—c—bg-y(t+1))’ “)

and for the case of the SLO being violated, we obtain:

1
pt+1) = 1+exp(—c—by —by-y(t+1)) )

Equation 5 renders the probability of the true positive
alarms, and, as t — oo, this probability represents PPV of a
threshold. Similarly, for a large enough time series, 1 — p,
where p is given by Equation 4, approximates NPV of a
threshold. Therefore, given pre-specified PPV « and NPV
(3, we compute the system component threshold for the next
time instance from Equation 4 and Equation 5 as follows:

In —1n%—2~c—b1
2 by '

Equation 6 forms the core of the threshold setting al-
gorithm. The algorithm starts with a random (or default)
threshold and adjusts the threshold value at each iteration.

e’

y(t+1) = (6)
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Recall that in the general case it is not possible to obtain ex-
actly the same levels for PPV, «, and NPV, § for the thresh-
old since there is a trade-off between PPV and NPV. Equal
PPV and NPV levels are possible only if the system behaves
in a very specific way. For example, if there are no dynamic
changes in the system’s workload and the system exhibits
no performance problems at all, then equal PPV and NPV
levels can easily be achieved.

The value of (¢ + 1) obtained in Equation 6 implicitly
depends on values of v(0),~(1),...,v(t), since the coeffi-
cients by used in this equation, are obtained from the mul-
tivariate logistic regression model that fits the previous val-
ues of the performance metric thresholds. This introduces a
bias to the regression model itself. Fortunately, we have full
control over the explanatory variable I', the threshold. Let
7t be the sample mean of performance metric p, and o be
the sample variance. In order to reduce the bias in this ex-
planatory variable, we augment the time series of vy values
that were actually used in the past as the thresholds, with
the dummy ~' values that we toss from the discrete uniform
distribution U (max (i — 3-0,0), T+ 3 - o) and apply retro-
spectively to the time series of the performance metric and
application SLO, to obtain additional, virtual, points in the
time series. This allows a more accurate model fit.

To illustrate the rationale behind the bias reduction pro-
cedure, assume that at time ¢’ < ¢ the value of performance
metric 1 was m, i.e., u(t') = m, and y(¢') = g and, with-
out loss of generality, let g > m. Without loss of generality,
let’s assume also that slo(-) = false. As one can notice,
this situation represents a TYPE2 error, i.e., a false negative
alarm, and, correspondingly, a(t’) = 1, y(t') = 0. After we
toss random threshold values ~{ ('), v5(t'), ..., 7, (), and
compare these threshold values against p(t') = m, we ob-
tain more samples (virtual samples) for y(¢'). Some of these
new sample points still correspond to TYPE2 errors, yet oth-
ers correspond to TYPE] errors, yet still others correspond
to the desirable behavior. The implementation of the algo-
rithm as part of a performance management tool may take
the form presented in Figure 2. Note that the thresholds are
recomputed only when necessary to reduce computational
overhead. If the current values of PPV and NPV meet their
target values, no correction to the thresholds is required.

Before we proceed to describing our experimental re-
sults with the threshold setting algorithm presented in this
section, we would like to point out that the algorithm, as
presented, assigns the same importance to all observation
points in A(t) and Y (¢) time series. This may lead to de-
graded accuracy of prediction in the regression model, since
too old historical observations may introduce the undesir-
able bias and high variance. At the same time, if the system
exhibits complex behavior, this problem cannot be solved
by a straightforward weighting of the observation points,
e.g., exponential weighting. It is known that real systems of-

L ATS(Q}B’ U) {
/lo and 3 are the PPV and NPV value;
//may also be set to default values:

/le.g.,a=0.9538=0.85

2

3

4

5. /lo is the required confidence level
6.  initialize y(0) //Set to a random value, unless known
7. while (TRUE) { //main event loop

8 given SLO observation at time ¢, do { //event arrived
9

boolean v « isViolated(SLO)

10. if (v A () < 7))V (mo A (p(t) > (1)
11. if ((current PPV < «) V (current NPV < f3)) {
12. fit logistic regression (see 5)

13. if o was achieved (use -2LL to test)

14. compute y(¢ + 1) using equation 6

15. }

16. else

17. Yt +1) (1)

18. } /lend: do
19.  } /lend: while (main loop)

20. } /fend: ATS

Figure 2. Pseudo-code of the automated
threshold setting algorithm

ten behave in repetitive patterns that correspond, for exam-
ple, to certain hours and week days [9]. Thus, the weighting
scheme should take this behavior into account.

5. Experimental Evaluation

We implemented our algorithm using MATLAB [20] and
evaluated its performance on the trace that we gathered from
our system. Figure 3 depicts our experimental setting. The
managed system consists of a Windows 2000 workstation
and multiple I/O bound applications which consume I/O
services through a Veritas Logical Volume Manager (LVM)
on top of a RAID-5 disk array. The I/O bound applications
were simulated using the standard I/O micro-benchmark
software iozone [2] and iometer [1].

One of the I/O processes was designated as a ‘test appli-
cation’. Its performance SLO was defined in terms of max-
imal acceptable response time. We monitored the response
time of the test application. Other I/O bound applications
were not assigned SLOs and simply loaded the storage sub-
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Figure 3. Experimental Testbed

system by repetitively executing benchmarks with random
sleep periods in between.

We tagged each application sample point as either “SLO
violation” (a(t) = 1), or “SLO conformance” (a(t) = 0).
Our trace contains 375 observations for the application side,
and over 190, 000 system-side measurements, each applica-
tion observation corresponding to ~ 500 observations of
the system component (i.e., of the logical volume). The
measurements of LVM were performed every second. At
the system side we sampled the values of two performance
metrics: average requests arrival rate (measured in 1/O re-
quests per second) and average response time of the logical
volume (in seconds per completed request).

After obtaining the performance trace of the system we
executed our algorithm in an on-line manner as follows.
At each point in time in which the ‘test application’ pro-
duced a response time measurement, the latter was com-
pared against the SLO definition. Correlating application’s
SLO status with threshold violation/non-violation status at
this point in time, we identified “false positive”, “true posi-
tive”, “false negative”, and “true negative” events (see Sec-
tion 2). If either a false positive or a false negative event was
detected and the target PPV or NPV level(s) were not satis-
fied at this point, the performance thresholds for the LVM
performance metrics were recomputed. Only the informa-
tion seen in the trace up to the current point in time was used
for recomputing the thresholds (see Figure 2 for a detailed
algorithm).

We explained earlier that in the general case achieving
PPV and NPV target levels equal to one another is impos-
sible. To check which maximal PPV («) and NPV («) lev-
els can be attained simultaneously (see Equation 6) we per-
formed a series of experiments in which one of the parame-
ters was fixed and the other was varied. To limit the number
of runs we excluded levels not acceptable for practical sys-
tem management. Minimal acceptable values for PPV and
NPV were set at 85%. For the raw values of the metrics the

Application Performance vs. Component-level Performance
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Figure 4. Application Response Time and
Logical Volume Response Time, as functions
of time

best combination attained was a PPV level of ~ 89% and
an NPV level of ~ 91%. When instead of using the mo-
mentary values we used the variance, the results were even
better. We attained 92% of PPV (a 3% increase in PPV).

The algorithm exhibited fast convergence. Figure 7 de-
picts convergence of the threshold values for a specific SLO
definition. There was no dramatic difference between the
results attained by using either the arrival rate of I/O re-
quests, or the response time of the logical volume as a pre-
dictor variable. In both cases the results were very similar,
albeit using the response time resulted in marginally better
results.

The basic algorithm assumes that at each iteration, the
regression model successfully fits the observed history. The
goodness of fit was measured using —2LL (double log-
likelihood) statistics, using Chi-Square test. We used a 0.95
confidence level for deciding whether a fit is successful. If
the fit was not attained at this level (e.g., due to the overly
high variance), the thresholds were reset to random values
as if there was no history. There were just a few such cases
in applying the algorithm to this trace. ~We are currently
investigating more sophisticated methods for history selec-
tion to guarantee a good model fit.

6. Discussion of Experimental Results

Figure 4 presents two scatter plots overlapped on the
same graph: the response times of the application and of the
logical volume as functions of time. Inspecting this graph
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shows that the metrics behavior is stratified. The strata cor-
respond to different modes of system operation. In other
words, there exist a number of operation modes that do not
result in SLO violations. These modes significantly differ
from one another in terms of the values of the performance
metrics measured in each mode. Therefore, the adaptivity of
the thresholds is indeed important. Another phenomenon to
notice is that the higher values (outliers) of the application
behavior roughly coincide with higher values of the logical
volume metrics. This supports the conjecture of stochastic
monotonicity (see Section 2) that justifies using thresholds
as a meaningful management mechanism. Figure 5 depicts
variance of the logical volume response time. As the ab-
solute values of the variance are rather small (tens of mil-
liseconds, see Figure 4), we performed ‘scaling’ by multi-
plying all variance values by 10°. The scaling was needed to
preclude numerical instability in the algorithm due to very
small numbers.

One may notice that Figure 5 is considerably less noisy
than Figure 4. Most values are being well clustered with rel-
atively few outliers. At the same time the overall structure
of the workload is preserved. This explains the improve-
ment in accuracy when the variance was used as one of the
predictor variables instead of the raw values in the regres-
sion model.

Figure 6 shows the application response time plotted as a
function of the variance of the logical volume response time
(scaled by 10, as explained above). There is no temporal
structure in this graph. It merely shows the way in which
the application behavior depends on the system component
metric behavior. One can observe clusters of data points
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that correspond to different operational conditions. The sto-
chastic monotonicity assumption is well pronounced in this
figure. However, a visual inspection suggests that a simple
linear regression model will not be an accurate model for
capturing the statistical structure of this data.

Figure 7 superposes two plots: the scaled variance in
LVM response time and the threshold setting dynamics for
SLO =1700. Note that decreasing the SLO value, increases
the number of SLO violations for a given trace. For the
trace in our experiment SLO = 1700 yielded ~ 40% SLO
violations. Every point on the abscissa corresponds to a
measurement of the test application’s response time taken
upon its termination. As explained in Section 4, a threshold
is recomputed at these points. If the threshold is sufficiently
accurate, it remains unchanged for the next iteration (see
line 16 of the pseudo-code shown in Figure 2).

As one can observe from Figure 7, in the first part of
the trace, when the workload is less intense and there are
fewer SLO violations, the threshold converges very fast and
remains almost unchanged. This holds approximately until
‘time’ 150, when much more load is imposed on the system
and the latter becomes noisier. In this part of the trace the
threshold is updated more often and it takes more iterations
to converge. However, on average it takes ~ 10 iterations.
The algorithm is resistent against the occasional spikes in
application response time that are not related to high vari-
ance values of the LVM response time. These spikes can be
attributed to the operating system buffering and scheduling
and not to poor LVM performance.

7. Extended Applications of the Algorithm
7.1. Multiple Metrics

Above we have solved the threshold setting problem for
a single metric. A general solution should address multi-
ple metrics. A naive approach is to execute the basic so-
lution for each metric separately. Although this approach
may work well for a small number of metrics, it has two
disadvantages. Firstly, many performance metrics are mu-
tually dependent, hence dependencies among the thresholds
set on them may likely exist as well. Secondly, some met-
rics are of minor importance for system management. The
major problem stemming from dependency among the met-
rics is the multi-collinearity. This implies that introducing
additional predictor variables corresponding to more met-
rics into the regression model should be done with great
caution.

Identifying metrics of minor importance early-on and
ignoring them can significantly reduce the computational
complexity of the proposed solution. Fortunately, means
for doing that are known in the art (e.g., dimensionality
reduction techniques).  We have executed a preliminary
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feasibility study of using such techniques for SAN perfor-
mance metrics. Initial indications are that the number of
performance metrics for the SAN can be reduced signifi-
cantly without adversely affecting the model’s quality.

7.2. Multiple Components and Inseparability

Large systems consist of a multiple components that re-
quire performance management. One problem with us-
ing simple per-component performance thresholds is that
in many cases the managed system may behave such that
only certain combinations of components’ behaviors lead
to performance problems. Moreover, it is also possible that,
when we inspect each component in isolation from others,
performance thresholds are violated at neither of them, yet
the combination of current values of performance metrics
indicates a problem. When this happens, we say that the
system is not separable. The number of combinations of
components and metrics is exponential. Hence, it is in-
feasible to inspect them all. It is also not scalable to add
too many predictor variables (at least one per component)
into our basic regression model, as it increases the computa-
tional cost, while simultaneously reduces the overall quality
of the model.

One approach to dealing with this problem is using
coarser component granularity. This approach has inherent
limitations. Another approach is using advanced statistical
methods such as those employed for Data Mining, in order
to identify only the most important combinations of metrics
among different components and use their weighted linear
combinations as derived metrics, on which the basic algo-
rithm of Section 4 computes simple thresholds.

7.3. Multiple Applications

There may exist multiple applications which share sys-
tem’s resources and whose SLOs should be accommodated
simultaneously®. There are various ways to deal with mul-
tiple applications. One natural extension of our basic solu-
tion is to define a single model for all applications using the
binary variable A(t) to model SLO violations in any appli-
cation. Yet a more sophisticated approach is to classify the
applications into classes and using A(t) to model SLO vio-
lation in any application of a given class. Finally, the most
expensive solution is to employ a separate regression model
for an individual application behavior. This approach may
increase the preciseness of the computed thresholds since
they are crafted on a per-application basis, however it may
not scale.

3Note that in our experimental study we already have multiple appli-
cations in the system, but we measured SLO violations only for one of
them—the control application—for which the SLO was defined.
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We suggest using either the first or the second approach
to construct the regression model. We supplement these
with the case study [4] statistical method. Namely, we treat
a threshold violation by a component as an effect. When a
threshold is violated, we compute the proportion and types
of applications for which SLO violations are observed in
conjunction. Over time, we develop an empirical probabil-
ity for a given threshold violation to affect a given applica-
tion. Consequently, if we observe that the required PPV and
NPV levels are not satisfied for some application, we may
consider crafting its individual threshold setting regression
model.

7.4. Multi-level SLOs

The basic threshold computation method presented ear-
lier is suitable for “binary” SLOs. More sophisticated SLOs
may exist. For example, one may consider an SLO that
has multiple levels and for each level there is an associ-
ated price. We can easily extend our method to accommo-
date multi-level SLOs by using multinomial logistic regres-
sion [4].

8. Related Work

Using thresholds is a common practice in performance
management [15, 24]. Typically, performance thresholds
are not adaptive and do not take into account application
SLOs. Despite the obvious need for having such thresholds
as part of the management arsenal, relatively few advances
were reported on this problem so far.

A recent paper [10] studies correlations between the be-
havior of component performance metrics and application
SLO violations. These correlations are used to build a
performance anomaly detector for three-tier client/server
systems. In seeking performance anomaly detection, the
work in [10] is similar to ours. However, our study differs
from that work in several ways. First, [10] suggests using
Tree-Augmented Bayesian Networks (TANs) as a means for
anomaly detection. In that approach performance thresh-
olds at the component level are neither computed nor used.
In contrast, we take a more incremental approach, as our
solution suggests to improve the existing threshold-based
performance management paradigm by automating and op-
timizing threshold computation. Therefore, our approach
can be adopted seamlessly since in most managed systems
performance thresholds already exist. Second, our solu-
tion allows for the user to set a desired level of TYPEI and
TYPE2 errors, and the thresholds are computed to meet, on
average, these target levels. The solution in [10] measures
the level(s) of false positives (negatives), but does not al-
low one to set desired levels of these quantities. Finally, our
approach is better suited for a distributed implementation.
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Monitoring agents do not have to communicate with the
management station at each step. Communication is nec-
essary only when a local threshold violation is detected.

One of the first attempts to solve the problem of dynamic
threshold setting for management purposes was presented
in [17]. In that work a seasonal model was proposed for
analyzing the time series of variables (e.g., memory usage,
disk space, number of users, efc., indicating the workload
of a host) pertaining to hosts, forming a network. The sea-
sonal model was used to predict the workload of each host
in the next time instance. When the difference between the
predicted and observed workload values of a given host was
perceived as too large, the host was declared problematic.
As one may notice, the approach used in [17] did not really
solve the problem that we are attacking. It rather shifted the
focus from defining accurate adaptive thresholds on the val-
ues of the management variables themselves to defining the
accurate threshold on the model’s error. This task was still
left to the human administrator.

This direction was developed and improved in [8, 13, 23,
25]. Common to these studies is definition of a statisti-
cal model based on the historical performance time series
and then using it either for 1) predicting the future perfor-
mance values and comparing the discrepancy between the
predicted and observed values against a pre-set threshold
value; or 2) continually recomputing the model and detect-
ing considerable changes in the model parameters and sub-
sequently searching for change points in the time series cor-
responding to the model parameter changes. However, in
both cases the problem of finding direct thresholds on the
operational values is not solved, but rather substituted by
the problem of defining a suitable threshold value for statis-
tical model’s discrepancy.

In [15, 24] a seasonal model of metrics variance is used
to predict threshold violations (for proactive management
purposes). It is assumed that the thresholds themselves are
preset. The problem of computing and adapting them is not
addressed.

In [9] it is recognized that using very long time series
is both computationally and space inefficient. To remedy
these drawbacks, a two-dimensional time approach is intro-
duced to parameterize the time series. This work assumes
that the system behavior is strongly periodic (e.g., due to
the social cycles behind the usage of the system). To cap-
ture the periodic behavior of the system, the linear time is
transformed into an elliptic one: t = P - n 4 7 with the pe-
riod P, which is discovered empirically. A statistical analy-
sis (mean and variance computation) is applied to the data
belonging to the same period and among the similar peri-
ods (e.g., the same day of the week, the same week etc.) to
define the dimensionless regions in terms of variance and
mean which differentiate between the normal and abnormal
behavior of the system. An important advantage of the two-
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dimensional time-series approach introduced in [9], is that
it is storage and computationally efficient. The main dis-
advantage is that it depends on the actual managed system
behaving periodically as expected. In contrast to our work,
[9] does not guarantee specific PPV and NPV levels of the
thresholds and is best suited to be a long term anomalous
tendency detection mechanism.

In [3] a simple on-line performance threshold scheme,
based on exponential averaging is introduced for electronic
transaction performance management. Performance thresh-
olds computed using this scheme do not guarantee specific
levels of PPV and NPV. Tuning of the threshold setting al-
gorithm parameters, such as choosing the sample size and
the weighting coefficient o, relies on empirical experience
with the system and is left to the administrator.

9. Future Work

The methods proposed in this study require additional
work to show their applicability to complex systems and
SLOs. In current work we already address some of these
requirements and future work will address others. In par-
ticular, we are currently deploying a complex SAN; on this
SAN we will perform experiments with multiple compo-
nents, multiple metrics, and multiple test applications. Uti-
lizing the extensions of our basic algorithm (see Section 7),
we will analyze the results of the experiments to compute
thresholds for such complex settings. Further, as suggested
in section 7.4, we will use the multinomial logistic regres-
sion to extend our solution to complex SLOs. Via these fu-
ture studies we intend to provide a comprehensive solution
to the automated on-line threshold setting problem.

10. Conclusions

Thresholds are fundamental to the management of com-
puter systems, and in particular to the management of auto-
nomic systems. Setting appropriate thresholds on the opera-
tional values of performance metrics is an intricate problem.
To date, the threshold setting problem was not sufficiently
addressed in the art.

In this study we present an innovative method for auto-
mated on-line threshold setting. Our method is founded on
rigorous statistical techniques, supported by an analytical
justification for the choices made in devising our method.
We examine the proposed method via a set of experiments.
The experiments show that our method arrives at very high
levels of Positive Predictive Values (PPV) and Negative Pre-
dictive Values (NPV). This implies that a system in which
our threshold setting method is implemented should have a
low level of false positive and false negative error messages.
Our basic algorithm is exemplified for relatively simple set-
tings.
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We believe that the method introduced in this paper, ex-
emplified here for storage networks, should serve as a fun-
damental building block for the management of a variety of
autonomic computer systems.
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