
An Autonomic Group Communication

Tomoya Enokido and Makoto Takizawa
Department of Computers and Systems Engineering

Tokyo Denki University�
eno, taki � @takilab.k.dendai.ac.jp

Abstract
We discuss an group protocol which supports applications

with group communication service in change of QoS sup-
ported by networks and required by applications. An auto-
nomic group protocol is realized by cooperation of multiple
autonomous agents. Each agent autonomously takes a class
of each protocol function. Classes taken by an agent are re-
quired to be consistent with but might be different from the
others. A group is composed of views. Each view is a sub-
set of the agents where the agents autonomously take protocol
classes consistent with each other. We make clear what com-
bination of classes can be autonomously taken by agents in a
view. We also present how to autonomously change retrans-
mission ways.

1 Introduction
Peer-to-Peer (P2P) systems [1] are getting widely available

like grid computing [4] and autonomic computing [5]. Mul-
tiple peer processes first establish a � � � �
 and then messages
are exchanged among the processes [2, 7, 8, 10, 12]. Group
communication supports basic communication mechanism to
realize cooperation of multiple peer processes. There are
group protocols which support the causally ordered and atomic
delivery of messages [2, 7, 8, 10, 12]. A group protocol is re-
alized by protocol functions; multicast/broadcast, receipt con-
firmation, detection and retransmission of messages lost, or-
dering of messages received, and membership management.
There are various ways to realize each of these functions like
selective and go-back-n retransmissions [6].

The complexity and efficiency of implementation of group
protocol depends on what types and quality of service (QoS)
are supported by the underlying network. Messages sent by a
process may be lost and unexpectedly delayed due to conges-
tions and faults in the network. Thus, QoS parameters are dy-
namically changed. The higher level of communication func-
tion is supported, the larger computation and communication
overheads are implied. Hence, the system has to take classes of
functions necessary and sufficient to support required service
by taking usage of the underlying network service.

The paper [12] discusses a communication architecture
which supports a group of multiple processes which satisfies
application requirements in change of network service. How-
ever, a protocol cannot be dynamically changed each time QoS
supported by the underlying network is changed. In addition,
each process in a group has to use the same protocol functions.
It is not easy to change protocol functions in all the processes
since a large number of processes are cooperating and some
computers like personal computers and mobile computers are
not always working well.

In this paper, we discuss an � �
 � � � � � � group protocol
which can support quality (QoS) of service required by ap-
plications even if QoS supported by the underlying network is
changed. Each protocol module is realized in an autonomous
agent. An agent autonomously changes classes, i.e. implemen-
tation of each group protocol function depending on network
QoS monitored. Here, an agent might take different classes
of protocol functions from other agents but � � � � � �
 � �
 with
the other agents. We discuss what combinations of protocol
function classes are consistent. If a group is too large for each
agent to perceive QoS supported by other agents and manage
the group membership, the group is decomposed into views.
Each agent has a � � � � which is a subset of agents to which the
agent can directly send messages. In each view, messages are
exchanged by using its own consistent protocol functions. A
pair of different views might take different protocols.

In section 2, we show a system model. In section 3, we
discuss classes of protocol functions. In section 4, we present
an agent-based group protocol. In section 5, we discuss how
to change retransmission functions.

2 System Model

2.1 Autonomic group agent

A group of multiple �

 � � � �
 � � �
 � � � � � � � �) + , ...,) - (�.
2) are cooperating by taking usage of group communication

service. The group communication service is supported by co-
operation of multiple peer � �
 � � � � � � � � � � �
 (AG) agents

 + , ...,
 - 3 Figure 14 . For simplicity, a term “ � � � �
 ” means
an AG agent in this paper. The underlying network supports
a pair of agents with basic communication service which is
characterized by quality of service (QoS) parameters; delay
time [msec], message loss ratio [%], and bandwidth [bps].

AApplication layer

System layer

Network layer

Application group

Autonomic group

Network

1 A i A n

p 1 p i p n

Figure 1. System model.

A group protocol is realized in a collection of protocol func-
tions; transmission, confirmation, retransmission, ordering of
message, detection of message lost, coordination schemes, and
membership management. There are multiple ways to imple-
ment each protocol function. A � � � � � of a protocol function
means a way to implement the protocol function. The classes
are stored in a protocol class base (CB). Each agent
 8 au-
tonomously takes one class for each group protocol function

from the protocol class base CB, which can support an appli-
cation with necessary and sufficient QoS by taking usage of
basic communication service with given QoS supported by the
underlying network. Each agent � � stores QoS information of
the underlying network in a QoS base (� �) of � � . If enough
QoS cannot be supported or too much QoS is supported for the
application, the agent � � reconstructs a combination of proto-
col function classes which are consistent with the other agents
by selecting a class for each protocol function in the CB. Here,
each agent negotiates with other agents to make a consensus on
which class to take for each protocol function. In the paper, we
discuss how each agent autonomously changes protocol func-
tion classes in change of QoS monitored.

Coordination

Transmission

Confirmation

Retransmission

Detection of
message loss

CB

AG
agent

Application requirement

Change of network QoS

QB

Ordering of
messages

Membership
management

AG
agent

Figure 2. Autonomic group protocol.

2.2 Views

A � � 	 � � � is composed of multiple autonomous group
(AG) agents � � , ..., � � (� � 1). An agent is an autonomous
peer process which supports an application process with group
communication service by exchanging messages with other
agents. In a group � including larger number of agents, it is
not easy for each agent to maintain membership information.
Each agent � � has a view � (� �) which is a subset of agents to
which the agent � � can deliver messages directly or indirectly
via agents. Thus, a view is a subgroup of the group � . For
every pair of agents � � and � � , � � in � (� �) � � in � (� �). Each
agent � � maintains membership of its view � (� �). A view can
be a collection of agents interconnected in a local network.
A pair of different views � � and � � may include a common

� � � � ! � $ agent � % . A collection of gateway agents which are
interconnected in a trunk network is also a view � & . If an agent

� � belongs to only one view, � � is a ' � � * agent. An agent � �
which takes a message + from an application process , � and
sends the message + is an original . � � 1 � � agent of the mes-
sage + . If an agent � � delivers a message + to an application
process, the agent � � is an original 1 � . � 4 � � � 4 	 � agent of the
message + . If an agent � % forwards a message + to another
agent in a same view � , � % is a � 	 � � 4 � � agent. Let . � 8 (+) be
an original source agent and 1 . � (+) be a set of original desti-
nation agents. A ' 	 8 � ' sender and destination of a message +
are agents which send and receive + in a view, respectively.

= ? = @
= A= B C C

D E
D F

G I J K M N J P J R M S K
G T U V K W S R J R M S K

= Y

Figure 3. Group views.

A view � including all the agents in a group � is referred
to as 8 	 + � ' � � � . A � ' 	 [� ' view is a complete view in a group

� . If �] � , � is � � � � 4 � ' . A partial view � is changed if an
agent joins and leaves the view � . If a view � (� �) is changed,

� (� �) is 1 $ � � + 4 8 . Otherwise, � (� �) is . � � � 4 8 .

3 Functions of Group Protocol

A group protocol is realized in a collection of protocol func-
tions; coordination of the agents, message transmission, re-
ceipt confirmation, retransmission, detection of message loss,
ordering of messages, and membership management. There
are multiple ways to realize each of the protocol functions. A

8 ' � . . of a protocol function shows one way to implement the
protocol function. One protocol module for an autonomous
group (AG) agent is a collection of protocol classes. We dis-
cuss what classes exist for each protocol function and what
combinations of classes are 8 	 � . 4 . � � � � in the succeeding sec-
tion.

There are 8 � � � � � ' 4 c � 1 and 1 4 . � � 4 [� � � 1 classes to coordi-
nate the cooperation of agents in a view. In the centralized
control, there is one centralized controller in a view � . On the
other hand, each agent makes a decision on correct receipt, de-
livery order of messages received, and group membership by
itself in the distributed control class.

(2) Direct transmission

 (3) Indirect transmission

(1) Centralized transmission

 View V View V

 View V

Figure 4. Transmission classes.

There are 8 � � � � � ' 4 c � 1 , 1 4 � � 8 � , and 4 � 1 4 � � 8 � classes to
multicast a message to multiple agents in a view [Figure 4]. In
the 8 � � � � � ' 4 c � 1 transmission, an agent first sends a message to
a * 	 � ! � � 1 � � agent and then the forwarder agent forwards the
message to all the destination agents in a view g Figure 4 (1)h .
The forwarder agent plays a role of a centralized controller. In
the 1 4 � � 8 � transmission, each agent directly not only sends a
message to each destination agent but also receives messages
from other sender agents in a view � [Figure 4 (2)]. In the

4 � 1 4 � � 8 � transmission, a message is first sent to some agent
in a view � . The agent forwards the message to another agent
and finally delivers the message to the destination agents in the
view � [Figure 4 (3)]. Tree routing [3] is an example.

(2) Direct confirmation

(3) Indirect confirmation

(1) Centralized confirmation

(4) Distributed confirmation

: message : confirmation : controller

 View V View V

 View V View V

Figure 5. Confirmation classes.

There are 8 � � � � � ' 4 c � 1 , 1 4 � � 8 � , 4 � 1 4 � � 8 � , and 1 4 . � � 4 [� � � 1
classes to confirm receipt of a message in a view � . In the cen-
tralized confirmation, every agent sends a receipt confirmation
message to one 8 	 � * 4 � + � � 4 	 � agent in a view � . After re-
ceiving confirmation messages from all the destination agents,
the destination agent sends a receipt confirmation to the local
sender agent [Figure 5 (1)]. In the 1 4 � � 8 � confirmation, each
destination agent � � in the view � sends a receipt confirmation

of a message � to the local sender agent � � which first sends
the message � in the view � [Figure 5 (2)]. In the � � 	 � �
 � �
confirmation, a receipt confirmation of a message � is sent
back to a local sender agent � � in a view � by each agent � �
which has received the message � from the local sender agent

� � � Figure 5 (3)� . In the 	 � � � � � � � �
 	 confirmation, each agent
which has received a message � sends a receipt confirmation
of the message � to all the other agents in the same view [10]

� Figure 5 (4)� .
A group of multiple agents are exchanging messages in the

network. A message � ! causally precedes another message
� " (� ! $ � ") if and only if (iff) a sending event of � !
happens before a sending event of � " [7]. A message � !
is causally concurrent with another message � " (� ! % � ")
if neither m ! $ � " nor � " $ � ! . For example, suppose
there are three agents � ! , � " , and � (in a group G. An agent � !
sends a message � ! to a pair of agents � " and � (. The agent

� " sends a message � " to � (after receiving another message
� ! . Here, � ! $ � " . The agent � (is required to deliver � !
before � " because � ! $ � " . Messages received are ordered
by each agent in the distributed approach. In order to causally
deliver messages, realtime clock with NTP (network time pro-
tocol) [9], linear clock [7], and vector clock [8] are used.

There are �
 � 	
 � and 	
 � � � � 0 � � 1 � retransmission classes
with respect to which agent retransmits a message � lost [Fig-
ure 6]. Suppose an agent � � sends a message � to other agents
but one destination agent � � fails to receive � . In the �
 � 	
 �
retransmission, the local sender agent � � which first sent � in
the view � retransmits � to � � . In the 	
 � � � � 0 � � 1 � retrans-
mission, one or more than one destination agent in the view

� which have safely received the message � forwards � to
the agent � � which fails to receive � [Figure 6 (2)]. In the

	 � � � � � � � �
 	 confirmation, each agent can know if every other
destination agent safely receives a message � .

(1) Sender retransmission.

fail to receive retransmission

(2) Destination retransmission.

: :

m
m

pj

pi

pj
m

m

m

pk

pi

 View V View V

Figure 6. Retransmission classes.

There are �
 � � � 0 6 � 8
 	 and 	 � � � � � � � �
 	 classes for manag-
ing the membership. In the centralized class, one membership
manager communicates with all the member agents to obtain
their states. In the distributed one, each agent obtains the states
of the other agents by communicating with other agents.

A �
 � � � 0 6 � 8
 	 system is one with centralized coordina-
tion, transmission, and confirmation. There is one controller
which forwards messages to destination agents and confirms
receipt of messages. Most traditional distributed systems like
teleconference systems and Amoeba [11] take the centralized
approach. A system with distributed coordination, transmis-
sion, and centralized confirmation system is classified to be

	
 �
 � � � 0 6 � 8
 	 . ISIS [2] takes the decentralized approach. A
sender agent coordinates transmission and receipt of a mes-
sage. Destination agents send the receipt confirmation to the
sender agent. Takizawa
 � 0 6 . [10] take the 	 � � � � � � � �
 	 ap-
proach where coordination, transmission, and confirmation are
distributed.

4 Autonomic Group Protocol

4.1 Local protocol instance
In this paper, we consider protocol functions, coordina-

tion, transmission, confirmation, and retransmission functions
out of all the functions discussed, which are the most signif-
icant to design and implement a group protocol. Let F be
a set of the significant protocol functions ; = (coordination),>

(transmission), = @ (confirmation), A (retransmission) B . For
each protocol function @ in F, let = 6 (@) be a set of classes to
implement @ . Table 1 shows possible classes for the protocol
functions.

Table 1. Protocol classes = 6 (@).C D E F H J K E M N K H K F K P F P Q R R U RV W X Y V [WW V\]
^ W Y _ ` a b c d X e f ` g [h i Y g e k b c e l m b ` g [n^ W ` a Y _ ` a b c d X e f ` g [h i e c Y g e c ` _ b [h q a g Y e a g e c ` _ b [h i e k Y g e k b c e l m b ` g [n^ W Y _ ` a b c d X e f ` g [h i Y g e c ` _ b [h q Y e a g e c ` _ b [n^ r Y k ` a g ` c [h i Y g ` k b e a d b e s a [n

We rewrite F to be a set ; @ ! , @ " , @ (, @ v B of protocol func-
tions where each element @ � shows a protocol function, i.e.x @ ! , @ " , @ (, @ v z =

x = ,
>

, = @ , A z . A tuple
x � ! , � " , � (, � v z} = 6 (@ !) ~ = 6 (@ ") ~ = 6 (@ () ~ = 6 (@ v) is referred to as � � 1 � 1 � 1 6

� � � � 0 � �
 . Each agent takes a protocol instance = =
x � ! , � " ,

� (, � v z , i.e. a class � � is taken for each @ � (� = 1, 2, 3, 4).
As discussed in the preceding section, the destination re-

transmission class can be taken with the distributed confirma-
tion class but not in the centralized one. A protocol instancex � ! , � " , � (, � v z is � 1 � � � � �
 � � iff an agent taking the protocol
instance can work with other agents which take the same pro-
tocol instance to support group communication service. If an
agent takes an inconsistent protocol instance, the agent can-
not work. Thus, some protocol instances of the classes are
consistent. An agent can take only a consistent protocol in-
stance. A protocol � � 1 � � 6
 is a consistent protocol instance.
Table 2 summarizes possible protocol profiles. A protocol pro-
file � � � � 0 � � �
 “ � ! � " � (� v ” denotes a protocol profile

x � ! , � " ,
� (, � v z . For example, � � � � � � shows a protocol profile

x � ,
� , � � � , � z which is composed of distributed control, direct
transmission, direct confirmation, and sender retransmission
classes. If every agent takes a same protocol profile, a group
of the agents can support group communication service. Let� @ (1),

� @ (2),
� @ (3),

� @ (4),
� @ (5),

� @ (6), and
� @ (7)

show the protocol profiles = = =
 � � , � � � � � � , � � � � � � ,
� � � � � � , � � � � 	 � , � � � � � � , and � � � � � � , respectively,
which are shown in Table 2. Let P be ; � @ (�) � � = 1, ..., 7 B .

Table 2. Protocol profiles.� �� � � � � � � � � � � � � �
� � � � � � � � � � �
 � � � � � ¡ � � � �

� �� � � � � �� � � � � � � � � � � � � � � �� � � � � �� � � � � � � � � � � � � � � �

 � � � £ � � � � � � ¡ � � � �
¤ � � � � � £ � � � � � � ¡ � � � �

 � � � £ �

¤ � � � � � £ �

� � � � � � � � � � � � � � ¤ ¤ � � � ¤ � � � ¤ � �
4.2 Global protocol instance

Suppose autonomous group (AG) agents � ! , ..., � ¥ are in a
view � of a group ¦ . Let = � be a consistent protocol instancex � � ! , ..., � � v z } P, i.e. protocol profile taken by an agent � � .
A � 6 1 � 0 6 protocol instance = for a view � = ; � ! , ..., � ¥ B is a
tuple

x = ! , ..., = ¥ z where each element = � is a protocol profile
which an agent � � takes. Here, each = � is referred to as 6 1 � 0 6

α 1 α 2 α 3 α 4

α 23 α 24 α 34

α 5

α 45α 35

α 6

α 46α 36

α 7

α 47α 37α 56 α 57 α 67

α234 α345 α346 α347 α356 α357 α367 α456 α457 α467 α567

α3456 α3457 α3467 α3567 α4567

α34567

Φ

Figure 7. Hasse diagram.

protocol instance of an agent � � (� = 1, ..., �). In traditional pro-
tocols, every agent has to take a same local consistent protocol
instance, i.e. � � = � � � = � � . Hence, if some agent � � would
like to change a class
 � � of a protocol function � � with an-
other class
 � � � , all the agents have to be synchronized to make
a consensus on a new protocol instance. However, it takes time
to change protocol profiles in every agent. A global protocol
instance � =

� � � , ..., � � � is
 � � � � � � if � � = � � � = � � . If
� � #$ � % for some pair of agents � � and � % , � is � �
 � � � � � � .
� is
 � � * � * � � if a collection of agents where each agent � �
takes a protocol profile � � (� = 1, ..., �) can be cooperating. In
another word, the local profiles � � , ..., � � are mutually consis-
tent. A - � � / 0 � � 4 � �
 � � � 4 � 7 � � � is a consistent global protocol
instance. It is trivial that a complete global protocol instance
is consistent from the definition.
[Property] A global protocol instance � =

� � � , ..., � � � of a
view 8 is not consistent if 8 is composed of more than three
agents and � satisfies one of the following conditions:

1. At least one agent in 8 takes the protocol profile
� � � � � ; and the global protocol instance � is not com-
plete.

2. At least one agent takes an � � < � 4 �
 transmission class in
8 and at least one other agent takes a < � 4 �
 confirmation
class in 8 . @

In this paper, we discuss a group protocol where a view of
agents � � , ..., � � can take an incomplete but consistent global
protocol instance � =

� � � , ..., � � � . First, suppose that a
global protocol instance � =

� � � , ..., � B � is complete and
some agent � � changes a local protocol instance � � with an-
other one � �� . We discuss whether or not a global protocol
instance

� � � , ..., � � D � , � �� , � � G � , ..., � � � is consistent, i.e. all
the agents � � , ..., � � can support group communication service
through the cooperation even if � �� #$ � % for some agent � % .

We introduce a notation I J where K L N O � P Q Q Q P S T to show a
global protocol instance. First, I � indicates a global protocol
profile where all the agents take the same local protocol pro-
file

U � (�) (� = 1, ..., 7). For example, I V shows that all the
agents take W W W � 4 ; . For K = � � � � � � [(�] 7), I J shows
a global protocol instance where each agent takes one of the
local protocol profiles

U � (� �), ...,
U � (� [) and each protocol

profile
U � (� �) is taken by at least one agent (^ = 1, ..., �).

For example, I V _ means a global protocol instance where ev-
ery agent takes

U � (2) = W W W � 4 ; or
U � (3) = W W W � * ; , at

least one agent takes W W W � 4 ; , and at least one agent takes

W W W � * ; .

[Definition] A global protocol instance I J can be transited to
another global protocol instance I b (I J c I b) iff

1. if d = K � , the agents can support group communication
service even if an agent taking

U � (^) where ^ L K au-
tonomously takes

U � (�) (� #$ ^).
2. if K = d f , the agents can support group communication

service even if an agent taking
U � (f) takes

U � (^) where
^ L K .

3. For some global protocol instance I g , I J c I g and I g
c I b . @

According to the definition, the transition relation “ c ” is
symmetric and transitive. Figure 7 shows a Hasse diagram
where a node shows a global protocol profile and a directed
edge from I J to I b indicates a transition relation “ I J c I b ”.
For example, I V c I V h since an agent can autonomously
change a local protocol profile

U � (2) = W W W � 4 ; to
U � (4)

= W W W � * W .

i i i k l m
i i i k l m

i i i k l m
i i i k l m n o

n p

n q
n r

s u v w x y
i i i k z in �

i i i k z i n �

s u v w x �

Figure 8. Change of profiles.

According to change of network QoS and application re-
quirement, each agent autonomously changes the protocol pro-
file. For example, suppose an agent � _ belongs to a pair of
views 8 � and 8 V [Figure 8]. In the view 8 � where all of the
agents take W W W � 4 ; , an agent � � sends a message � to all
the other agents. On receipt of the message � , an agent � _
with W W W � 4 ; forwards the message � to the other agents

� � and � � which belong to another view 8 V with W W W � * W .
Here, the agent � _ can receive the receipt confirmation of the
message � from a pair of agents � � and � � in the view 8 V . In
addition, the agent � _ sends back the receipt confirmation of
the message � to the original sender agent � � . Here, the orig-
inal sender agent � � can receive the receipt confirmation from
all the destination agents in the view 8 � . Therefore, the agent

� _ does not need to change the profile since the agent � _ can
forward the message � to another agent in the view 8 V .

5 Retransmission
We discuss how an autonomous group (AG) agent can au-

tonomously change the retransmission classes in a group as an
example.

5.1 Cost model

Suppose there are three autonomic group (AG) agents � � ,
� � , and � � in a view � . An agent � � sends a message � to a
pair of agents � � and � � . Then, � � receives � while � � fails to
receive � . The following notations are used to discuss a cost
model for � � and � � , � � � = delay time between agents � � and

� � [msec], � � � = probability that a message is lost, and � � � =
bandwidth [bps].

First, let us consider the sender retransmission. Let � � �
show the size of a message � [bit]. It takes (2 � � � + � � � /

� � �) [msec] to detect message loss after � � sends a message
� . Then, � � retransmits � to � � . Here, the message � may
be lost again. The expected time 	
 � � and number 	 � � � of
messages to be transmitted to deliver a message � to a faulty
destination � � are given as follows:

1. 	
 � � = (2 � � � + � � � / � � �) / (1 � � � �).
2. 	 � � � = 1 / (1 � � � �).

In the destination retransmission, some destination agent � �
forwards the message � to � � [Figure 9]. The expected time

 � � and number
 � � � of messages to deliver a message �
to � � are given as follows:

1.

 � � = (� � � + � � � / � � � + � � �) + (2 � � � + � � � / � � �) / (1
� � � �) if � � � � � � � + � � � , (� � � + � � � / � � �) + (2 � � � + � � �
/ � � �) / (1 � � � �) otherwise.

2.
 � � � = 1 + 1 / (1 � � � �).

If 	
 � � �

 � � , the destination agent � � can forward the
message � to the faulty agent � � because the message � can
be delivered earlier.

ps pt pu

m

m

DTsu

time

m

ps pt pu

m

m

DTsu

time

m

A. dst dsu + dtu B. dst dsu + dtu< >

Figure 9. Destination retransmission.

Each agent � � monitors delay time � � � , bandwidth � � � , and
message loss probability � � � for each agent � � which are re-
ceived in the QoS base (� �). For example, � � obtains the QoS
information by periodically sending QoS information mes-
sages to all the agents in a view. The agent � � maintains QoS
information in a variable � of � � where � � � =

� � � � , � � � , � � � �
for � = 1, ..., � . If � � receives QoS information from � � , � � �
=

� � � � , � � � , � � � � for � = 1, ..., � .

5.2 Change of retransmission class
Suppose an agent � � sends a message � and every agent � �

take the sender retransmission class, � � =
� � � � , 	 � . As shown

in Figure 10, an agent � � fails to receive � . According to
the change of QoS supported by the underlying network, the
sender agent � � makes a decision to change the retransmission
class with the destination one, say an agent � � forwards � to

� � . However, � � still takes the sender retransmission. Here, no
agent forwards � to � � .

Next, suppose all agents are taking the destination retrans-
mission class. Here, QoS supported by the network is changed
and an agent � � decides to take the sender retransmission class.
However, no agent forwards a message � to � � since the
sender � � still takes the destination retransmission class. In
order to prevent these silent situations, we take a following
protocol:

1. A sender agent � � sends a message � to all the destina-
tion agents. Every destination agent sends receipt con-
firmation not only to the sender agent � � but also to the
other destination agents [Figure 10].

2. If an agent � � detects that a destination � � has not received
� , � � selects a retransmission class which � � considers to
be optimal based on the QoS information � .

2.1 If � � is a destination agent and changes a retrans-
mission class, � � forwards � to � � and sends � ! # �
message to the sender � � .

2.2 If � � is a sender of a message � and takes the sender
retransmission class, � � retransmits � to � � . If � �
takes a destination retransmission class, � � waits for

� ! # � message from a destination. If � � does not
receive � ! # � , � � retransmits � to � � .

& Theorem' At least one agent forwards a message � to an
agent which fails to receive the message � . (

ps pt pu
m

DTsu

time

m

Confirmation

Retx

Confirmation

Figure 10. Retransmission.

5.3 Evaluation
We evaluate the autonomic group protocol (AGP) in terms of
delivery time of a lost message. We make the following as-
sumptions on this evaluation.

Figure 12. � � � � � � � + � � � .

1. � � � = � � � for every pair of � � and � � .
2. The protocol processing time of every process is same.
3. No confirmation message is lost.

Let us consider a view = ! � � , � � , � # % where every
agent takes a profile DDDisS, distributed control, direct trans-
mission, distributed confirmation, and sender retransmission.
Here, suppose that an agent � � sends a message & to a pair of

ps

pt

pu ps

pt

pu ps

pt

pu

40ms

100ms

40ms 60ms

100ms

20ms 20ms

100ms

60ms

A. dsu dst + dtu

1. dst = dtu 2. dst > dtu 3. dst < dtu

ps

pt

pu ps

pt

pu
ps

pt

pu

100ms

40ms

40ms 100ms

60ms

20ms 100ms

20ms

60ms

1. dsu = dtu 2. dsu > dtu 3. dsu < dtu

ps

pt

pu ps

pt

pu
ps

pt

pu

40ms

40ms

100ms 20ms

60ms

100ms 60ms

20ms

100ms

1. dsu = dst 2. dsu > dst 3. dsu < dst

B. dsu dst + dtu, dst > dsu and dst > dtu C. dsu dst + dtu, dtu > dsu and dtu > dst> < <

Figure 11. AG agent graph.

agents � � and � � in a view � . Then, � � receives � while an-
other agent � � fails to receive � . After the sender � � and des-
tination � � detect the destination agent � � fails to receive � ,

� � and � � autonomously select the retransmission class based
on the QoS information. Here, we evaluate time to deliver a
message � to a faulty agent � � . In the view � , we assume that
bandwidth between every pair of agents is same (� � � = � � � =

� � � = 10Mbps) and � � � = � � � and � � � = 0%. Figure 11 shows
an agent graph for � where each node denotes an agent and
each edge shows a communication channel between agents. A
label of the edge indicates delay time.

First, we consider a case � � �
� � � � + � � � . There are further

cases: � � � = � � � � Figure 11 A.1� , � � � 	 � � � � Figure 11 A.2� ,
and � � � � � � � � Figure 11 A.3� . Figure 12 shows the expected
time
 �

� � for three cases. In Figure 12, horizontal axis shows
a message loss probability of � � � and � � � . For case of Figure
11 A.2,
 �

� � � � �
� � . For case of Figure 11 A.1,
 �

� � �
� �

� � if � � � 	 15% and � � � 	 15%. For case of Figure 11 A.3,

 �

� � � � �
� � if � � � 	 50% and � � � 	 50%.

Figure 13. � � � � � � � + � � � , � � � � � � � , and � � � � � � � .

Next, we consider a case � � � � � � � + � � � . There are further
following cases � Figure 11 :

a. � � � " � � � and � � � " � � � : � � � = � � � � B.1 , � � � " � � �
� B.2 , and � � � (� � � � B.3 .

b. � � � " � � � and � � � " � � � : � � � = � � � � C.1 , � � � " � � �
� C.2 , and � � � (� � � � C.3 .

The expected time , . � � � Figure 11 B and 11 C is shown
for these six cases in Figures 13 and 14. For Figure 11 B.1 and
B.3, , . � � " 2 . � � . For Figure 11 B.2, , . � � (2 . � � if 4 � �

" 20% and 4 � � " 20%. For Figure 11 C, , . � � " 2 . � � .

6 Concluding Remarks

In this paper, we discussed an agent-based architecture to
support distributed applications with autonomic group service
in change of network and application QoS. We made clear
what classes of functions to be realized in group communi-
cation protocols. Every AG agent autonomously changes a
class of each protocol function which may not be the same as

Figure 14. 7 9 : < 7 9 = + 7 : = , 7 : = ? 7 9 : , and 7 : = ? 7 9 = .

but are consistent with the other agents in a group. We dis-
cussed how to support applications with the autonomic group
service by changing retransmission classes as an example. We
showed which retransmission class can be adopted for types of
network configuration in the evaluation.

References

[1] P. E. Agre. P2p and the promise of internet equality. Commu-
nication of the ACM, 46(2):39–42, 2003.

[2] S. A. Birman, K. and S. P. Lightweight causal and atomic group
multicast. ACM Trans. on Computer Systems, 9(3):272–290,
1991.

[3] S. Deering. Host groups: A multicast extension to the internet
protocol. RFC 966, 1985.

[4] I. Foster and C. Kesselman. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Publishers,
1999.

[5] IBM Corporation. Autonomic computing architecture : A
blueprint for managing complex computing environments.
2002. http://www-3.ibm.com/autonomic/pdfs/ACwhitepaper
1022.pdf.

[6] M. F. Kaashoek and A. S. Tanenbaum. An evaluation of the
amoeba group communication system. Proc. of IEEE ICDCS-
16, pages 436–447, 1996.

[7] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. CACM, 21(7):558–565, 1978.

[8] F. Mattern. Virtual time and global states of distributed systems.
Parallel and Distributed Algorithms, pages 215–226, 1989.

[9] D. L. Mills. Network time protocol. RFC 1305, 1992.
[10] A. Nakamura and M. Takizawa. Reliable broadcast protocol

for selectively ordering pdus. Proc. of IEEE ICDCS-11, pages
239–246, 1991.

[11] C. Steketee, W. P. Zhu, and P. Moseley. Implementation of
process migration in amoeba. Proc. of IEEE ICDCS-14, pages
194–201, 1994.

[12] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible
group communication system. CACM, 39(4):76–83, 1996.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

