
An Architectural Approach to Autonomic Computing

Steve R. White, James E. Hanson, Ian Whalley, David M. Chess, and Jeffrey O. Kephart

IBM Thomas J. Watson Research Center

{srwhite,jehanson,inw,chess,kephart}@us.ibm.com

Abstract

We describe an architectural approach to achieving

the goals of autonomic computing. The architecture

that we outline describes interfaces and behavioral

requirements for individual system components,

describes how interactions among components are

established, and recommends design patterns that

engender the desired system-level properties of self-

configuration, self-optimization, self-healing and self-

protection. We have validated many of these ideas in

two prototype autonomic computing systems.

1. Introduction

Creating large-scale computing systems that

manage themselves in accordance with high-level

guidance from humans has been recognized as a grand

challenge—one upon which the future of information

technology rides [1, 2, 3].

Ultimately, our success in meeting this challenge

will depend not only on our ability to invent new

technologies, but also upon creating an architecture for

self-management that exploits these technologies

appropriately. Furthermore, we believe that the right

architecture can, by itself, provide the key to achieving

autonomic behavior at the system level. This paper

attempts to motivate an architectural approach to

autonomic computing.

An architecture for autonomic computing must

accomplish two fundamental goals. First, it must

describe the external interfaces and behaviors required

to make an individual component autonomic, that is,

self-managing. (We do not impose any requirements

on the internal structure of these components.) Second,

it must describe how to compose systems out of these

autonomic components in such a way that the system

as a whole is self-managing. We seek to do both.

We base our approach on a service-oriented

architecture [4, 5]. Our approach bears much in

common with agent-oriented systems [6] in that the

system is composed of interacting, goal-driven

autonomous or semi-autonomous components that

sense and respond to their environment. It goes beyond

both of these frameworks in that we specify the

interfaces, behaviors and design patterns that are

required to achieve self-management.

A key concept in our architecture is the autonomic

element. Following [2], we define an autonomic

element as a component that is responsible for

managing its own behavior in accordance with

policies, and for interacting with other autonomic

elements to provide or consume computational

services.

In our approach, every component of an autonomic

system is an autonomic element. This includes

computing resources such as a database, a storage

system, or a server. It includes higher-level elements

with some management authority, such as a workload

manager or a provisioner. It also includes elements that

assist others in doing their tasks, such as a policy

repository, a sentinel, a broker, or a registry.

This paper represents a first step towards describing

an architecture for autonomic computing. In Section 2,

we discuss required behavioral properties of autonomic

elements. In Section 3, we describe interfaces and

interactions among autonomic elements. In Section 4,

we describe how to build a system with autonomic

behaviors, starting with a collection of autonomic

elements and, in Section 5, discuss common design

patterns for doing so. Finally, in Section 6, we

summarize prototype autonomic computing systems

that have proven helpful in developing, verifying, and

refining the architecture.

2. Autonomic element behaviors

In this section, we discuss some of the required and

optional behaviors that we demand of autonomic

elements. Because of its importance, the use of policies

is discussed separately in Section 2.3.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

2.1 Required behaviors

First, an autonomic element must be self-

managing—that is, it must be responsible for

configuring itself internally, for healing over internal

failures, for optimizing its own behavior, and for

protecting itself from external probing and attack. In

order to simplify systems management in the large, an

autonomic element must handle problems locally,

whenever possible. For example, if it discovers that an

autonomic element upon which it relies for service is

not abiding by its agreement, it must try to resolve the

problem. It may do so by demanding that the other

element provide the agreed-upon service, or by

terminating the relationship and finding another, more

suitable element to provide the service.

Second, an autonomic element must be capable of

establishing and maintaining relationships with other

autonomic elements—those to which it provides

service, and those which provide service to it. This in

turn induces several requirements. An autonomic

element must describe its service accurately and in

such a way that it is accessible and understandable to

other autonomic elements. Relationships, as we will

see, are based upon agreements, so the autonomic

element must understand and abide by the terms of its

agreements. Additionally, the autonomic element must

be capable of negotiating (even trivially) to establish

agreements.

 Third, an autonomic element must manage its

behavior and relationships so as to meet its obligations,

either by appropriately tuning or configuring its own

parameters, or by drawing upon the resources of other

autonomic elements in the system. There are two types

of obligations to which an autonomic element may be

subject. First, an autonomic element must honor the

terms of its agreements. Second, an autonomic element

must be capable of receiving and abiding by policies

(cf. Section 2.3). An autonomic element must reject

any service request that would violate its policies or

agreements. Similarly, it must refuse (or

counterpropose) any proposed relationship or policy

that would cause a violation of its existing

relationships or policies. It must have sufficient

analytic capabilities to support these functions.

Administrative relationships are not treated

specially. An autonomic element receives a directive

from another element in the same manner that it

receives ordinary requests. If, upon checking its policy,

it discovers that the requestor has sufficient authority

to warrant taking the request as a command, then it

acts accordingly. If the autonomic element receives

conflicting requests from two autonomic elements that

manage it, the autonomic element itself has the

responsibility for resolving the conflict, although it

may at its discretion invoke help from other autonomic

elements in doing so. Note that the element issuing the

directive may expect, but not assume, that the directive

will be carried out.

2.2 Recommended behaviors

The following behaviors are strongly encouraged,

though not required, in autonomic elements.

An autonomic element should ask for a realistic set

of requirements when requesting a service from

another element. It should not, for instance, request a

terabyte of storage when it knows it only needs a

megabyte.

An autonomic element should offer a range of

performance, reliability, availability and security

associated with its service. This enables end-to-end

optimization of these qualities in a system.

An autonomic element should be able to translate

requirements for its service characteristics

(performance, etc.) into requirements for any services

that it needs to request from other elements. This

enables self-assembly of systems without requiring

central planning.

Finally, an autonomic element should protect itself

against inappropriate service requests and responses.

Specifically, it should authenticate all requests and

requestors, and it should protect itself against

inappropriate responses to its requests, e.g. by

checking that each such response conforms to the

pertinent agreement.

2.3 Policies

Of central importance to autonomic system

behavior is the ability for high-level, broadly-scoped

directives to be translated into specific actions to be

taken by elements. This is achieved by the use of

policies.

A policy is a representation, in a standard external

form, of desired behaviors or constraints on behavior.

Policy-based management of computer systems has

been an active research topic for over a decade [7, 8].

For autonomic computing, the focus is specifically on

policy-based self-management.

To cover the broadest possible range of situations

and contexts, we allow for at least three interrelated

forms of policy [9]. At the lowest level of specification

are action policies, which are typically of the form

IF (Condition) THEN (Action), e.g. IF (ResponseTime

> 2 sec) THEN (Increase CPU share by 5%). An

autonomic element employing action policies must

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

measure and/or synthesize the quantities stated in the

condition, and it must execute the stated actions

whenever the condition is satisfied.

At the next level are goal policies, which describe

the conditions to be attained without specifying how to

attain them, e.g. “Response time must not exceed 2

sec.” Goal policies are more powerful than action

policies because a human or an autonomic element can

give direction to another element without requiring

detailed knowledge of that element’s inner workings.

Autonomic elements employing goal policies must

possess sufficient modeling or planning capabilities to

translate goals into actions.

At the highest level are utility function policies,

which specify the relative desirability of alternative

states. This is achieved either by assigning a numerical

value [10] or a partial or total ordering to the possible

states [11]. Utility functions are even more powerful

than goal policies because they automatically

determine the most valuable goal in any given

situation. Autonomic elements employing utility

function policies must have sufficiently sophisticated

modeling and optimization capabilities to translate

utility functions into actions.

3. Autonomic element interactions

Having described the behaviors that we demand of

autonomic elements, we now turn to how those

elements interact with each other in a larger system.

We describe the interfaces that autonomic elements

must implement, the way in which they make

agreements about what they will do for other elements,

and restrictions on the ways in which they interact.

3.1 Interfaces

Any service-oriented architecture defines a number

of standard interfaces through which services are

described, discovered, and supplied. In order to

achieve self-management and interoperability in

autonomic systems, autonomic elements must

implement additional interfaces as well. While space

does not permit a detailed exposition of these

interfaces here, we will briefly describe the major

classes. In our current work, we define these

interfaces as extensions of the OGSA architecture

described in [4], but the concepts apply to any service-

oriented architecture.

Monitoring and test interfaces enable an element

to be monitored by any other element that has

established the appropriate administrative relationship

with it. These interfaces can be used to control the

amount of logging and tracing data that an element

gathers about its own operation, to gain access to that

data, and in some cases to arrange for real-time feeds

of the data. Related interfaces can be used to instruct

an element to conduct a self-test, and to obtain the

results of such tests.

Lifecycle interfaces enable administrative elements

to determine the lifecycle state of an element (e.g.

starting, paused), to cause that state to change (e.g.

shut down), and to determine the lifecycle model that

applies to the element.

Policy interfaces enable administrative elements to

send new policies to an element, and to determine the

policies currently in use by the element. The ability to

send an element a new policy is not all-or-nothing;

some elements may have a limited administrative

relationship with the element (allowing, for instance,

only new monitoring or alert policies to be accepted),

while others may have total control, being authorized

to replace or add any policy that the element

understands.

Negotiation and binding interfaces permit an

element to request a service from another element, or

to be requested to provide a service. Simple forms of

these interfaces allow an element to request a

particular service, and receive either a confirmation or

an error; this sort of interface is common to all service-

oriented architectures. In order to achieve more

flexible self-management, autonomic elements may

also support more complex interfaces that allow

proposals and counterproposals, negotiation over the

exact terms and properties of the service to be

provided (including levels of reliability, availability,

performance, etc.), as well as allowing the formation

and management of longer-term relationships.

Additional interfaces are discussed in Section 5.

3.2 Relationships

When an autonomic element has agreed to provide

service to another autonomic element, we say that

these two elements have a relationship. Typically,

relationships are formed at run time rather than baked

in during system deployment, and they may change

over time. They are put into place by the elements

themselves, rather than by human administrators.

Relationships are the way in which autonomic

elements are composed to form autonomic systems.

Indeed, in our approach, they are the only way in

which elements are composed into larger entities.

In general, relationships are formed as a result of

negotiation among the elements involved in them. An

element will request the services of another element.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

That request may be turned down (e.g. if the

requesting element is not authorized, or if the

requested element does not have sufficient resources).

The requested element may counter propose a different

relationship that it can accept (e.g. longer latency for

transactions, but greater throughput). Once both

elements agree on the terms of the relationship, they

are bound by them and must seek to operate according

to them.

This negotiation need not be laborious. It can be

trivial, as in the case where the requestor is not

authorized and is simply turned down. Similarly, some

services may be implicitly available to all requesters,

as is likely to be the case for the service interface used

to ask an autonomic element for service in the first

place.

3.3 Interaction integrity

Interaction integrity is a statement that an

autonomic element is in control of all of its interactions

with other elements. An autonomic element must

communicate with other autonomic elements via

service interfaces defined in its associated service

specification. It must not communicate with other

autonomic elements via any other mechanism (that is,

there must not be any back channels). Communications

within a given autonomic element must never be

accessible outside the element in any way, e.g. as

public service interfaces, via RMI or Java messaging,

or in such a way as to violate other security

assumptions, e.g. over an unauthenticated protocol.

This is a step beyond basic Web services and Grid

services. Interaction integrity constrains how a service

may be implemented, by limiting the ways in which an

autonomic element can interact with, and be affected

by, other autonomic elements: elements may interact

only through their specified interfaces, and in no other

way.

Interaction integrity enables an autonomic element

to control its own behavior, since no other entity may

“reach inside” and manipulate it directly. This is

critical to self-protection; an autonomic element must

be able to control what happens to it in a system. It is

also vital to the ability of an autonomic element to

make agreements that it knows it can fulfill, and in

general to be able to manage its own behavior reliably.

4. Autonomic systems

Clearly, throwing self-managing components

together arbitrarily does not guarantee self-

management at the system level. For a system to

function properly, its constituent elements must be able

to discover each other, to identify other elements with

which to communicate and to coordinate with each

other in achieving their mutual goals. In addition, there

are system-level behaviors that by their very nature

cannot be performed by any single element, such as

meeting end-to-end service level targets.

Suppose we have collected the autonomic elements

that we need in order to implement a particular system,

say a financial transaction system. We have router and

firewall and Web server and database and storage

elements. How do we assemble these into an

autonomic financial transaction system?

Assembling an autonomic system requires:

1. A collection of autonomic elements that

implement the desired function;

2. Additional autonomic elements to implement

system functions that enable the needed

system-level behaviors;

3. Design patterns for system self-management.

We already have the first of these in hand. The

second entails the creation of a number of

infrastructure elements—elements that support the

operation of the autonomic system [4]. Some of these

are briefly described below.

A registry provides mechanisms for elements to

find one another, to publish their ability to perform

certain types of service, and to determine how to bind

to one another. When an element wants to find an

element of a certain type, it first contacts a registry

with which it has a relationship. It asks the registry

about elements of that type. The registry returns a list

of addresses to such elements. The first element can

now contact each of the elements on that list,

determine their suitability, form a relationship with the

one it deems best suited to its needs, and use its

service.

A sentinel provides monitoring services to other

elements. See [12] for further discussion of sentinels.

An aggregator combines two or more existing

elements and uses them to provide improved service—

for example, an aggregator may be able to provide

higher reliability or higher performance than any of the

underlying elements could provide individually.

A broker facilitates interaction—it can, for

example, assist an element in carrying out tasks

requiring complex relationships of a sort that the

element is not capable of entering into directly. Such

an element would contact a broker and express its

needs (e.g. a high availability storage service). The

broker could create an aggregation of elements that

fulfills this need (e.g. by composing underlying storage

services) and return the address of the aggregate

service to the requesting element.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

A negotiator is an element that specializes in

assisting elements with complex negotiations—for

example, negotiations requiring a level of reasoning of

which the client element is not capable. An element

may know that it can trade off latency for throughput

in a service that it needs to use, but not know the best

protocol for exploring that trade-off. It can contact a

negotiator, which can do that exploration for it,

returning the best trade-off to the requesting element.

The third requirement for autonomic systems—

design patterns—is the subject of the next section.

5. Design patterns

Here, we discuss initial patterns that we have used

to institute self-configuration, self-healing, self-

optimization and self-protection at a system level. This

is not an exhaustive list; we expect that the invention

of autonomic design patterns will be a fruitful area for

quite some time.

5.1 Self-configuration

Self-configuration is an important part of the

autonomic computing vision. Autonomic elements

configure themselves, based on the environment in

which they find themselves and the high-level tasks to

which they have been set, without any detailed human

intervention in the form of configuration files or

installation dialogs.

It is possible to construct an autonomic system in

much the same manner as we construct systems today.

We could figure out all of the various dependencies

and relationships at design time and instruct the

individual elements to form predetermined

relationships.

We have explored an alternative whereby the

system builds itself, using what we call “goal-driven

self-assembly” [12]. This potentially makes the system

more robust, because system configuration decisions

are made locally. Before each element joins the

system, it is given a high-level description of what it is

supposed to be doing (“make yourself available as an

application server”, or “join policy repository cluster

17”), and how to contact the registry.

When each element initializes, it contacts the

registry and issues queries to locate existing elements

that can supply the services that the new element needs

to operate. It contacts the elements thus located, and

enters into relationships as required to obtain the

needed services. Once the element has entered into all

the relationships and obtained all the resources that it

needs to function, it registers itself in the registry so

that elements that later need its services can contact it.

Once all of the elements have satisfied their goals,

the system as a whole has self-assembled.

There has been considerable previous work in the

fields of service discovery (see [13] and [14]) and

service registries (see [15] and [16]). These concepts

could be modernized to support autonomic computing

by translating them into a service-oriented architectural

paradigm and supplementing them with appropriate

service ontologies.

5.2 Self-healing

No matter how robust and resilient they are, we

recognize that autonomic elements will still fail from

time to time. We demand that the robustness and

resiliency of an autonomic computing system not

depend on the robustness and resiliency of any single

autonomic element. That is, the system as a whole

should be capable of dealing with the failure of any

constituent part.

We seek to ensure this property at an architectural

level. Designers may, in some circumstances, be able

to deal with failure by using techniques that are

idiosyncratic to the particular element that they are

designing. A storage system may have special

hardware that copies data off of failing disks. A

weather prediction module may be able to check that

its results are physically consistent. We want

something more. We want no architectural single

point of failure. That is, it should be possible, within

the architecture, for the system as a whole to be self-

healing.

To do this, we make each autonomic element

responsible for monitoring its input services and

determining if those services are performing according

to the negotiated agreement covering them. If the input

service fails, whether entirely, or because its

performance is out of bounds, or because the results it

returns are incorrect, the requesting autonomic element

will react, possibly by terminate its relationship with

the input service and obtaining a new one.

If the input service is stateless, this is relatively

straightforward. A new input service can be found via

the registry. In the case where not having an input

service for a period of time would cause a problem, the

requesting element should arrange for a standby for its

input service, ensuring that it is provisioned and ready

to go ahead of time. Then, should an input service fail,

the requesting service can switch over to the standby

input service quickly. Alternatively, clusters of input

services can be created ahead of time, and requests

handed out to them via round-robin mechanisms.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Should one of the autonomic elements in the cluster

fail, the others in the cluster can absorb the load.

If the input service is stateful, the state of the input

service must also be resilient against failure. There is a

substantial literature on this topic in the field of

distributed and fault-tolerant computing, particularly as

it relates to loosely-coupled distributed Web services

[17, 18]. We illustrate one simple method here.

The requesting service can maintain two mirror

images of the (stateful) input service, sending identical

transactions to both of them in order to keep them in

synch. If one input service fails, the requesting service

can first temporarily suspend its transactions with the

second input service, find (or generate) a new input

service of the appropriate type, and populate the new

input service by copying state from the old input

service (the one that did not fail) to the new input

service. When the new input service is brought up to

the same state as the old input service, the requesting

service can return to mirroring transactions to the two

input services.

If this re-provisioning takes a long time, suspending

the service will be impractical, and other ways of

provisioning a new input service will be needed. We

expect these to be idiosyncratic to both the requesting

service and the input service.

There are several places in which this self-healing

functionality may be located. It may be in the

requesting element, as in our example. It may be in the

input service, which makes the input service internally

self-healing. It may be in an intermediary, aggregating

less-reliable input services into a more reliable

aggregate service. Each has its advantages and

disadvantages, but no one choice is sufficient by itself.

One useful design pattern for self-healing, which

avoids the problem of having a single point of failure,

is the self-regenerating cluster. The concept is to

cluster two or more instances of a particular type of

autonomic element together, such that they share input

services and respond to requests for output services via

round robin or spraying techniques. The autonomic

elements in such a cluster could monitor each other’s

health. If one such autonomic element were to fail, one

of the remaining autonomic elements could generate

(or find) a new instance of that type, bind it into the

cluster, and thus reconstitute the cluster.

To support this self-healing functionality, an

autonomic element should expose interfaces which

enable the following:

Sending state. This is a request sent to an element,

instructing it to send its internal state to another

element—the message specifies the receiving element.

Receiving state. This is a request sent to an

element, instructing it to receive internal state from

another such element—the message specifies the

sending element.

The state exchange could be initiated by a third

element—an administrative element—or it could be

initiated by either the sender or the receiver.

To support end-to-end availability management, an

autonomic element should expose interfaces which

enable the following:

Querying planned outages. This is a request sent

to the element, to which it replies with a list of planned

outages in a specified period. The outages may be

partial—i.e., the element may be unable to provide

services to other element, but may still be able to

respond to simple queries; or they may be total—i.e.,

the element may be unable to respond at all.

Scheduling planned outages. This is a message

sent to an element, specifying a time period in which

the element may safely initiate a planned outage—e.g.,

to reboot, or to perform internal operations that cannot

be done without compromising service levels.

5.3 Self-optimization

Self-optimization at the system level is obviously

related to self-optimization of the individual

components. But good behavior of each component

does not necessarily ensure good behavior of the

system as a whole. Furthermore, in any system, it is

likely that conflicts will have to be resolved, such as

when two components both want control over a limited

resource.

One design pattern for resource allocation that has

received some attention has been the use of market-

like mechanisms [19]. This has the advantage of being

very general, but does incur additional real cost, both

in run time efficiency and code complexity; and to be

effective, the convergence time of the market’s prices

must be smaller than the required response time of the

system. For this pattern to be used, both the “buyer”

and “seller” elements must be able to correctly

determine the value of the services in question. This

may be done, e.g., by enabling the elements with utility

functions that assign values to the different services

they might buy or sell.

Another pattern, found in one of the prototypes

described in Section 6 below, has a resource-arbiter

element that directly queries elements’ utility

functions, and then combines them to calculate a

system-wide optimal allocation.

Each of these patterns places its own requirements

on the elements involved. Both, however, presume that

an element will be able to offer different levels of

service. Therefore, autonomic elements should offer

multiple levels of service.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Service levels may be offered per individual

relationship, so that each relationship has its own set of

service goals, or even per work item, so that each job

is assigned a service goal. It is often convenient to

define service classes, each of which has its own set of

service goals.

Elements may offer multiple levels of service by

participating in parallel clusters. Thus, for example, a

single element may not be able to provide a given

service level on its own, but it may be able to form

relationships with other elements to achieve the desired

service collectively. This pattern obviously applies

only to work that can be parallelized.

The ability to offer multiple levels of service may

require an element to provide interfaces that include:

Querying service-level bounds. This is a request

sent to the element, to which it replies with its current

service goals and constraints. The request may identify

a particular service class, relationship or work item.

Querying service level. This is a request sent to the

element, to which it replies with the current service

level. The request may identify a particular service

class, relationship, or work item.

Requesting a service level. This is a request to

modify the current service levels.

5.4 Self-protection

There are two distinct but related aspects to self-

protection: protection against undesirable system

behavior due to bugs or unanticipated conditions, and

protection against system penetration by attackers [20].

Many of the principles and design patterns described

elsewhere in this paper are effective against accidental

conditions. The ability of a system to dynamically self-

optimize protects the system’s performance against

changes in demand, for instance, and self-healing

functions protect a system against degradation due to

the accumulation of failures over time.

To the extent that autonomic functions protect

against accidental failures, they will also protect

against some types of maliciously-induced failure. If

an autonomic self-healing system can quickly and

transparently replace a Web server when it crashes due

to a hardware failure, that same system can recover

from a crash caused by an attacker intentionally

exploiting a network software bug to take down the

machine.

Other kinds of malicious attack, on the other hand,

require special handling. Accidental failures tend to be

uncorrelated; failures due to malice, can be highly

correlated, as when an attacker stages a denial of

service attack against many systems at once, or when

one machine is attacked to draw attention away from

another which is the real target. Autonomic intrusion

defense systems that can detect and respond to these

correlated failures in real time may share infrastructure

with, but will often use different rules than, event

correlators that detect accidental system failure.

A key principle of autonomic computing is that the

system as a whole should continue to function even if

one or more of its elements fails. In the security realm,

this corresponds to a system that continues to be secure

as a whole even when one or more of its elements is

compromised. This is a challenging goal, towards

which some progress is being made. (See, for instance,

the secure distributed storage system described in

[21].) Similar design patterns will be needed in other

aspects of autonomic systems, particularly security-

critical ones. For instance, particularly sensitive

operations might be authorized only if multiple

autonomic elements all register assent, significantly

raising the bar for an attacker.

Like any other computing system, autonomic

systems will require access controls and other

traditional security controls, dictating not only which

users are authorized to take which actions, but also

which autonomic elements are authorized. In

autonomic systems, we anticipate that these security

controls will be implemented through policies.

Security policies in autonomic systems will benefit

from the entire general policy infrastructure used in

autonomic systems. It will be possible to deploy

security policies into common policy repositories, it

will be possible to detect conflicts between policies,

both at policy creation time and at run time, and it will

be possible to use advanced policy tools to explore the

consequences of proposed policy changes before they

are implemented. Standardizing security controls in

the form of autonomic policies should reduce the

complexity and confusion that currently exists, by

reducing the number of incompatible and non-

interoperable security management mechanisms, and

leveraging common tooling and infrastructure.

6. Autonomic computing system prototypes

We have validated and refined these architectural

ideas by creating two prototype autonomic systems

[12, 22] that explore the use of autonomic systems for

data center management and resource allocation.

Autonomic elements represent applications running in

the data center, the resources that those applications

require to run, and the resource arbiter that allocates

the resources to the applications. Other autonomic

elements provide many of the infrastructural services

described above, including a registry and a policy

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

repository. Goal-driven self-assembly and utility-

function policies are key elements of one of these

prototype systems, which uses some of the design

patterns described above to achieve a degree of self-

management.

7. Conclusion

We have described an architectural approach for

creating autonomic elements (self-managing

components), and for composing them to form

autonomic systems (self-managing systems).

Our approach takes advantage of the uniform

representation and composition of components in

service-oriented architectures and the autonomy of

components in agent-oriented programming. It goes

beyond previous work by deriving component-level

self-management from the interfaces and behaviors

that it requires of autonomic elements. It derives

system-level self-management by composing

autonomic elements via negotiated relationships,

adding to them infrastructure elements (registries,

service brokers, etc.), and requiring that they follow a

growing list of system design patterns that we have

developed.

There is much to be done. We (and others) are

working actively on detailed interface specifications,

and reference implementations of them. We are

working through the details of the design patterns

described here and validating them with a more

comprehensive prototype.

8. References

[1] W. Asprey, et al., “Conquer System Complexity: Build

Systems with Billions of Parts,” in CRA Conference on

Grand Research Challenges in Computer Science and

Engineering, Warrenton, VA (2002), pp. 29-33,

http://www.cra.org/reports/gc.systems.pdf.

[2] J. Kephart and D. Chess, “The Vision of Autonomic

Computing,” IEEE Computer, Vol. 36, No. 1 (2003),

pp. 41-50, http://www.research.ibm.com/

autonomic/research/papers/AC_Vision_Computer_Jan_

2003.pdf.

[3] P. Horn, “Autonomic Computing: IBM's Perspective on

the State of Information Technology,” IBM Corp.

(October 2001), http://www.research.ibm.com/

autonomic/manifesto/autonomic_computing.pdf.

[4] I. Foster, C. Kesselman and St. Tuecke, “The Anatomy

of the Grid: Enabling Scalable Virtual Organizations”

(2001), http://www.globus.org/research/papers/

anatomy.pdf .

[5] M. Champion, C. Ferris, E. Newcomer, and D. Orchard,

“Web Services Architecture,” W3C Working Draft,

(November 14, 2002), http://www.w3.org/TR/ws-arch/.

[6] M. Wooldridge and N. Jennings, “Agent theories,

architectures, and languages,” in Wooldridge and

Jennings (eds.), Intelligent Agents, Springer-Verlag

(1995), pp. 1-22.

[7] M. Sloman, “Policy Driven Management for Distributed

Systems”, Journal of Network and Systems

Management, Vol. 2 (1994).

[8] Policy Workshop: International Workshop on Policies

for Distributed Systems and Networks,

http://www.policy-workshop.org/.

[9] J. Kephart, W. Walsh, “An Artificial Intelligence

Perspective on Autonomic Computing Policies,”

Proceedings of Policy 2004, to be published.

[10] W. Walsh, G. Tesauro, J. Kephart and R. Das, “Utility

Functions in Autonomic Systems,” Proceedings of First

International Conference on Autonomic Computing

(2004).

[11] S. Russell and P. Norvig, Artificial Intelligence: A

Modern Approach, Prentice Hall (2003), second edition.

[12] D. Chess, A. Segal, I. Whalley and S. White, “Unity:

Experiences with a Prototype Autonomic Computing

System,” Proceedings of First International Conference

on Autonomic Computing (2004).

[13] Jini.org, “Jini Core Technology Spec – Discovery and

Join,” http://www.jini.org/nonav/standards/davis/doc/

specs/html/discovery-spec.html.

[14] UPnP forum, “UPnP Device Architecture 1.0,” v1.0.1, 2

December 2003, http://www.upnp.org/resources/

documents/CleanUPnPDA101-20031202s.pdf.

[15] Java Naming and Directory Interface,

http://java.sun.com/products/jndi/reference/docs/index.h

tml.

[16] UDDI.org, “Universal Description, Discovery and

Integration v3.0.1,” http://uddi.org/pubs/uddi_v3.htm.

[17] J. Roberts, K. Srinivasan; “Tentative Hold Protocol Part

1: White Paper,” W3C Note (November 28, 2001),

http://www.w3.org/TR/tenthold-1/.

[18] T. Mikalsen, St. Tai and I. Rouvellou; “Transactional

Attitudes: Reliable Composition of Autonomous Web

Services,” Workshop on Dependable Middleware-based

Systems (WDMS 2002), June 2002,

http://www.research.ibm.com/AEM/pubs/wstx-WDMS-

DSN2002.pdf.

[19] S. Clearwater (ed.), Market-Based Control, World

Scientific, Singapore (1996).

[20] D. Chess, C. Palmer, and S. White, “Security in an

autonomic computing environment,” IBM Systems

Journal, Vol. 42, No. 1 (2003).

[21] J. Garay, R. Gennaro, C. Jutla and T. Rabin, “Secure

Distributed Storage and Retrieval,” Theoretical

Computer Science, Vol. 243, No. 1–2 (2000), pp. 363–

389.

[22] M. Devarakonda, D. Chess, I. Whalley, A. Segal, P.

Goyal, A. Sachedina, K. Romanufa, E. Lassettre, W.

Tetzlaff, B. Arnold; “Policy-based, Autonomic Storage

Allocation,” Proc. of 14th IFIP/IEEE Intl. Workshop on

Distributed Systems: Operations and Management,

DSOM 2003, M. Brunner and A, Keller (Eds.), Lecture

Notes on Computer Science 2867, Springer-Verlag

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

