
A Software Architecture Approach for Structuring
Autonomic Systems

Dharini Balasubramaniam, Ron Morrison,
Graham Kirby, Kath Mickan

University of St Andrews
St Andrews

Fife KY16 9SX, UK
+44 1334 463253

{dharini, ron, graham, kath}@dcs.st-and.ac.uk

Brian Warboys, Ian Robertson, Bob Snowdon,
R Mark Greenwood, Wykeen Seet

University of Manchester
Oxford Road

Manchester M13 9PL, UK
+44 161 275 6154

{brian, ir, rsnowdon, markg,
seetw}@cs.man.ac.uk

ABSTRACT
Autonomic systems manage themselves given high-level
objectives by their administrators. They utilise feedback from
their own execution and their environment to self-adapt in order
to satisfy their goals. An important consideration for such systems
is a structure which is conducive to self-management. This paper
presents a structuring methodology for autonomic systems which
explicitly models self-adaptation while separating functionality
and evolution. Our contribution is a software architecture-based
framework combining an architecture description language based
on π-calculus for describing the structure and behaviour of
autonomic systems, a development methodology for evolution
and mechanisms for feedback and change.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures – Data
abstraction, Domain-specific architectures, Languages, Patterns.

General Terms
Management, Measurement, Design, Experimentation,
Languages.

Keywords
Autonomic systems, feedback, change, structuring, software
architectures, producer, evolver.

1. INTRODUCTION
1.1 Autonomic Systems
Autonomic systems manage themselves given high-level
objectives from administrators [1]. Common goals of self-
management are: self-configuration, self-optimisation, self-
healing and self-protection. In order to achieve these, an
autonomic system needs to monitor itself continuously, receive
feedback from its execution and its environment and utilise this

information, along with knowledge of system goals, for self-
maintenance.
Thus policy decisions for autonomic systems include what, when
and how changes should be made to maintain the system
compliant to its objectives. Mechanisms to support these policies
include specification of constraints which encode systems goals,
feedback from execution, feedback from the environment and
ability to make changes to parts of the system as it executes.
We introduce a framework which combines the above facilities to
provide an integrated environment within which the development
and execution of autonomic systems may take place. By adopting
a software architecture approach, we provide a formal, verifiable
basis for autonomic systems.

1.2 A Software Architecture Approach
Software architectures [3,4] describe systems in terms of
components and their interactions. Components may be composed
together to form larger components or final systems. Thus they
offer a foundation for describing the structure and behaviour of
systems at various levels of abstraction.
Support for a unified, software architecture-based framework for
autonomic systems requires the following:
� an architecture description language (ADL) supporting

o architecture specifications which capture both the
structure and the behaviour of components and
interactions so that observations and changes may be
made with a single framework

o specification of constraints
o mechanisms for feedback and change

� support for integrating external (those outwith the ADL
domain) components into ADL systems

� a structuring methodology designed for change which
reconciles architectures and the above mentioned mechanisms

ArchWare ADL [5] is the architecture description language used
by the framework. It is a strongly-typed executable architecture
description language based on higher-order polyadic π-calculus
[6] and was developed as part of the ArchWare project [7]. It was
specifically designed for modelling dynamic, evolving
architectures and thus is particularly suited to capturing the
structure and behaviour of autonomic systems. The language and
its support for constraints [8], feedback [9], change [10] and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DEAS 2005, May 21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-039-6/05/0005…$5.00.

59

1

integration of COTS components [11] have been described
elsewhere. This paper presen the structuring methodology for
autonomic change based on the concepts of producers and
evolvers [12]. A brief summary of the required mechanisms is
provided in Section 3 for use in later examples.

2. RELATED WORK
Various frameworks and methodologies have been proposed for
the development of autonomic systems.
IBM’s autonomic vision [1,2] envisages systems consisting of
collections of autonomic elements. Each such autonomic element
consists of an autonomic manager and one or more managed
elements. The managed elements are designed to enable the
manager to monitor and control them. The manager observes
feedback from the elements and their environment and uses this
information, along with knowledge of system goals, to plan and
execute changes to the managed elements.
Accord [13] is a component-based framework in which autonomic
applications are defined by dynamic composition and
management of autonomic components. In addition to its
functionality, an autonomic component encapsulates rules,
constraints and mechanisms for self-management including a rule
agent which manages the component’s execution. Rules may be
defined dynamically.
The Rainbow framework [14] uses external control mechanisms
based on software architecture models to monitor and adapt
executing systems. A primary goal of this framework is to enable
adaptation strategies and infrastructure to be reusable across
different systems. Abstract architecture models are maintained by
the architecture layer of the framework while the application is
executed in the system layer. Both layers interact through a
translation layer.
Sterritt and Bustard [15] describe an autonomic environment
containing autonomic elements which communicate
asynchronously. Each element consists of a managed component
and an autonomic manager. The manager uses feedback on the
state of the managed component and the state of the environment
to make any necessary changes to the managed component. Each
component also emits a ‘pulse’ on a global signal channel. These
are used by monitors (either dedicated or distributed) to track the
health of components.
The vGrid [16] architecture for autonomic systems consists of
three layers: the autonomic problem solving environment, the
vGrid infrastructure services and the autonomic grid application
execution environment. The first layer is a software development
environment which allows high level autonomic policies to be
specified during application development. The second layer
provides enhanced grid middleware to support autonomic
applications while the third layer is responsible for monitoring
and controlling execution.
Some of these frameworks support autonomic facilities by using
structures based on external managers or global monitors. In
addition, they do not address issues arising from the need to
potentially evolve every part of the system including feedback
and managers themselves. The advantage of our approach is that
systems are structured by a methodology allowing localised
change in every component thus providing them with integrated
support for autonomics.

3. SUMMARY OF ADL MECHANISMS
We introduce the required mechanisms for the autonomic
framework using the ArchWare approach in this section. The
feedback mechanism uses software probes for generating
feedback and connections for communicating probes and
feedback between sources and sinks. The change mechanism
utilises the concepts of change functions and change connections.
The framework also supports a mechanism for integrating
external components into ADL systems.
Both feedback and change mechanisms make use of the hyper-
code technology. A hyper-code [17] program is an active
executing graph linking source code and existing values. Hyper-
code provides a single representation (as a combination of text
and hyperlinks) of software throughout its lifecycle. Sharing is
represented by multiple links to the same value.

3.1 Feedback
Feedback acts as a trigger for change in autonomic systems. A
component may receive feedback from any of the following
sources:
� another component written in the ADL
� the execution engine on which the ADL is being evaluated
� the environment external to the ADL
The ArchWare ADL provides a uniform mechanism to deal with
feedback from all these sources. The feedback mechanism is
structured in terms of feedback sinks, feedback sources, software
probes, probe connections and feedback connections.
Each feedback source is designed to publish its feedback
interface, accept functions from the probe connection, interpret
them as probes, bind them internally and invoke them at the
appropriate time.
Feedback sinks are structured to define software probes, send
them to feedback sources via the appropriate probe connections,
receive the feedback via feedback connections and take
appropriate action to correct any anomalies.
Software probes are defined by functions using application
constraints and hyperlinks to the observable features published by
the target feedback source. The function body consists of an if-do
clause with the if-part representing the negation of a constraint
and the do-part the feedback to generate if the condition is true.
Connections for communicating probes and feedback are defined
differently for each type of feedback source but once created can
be used identically. Feedback connections act as the event
distribution network.

3.2 Change
3.2.1 Support for Change
The following kinds of change for autonomic adaptation are
supported by the ADL:
� update and replacement
� static and dynamic generation of new components
� dynamic evolution (decomposition, reification, reflection,

recomposition)
All language mechanisms required to support the above changes
maintain type safety in the ArchWare ADL.

60

2

Components are modelled by behaviours (analogous to processes
in π-calculus) in the ArchWare ADL. They communicate via
connections (channels in π-calculus) using send and receive
actions. Behaviours can be collaboratively and hierarchically
composed to form a system. A compose operator (akin to “|” in
the π-calculus) creates a single handle to a number of executing
behaviours. Abstractions abstract over behaviours just as
functions abstract over expressions. Mutability is explicitly
modelled by locations.
Update is performed when a location is assigned a new value.
Replacement of statically defined components is supported by
assigning a new component to a location containing the old one.
There are two ways of generating new instances of component
types. If the number of components and time of creation are
known statically then abstraction definition and application can be
used. If component creation depends on some dynamic input then
replication (“!” in π-calculus) may be used.
A more challenging adaptation is where part of a system has to be
(partially) disassembled, changed and put back together to create
an evolved system while the unaffected part continues to execute.
This change requires support for
� decomposition,
� reification,
� reflection, and
� recomposition.
Decomposition [18] takes (part of) an executing system, breaks it
up into its constituent components and returns them in a partially
suspended state. The ADL supports a decompose operator which
takes a composite component and returns a sequence of its
constituent components (behaviours).
Reification allows introspection of a component so that its
specification can be used as the basis for any change. The
specification of a component is always available including during
execution and after decomposition via the ArchWare ADL hyper-
code system [19].
The specification of a component can be edited using the hyper-
code system to produce an evolved specification. Using
hyperlinks to denote existing values allows us to preserve shared
data through this evolution.
Reflection allows new or evolved components to be bound back
into an executing system. The evolved specification is brought
into the execution domain by dynamic compilation. A callable
compiler is provided by the ADL to implement reflection.
Recomposition takes the evolved set of components and
composes them together to form a new system. The compose
operator provided by the ADL can be used to achieve this.

3.2.2 Change Mechanism
Since feedback triggers change, the change mechanism can be
described as an extension of the feedback mechanism. In addition
to feedback sinks, feedback sources, feedback connections, probe
connections and probes, we introduce the notions of change
connections and change functions.
Feedback sources publish a change interface in addition to their
feedback interface. This interface contains hyperlinks to locations
of units of functionality within the source which may be modified
by feedback sinks. These units are typically behaviours.

When a feedback sink receives some feedback from a probe
executed by a feedback source, it may decide that changes are
necessary to some part of the feedback source. It then defines a
change function to update the necessary part of the source.
Change functions are constructed using the change interface of
the feedback source and the ADL constructs for supporting
change described in section 3.2.1. The former gives access to the
required units of functionality within the source while the latter
implement the required change.
The feedback sink sends the change function along a change
connection to the feedback source. The source is designed to
interpret messages on the change connection as change functions
and execute them accordingly.
This mechanism supports changes within a feedback source. A
complementary change mechanism, also supported by the
ArchWare framework, allows a feedback sink to directly
manipulate a feedback source, either by decomposing the source,
evolving its constituents and recomposing them to form a changed
source or by replacing one source component with another. The
examples in this paper deal with changes to parts of feedback
sources.

3.3 Integration of External Components
Commercial off-the-shelf (COTS) components are increasingly
being used as building blocks for software systems. Thus any
framework for realistic software development must provide
facilities for incorporating COTS components into systems.
The ArchWare architecture framework was designed to allow
external components, including COTS and legacy systems, to be
incorporated into ADL systems [11]. Furthermore these systems
are designed to be capable of evolving and being evolved.
Each external component in the framework has a corresponding
Transformer/Connector (T/C) and an ADL proxy component. The
former acts as a bridge between the external component and the
ADL domain providing a view of the external component as seen
from the ADL. It also translates messages into formats required
by either side. The latter is used as an ADL interface to the T/C.
The underlying network to support communication between
external components and the ADL domain is independent of this
architecture. A web services infrastructure is currently used for
this purpose.

4. STRUCTURING METHODOLOGY
Structuring systems in a manner amenable to change will ease and
localise the process of autonomics. Producer/Evolver (P/E) [12] is
a methodology developed by the process modelling community
for building evolvable systems.

4.1 Producers and Evolvers
Each component in the system is modelled as a pair of
subcomponents: a producer and an evolver. The producer carries
out the functionality of the component while the evolver deals
with its autonomic aspects, changing the producer in response to
environmental or internal feedback. There are two ways of
developing a component using this methodology:
� the developer may define both the producer and evolver

subcomponents

61

3

� the developer may define an evolver which creates and
installs a producer at initialisation

Capturing the functionality and evolution of a component in
different subcomponents serves to maintain the separation of
concerns and reduce the overall complexity of an autonomic
system by localising change.

4.2 Combining P/E, Constraints, Feedback
and Change
The producer/evolver model conforms to the autonomic vision
described in [1]. It makes use of the mechanisms for feedback and
change described in Section 3 to satisfy the goals set for each
component. In this case the evolver acts as feedback sink and the
producer as feedback source.
The evolver contains policies and goals for the component
encoded as constraints. Its functions include:
� sending probes to the producer via the probe connection to

monitor the execution of the producer
� receiving feedback from the probes via feedback connections
� receiving feedback from the environment (users and other

components) via the environment feedback connection
� comparing the feedback to constraints specified for the

component
� defining a change function for any necessary corrections to

the producer
� sending the change function to be executed by the producer

via the change connection
The producer in turn is designed so that it supports the activities
of the evolver in addition to carrying out its functionality. Its
duties include
� receiving probes from the evolver via the probe connection,

binding them into its execution and invoking them at the
appropriate time

� receiving change functions from the evolver via the change
connection and invoking them

Probes are defined so that they communicate directly with the
evolver via feedback connections. Thus producers are not
required to send feedback to their evolvers.
The structure of a component developed using P/E is shown in
Figure 1.

Figure 1: Structure of a Component
In Figure 1, the functionality of Component00 is to receive Raw00
via its input connection, process it to produce Widgets00 and send

the result via its output connection. This function is carried out by
the Producer00 subcomponent. Evolver00 monitors and maintains
Producer00. Probe and feedback connections between the two
subcomponents enable the communication of probes from
Evolver00 to Producer00 and feedback from probes executing in
Producer00 to Evolver00. Evolver00 also receives feedback from
the environment via the environment feedback connection.
Evolver00 sends any necessary change functions to be performed
on Producer00 via the change connection.
In accordance with these requirements, the definitions of
producers and evolvers are expected to conform to structures
similar to those shown in Figures 3 and 4 specified in the
ArchWare ADL. For clarity, non-generic types and values are
shown as hyperlinks. This code assumes that the evolver and the
producer are both defined by the developer and that all probes
share a single feedback connection.
Figure 2 below defines the required connections for a component.

! external connections
value input_conn = connection(input_type)
value output_conn = connection(output_type)
value env_feedback_conn = connection(feedback_type)

! connections between producer and evolver
value probe_conn = connection(probe_type)
value feedback_conn = connection(feedback_type)
value change_conn = connection(function[])

Figure 2: Definition of Connections
input_conn, output_conn and env_feedback_conn are the input,
output and environment feedback connections for the component
with message types input_type, output_type and feedback_type
respectively.
probe_conn, feedback_conn and change_conn are the connections
to be used between the producer and evolver subcomponents for
exchanging probes, feedback and change functions. They
communicate messages of types probe_type, feedback_type and
function[] respectively.
Figure 3 shows the structure of the producer subcomponent
defined as the abstraction producer_abs. An instance of the
subcomponent can be obtained by applying this abstraction.

! producer structure
value producer_abs = abstraction()
{ value producer_state = location(initial_state)

Component00 publish_feedback_interface(producer_state)
value producer_unit = location(behaviour{(Environment00)

replicate {
via input_conn receive raw
value widgets = do_produce(raw)
execute_probes()

Probe, feedback and
change connections

Evolver00Environment feedback
connection

via output_conn send widgets }
})

publish_change_interface(producer_unit)
compose{

b1 as { replicate {
via probe_conn receive probe
install_probe(probe) }

 } and

(Raw00) (Widgets00)

Input connection

Producer00

Output connection

62

4

b2 as { replicate { b2 as { replicate {
via change_conn receive delta
execute_change(delta) }

 }
 }

Evolver10

}
Figure 3: Structure of Producer

The producer defines its initial state as a location and publishes it
as its feedback interface. It then defines its main functionality,
producer_unit, as a location of behaviour. This behaviour repeats
the following actions: it receives its input on the input connection
input_conn and binds the input to the name raw in its execution; it
then produces widgets using raw; it executes all the probes it has
received; finally it sends widgets on the output connection
output_conn. The repeated functionality is modelled by the
replicate construct, guarded by input on input_conn. The
producer then publishes its change interface containing
producer_unit.
The interaction of the producer with the evolver is defined as a
composition of two behaviours. The compose operator takes a
number of behaviours, each with a unique label, and returns a
handle to the parallel execution of these behaviours.
The behaviour corresponding to the label b1 repeatedly receives a
probe on the probe connection probe_conn, binds it to the name
probe and installs the probe as required.
The behaviour labelled as b2 repeatedly receives a change
function on the change connection change_conn, binds it to the
name delta and executes delta.
The parallel execution of the behaviour contained in
producer_unit and the two behaviours mentioned above forms the
functionality of producer_abs.
Figure 4 shows the structure of the evolver subcomponent defined
as the abstraction evolver_abs.

! evolver structure
value evolver_abs = abstraction()
{ replicate {

choose{
 { via feedback_conn receive feedback }

or
 { via env_feedback_conn receive feedback } }

value need_feedback_change = location(false)
value need_producer_change = location(false)
process_feedback(feedback, need_feedback_change,

 need_producer_change)
if ’need_feedback_change do
{ value new_probe = define_new_probe()

via probe_conn send new_probe }
if ’need_producer_change do
{ value change_function = define_evolution()

via change_conn send change_function }
 }
}

Figure 4: Structure of Evolver
The evolver repeatedly performs the following actions. It receives
feedback either on feedback_conn from the execution of the
producer or on env_feedback_conn from the environment. In
either case, feedback is bound to the name feedback in the

execution. The choose construct in the ArchWare ADL (“+” in -
calculus) is used for the non-deterministic selection of one
behaviour from two or more.
The evolver then defines two Boolean variables
need_feedback_change and need_producer_change. These are
used to track the changes required by feedback. The evolver
processes the feedback and updates the Boolean variables as
necessary.
If a change to the feedback being received is required then the
evolver defines a new probe using the feedback interface of the
producer and sends it to the producer on probe_conn. If a change
to the producer subcomponent is necessary then the evolver
defines a change function to carry out the required change using
the change interface of the producer and sends the function to the
producer on change_conn. Both changes can be triggered by the
same feedback.
Given these definitions of a producer_abs abstraction and an
evolver_abs abstraction, a component can be defined as shown in
Figure 5.

! definition of component
value component = compose{ P as producer_abs() and

E as evolver_abs() }

Figure 5: Definition of A Component
An application of producer_abs with the label P and an
application of evolver_abs with label E are composed together to
form component.

4.3 Composition of Components
Components can be collaboratively and hierarchically composed
to form composite components. One or more components may
form the producer part of another component at a higher level of
abstraction. Figure 6 shows a composite consisting of an evolver
and a producer made up of two components.

Figure 6: A Composite Component
In Figure 6, the functionality of Producer10 is to convert Raw10
into Widgets10. This is achieved by the collaboration of C00 and
C01. Each of these components itself conforms to the
producer/evolver model.

C00

Evolver10

C00C
Producer10Producer10

C01

(Environment10)

Component10

(Raw10) (Widgets10)

63

5

The compose operator of the ArchWare ADL can be used for the
composition of components into composites as well as the
composition of a producer and an evolver to form a component.
Thus the example in Figure 6 can be specified in the ADL as
shown in Figure 7.

The compose operator of the ArchWare ADL can be used for the
composition of components into composites as well as the
composition of a producer and an evolver to form a component.
Thus the example in Figure 6 can be specified in the ADL as
shown in Figure 7.

Evolver10

value producer10 = compose{ c00 as c00_abs() andvalue producer10 = compose{ c00 as c00_abs() and
c01 as c01_abs() }

value component10 = compose{ P as producer10 and
E as evolver10_abs() }

Figure 7: Specification of a Composite Component
Our thesis is that this methodology is well-suited to building
autonomic systems. P/E requires an evolver component to be
produced for every functional component of the application at
construction time. This ensures that systems are built with
evolution in mind in addition to achieving an elegant separation
of functionality and change. At the highest level of the
compositional hierarchy we have a component (the final system)
without a corresponding evolver. Evolution at this level requires
external intervention.

4.4 Grounding the Model
All systems, at the finest level of granularity, are made up of
atomic components. The producer/evolver structuring is grounded
at the level where a component can no longer be divided into such
a pair. The granularity for grounding in such a case is determined
by the goals of the autonomic system. An external component
may also be deemed atomic if it provides no suitable interface for
adaptation.
Figure 8 shows a composite component whose producer part
consists of two atomic components C00 and C01.

Figure 8: Atomic Components
Change at this level also requires a different mechanism. If, for
example, feedback from Producer10 indicates to Evolver10 that the
functionality of C00 might need to be altered then a possible
strategy for change would be for Evolver10 to decompose
Producer10 to gain access to its subcomponents, replace C00 with
a new component C00’ and recompose C00’ and C01 to form the
altered Producer10’.
The above evolution may be specified in the ArchWare ADL as
shown in Figure 9.

value decomposed_parts = decompose producer10
value c00 = decomposed_parts::1.behaviour
value c01 = decomposed_parts::2.behaviour
value c00_dash_abs = alter_component(c00)

value producer10_dash = compose{ c0 as c00_dash_abs()
and

 c1 as c01}

Figure 9: Change to Atomic Components
The decomposition of producer10 returns a sequence containing
behaviours c00 and c01. Individual behaviours can be accessed by
indexing into this sequence. An evolved abstraction
c00_dash_abs is defined based on the definition of c00. The
producer10_dash is then defined by composing the application of
c00_dash_abs and the original c01 together.

5. CONCLUSIONS
This paper has presented a structuring methodology based on the
concepts of producers and evolvers as part of a unified framework
for building autonomic systems. The novelty of our approach is
the combination of feedback and change mechanisms within a -
calculus based strongly typed executable architecture description
language and a development methodology designed for change.
Our contention is that given all the above facilities, autonomic
systems can be constructed and maintained within a single
framework and with a formal basis for checking.
The ArchWare ADL hyper-code system has been used to develop
substantial amount of code using the producer/evolver
methodology presented here. Our experience suggests that it is
beneficial in developing evolvable systems.
One of the avenues for further research is the integration of
constraints into the evolution framework. At present we are able
to evolve both architectures and behaviours as they execute. Our
contention is that the framework will be complete when
constraints can be evolved in a similar manner. Further work also
needs to be done regarding the implications of that ability for
autonomic systems.

Evolver10

atomic components 00

Component10

(Environment10)

6. ACKNOWLEDGMENTS
Some of the work presented in this paper has been supported by
the EC grant IST-2001-32360 (the ArchWare project). Our thanks
are due to fellow partners of the project for useful discussions
relevant to the work described.

7. REFERENCES
[1] Kephart, J, Chess, DM. The Vision of Autonomic Computing.

In: IEEE Computer Journal, Vol. 36, No.1. 2003. pp 41-50.
[2] IBM Autonomic Computing. http://www-

306.ibm.com/autonomic/index.shtml.
[3] Perry, D, Wolf, A. Foundations for the Study of Software

Architecture. In: ACM SIGSOFT Software Engineering
Notes, Vol 17, No 4. 1992. pp 40-52.

[4] Garlan, D, Shaw, M. An Introduction to Software
Architecture. In: Advances in Software Engineering and
Knowledge Engineering, Vol 2. 1993. pp 1-39.

C00C00

Producer10Producer10

C01
(Raw10) (Widgets10)

64

6

http://www-306.ibm.com/autonomic/index.shtml
http://www-306.ibm.com/autonomic/index.shtml

[5] Balasubramaniam, D, Morrison, R, Kirby, GNC, Mickan, K,
Norcross, S. ArchWare ADL - A User Reference Manual.
2004. ArchWare Project Report.

[6] Milner, R. Communicating and Mobile Systems: The Pi-
Calculus. 1999: Cambridge University Press.

[7] Oquendo, F, Warboys, BC, Morrison, R, Dindeleux, R,
Gallo, F, Occhipinti, C. ArchWare: Architecting Evolvable
Software. In: Proc. First European Workshop on Software
Architecture (EWSA'04). 2004. St Andrews, UK. Springer-
Verlag. pp 257-271.

[8] Cimpan, S, Oquendo, F, Balasubramaniam, D, Kirby, GNC,
Morrison, R. ArchWare ADL:Definition of Textual Concrete
Syntax. 2002. ArchWare Project Report.

[9] Balasubramaniam, D, Morrison, R, Mickan, K, Kirby, GNC,
Warboys, BC, Robertson, I, Snowdon, R, Greenwood, RM,
Seet, W. Support for Feedback and Change in Self-adaptive
Systems. In: Proc. ACM SIGSOFT Workshop on Self-
managed Systems (WOSS’04). 2004. Newport Beach, CA,
USA. ACM.

[10] Morrison, R, Kirby, GNC, Balasubramaniam, D, Mickan, K,
Oquendo, F, Cimpan, S, Warboys, BC, Greenwood, RM.
Support for Evolving Active Architectures in the ArchWare
ADL. In: Proc.4th Working IEEE/IFIP Conference on
Software Architecture (WICSA 2004). 2004. Oslo, Norway.
IEEE Computer Society. pp 69-78.

[11] Warboys, BC, Snowdon, R, Greenwood, RM, Seet, W,
Robertson, I, Morrison, R, Balasubramaniam, D, Kirby,
GNC, Mickan, K. An Active Architecture Approach to COTS
Integration. Submitted to: IEEE Software Special Issue on
Incorporating COTS into the Development Process. 2004.

[12] Warboys, BC, Kawalek, P, Robertson, I, Greenwood, RM.
Business Information Systems: A Process Approach. 1999.
McGraw-Hill.

[13] Liu, H, Parashar, M, Hariri, S. A Component Based
Programming Framework for Autonomic Applications. In:

Proc. First International Conference on Autonomic
Computing (ICAC’04). 2004. New York, USA. IEEE
Computer Society. pp 10-17.

[14] Cheng, S, Huang, A, Garlan, D, Schmerl, B, Steenkiste, P.
Rainbow: Architecture-based Self-adaptation with Reusable
Infrastructure. In: Proc. First International Conference on
Autonomic Computing (ICAC’04). 2004. New York, USA.
IEEE Computer Society. pp 276-277.

[15] Sterritt, R, Bustard, D. Towards an Autonomic Computing
Environment. In: Proc.14th International Workshop on
Database and Expert Systems Applications (DEXA’03).
2003. Prague, Czech Republic. IEEE Computer Society. pp
699-703.

[16] Khargharia, B, Hariri, S, Parashar, M, Ntaimo, L, uk Kim, B.
vGrid: A Framework for Building Autonomic Applications.
In: Proc. International Workshop on Challenges of Large
Applications in Distributed Environments (CLADE’03).
2003. Seattle, WA, USA. IEEE Computer Society.

[17] Zirintsis, E, Kirby, GNC, Morrison, R. Hyper-code
Revisited: Unifying Program Source, Executable and Data.
In: Proc. 9th International Workshop on Persistent Object
Systems. 2001. Lillehammer, Norway. Springer-Verlag. pp
232-246.

[18] Warboys, BC, Balasubramaniam, D, Greenwood, RM,
Kirby, GNC, Mayes, K, Morrison, R, Munro, DS.
Collaboration and Composition: Issues for a Second
Generation Process Language. In: Proc. 7th European
Software Engineering Conference (ESEC'99). 1999.
Toulouse, France. Springer-Verlag. pp 75-91.

[19] Mickan, K, Morrison, R, Kirby, GNC, Balasubramaniam, D,
Zirintsis, E. Using Generative Programming to Visualise
Hyper-code in Complex and Dynamic Systems. In: Proc.
27th Australasian Computer Science Conference
(ACSC2004). 2004. Dunedin, New Zealand. Australian
Computer Society. pp 377-386.

65

7

