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ABSTRACT 
Autonomic systems manage themselves given high-level 
objectives by their administrators. They utilise feedback from 
their own execution and their environment to self-adapt in order 
to satisfy their goals. An important consideration for such systems 
is a structure which is conducive to self-management. This paper 
presents a structuring methodology for autonomic systems which 
explicitly models self-adaptation while separating functionality 
and evolution. Our contribution is a software architecture-based 
framework combining an architecture description language based 
on π-calculus for describing the structure and behaviour of 
autonomic systems, a development methodology for evolution 
and mechanisms for feedback and change. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures – Data 
abstraction, Domain-specific architectures, Languages, Patterns. 

General Terms 
Management, Measurement, Design, Experimentation, 
Languages. 

Keywords 
Autonomic systems, feedback, change, structuring, software 
architectures, producer, evolver. 

1. INTRODUCTION 
1.1 Autonomic Systems 
Autonomic systems manage themselves given high-level 
objectives from administrators [1]. Common goals of self-
management are: self-configuration, self-optimisation, self-
healing and self-protection. In order to achieve these, an 
autonomic system needs to monitor itself continuously, receive 
feedback from its execution and its environment and utilise this 

information, along with knowledge of system goals, for self-
maintenance. 
Thus policy decisions for autonomic systems include what, when 
and how changes should be made to maintain the system 
compliant to its objectives. Mechanisms to support these policies 
include specification of constraints which encode systems goals, 
feedback from execution, feedback from the environment and 
ability to make changes to parts of the system as it executes. 
We introduce a framework which combines the above facilities to 
provide an integrated environment within which the development 
and execution of autonomic systems may take place. By adopting 
a software architecture approach, we provide a formal, verifiable 
basis for autonomic systems. 

1.2 A Software Architecture Approach 
Software architectures [3,4] describe systems in terms of 
components and their interactions. Components may be composed 
together to form larger components or final systems. Thus they 
offer a foundation for describing the structure and behaviour of 
systems at various levels of abstraction. 
Support for a unified, software architecture-based framework for 
autonomic systems requires the following: 
� an architecture description language (ADL) supporting 

o architecture specifications which capture both the 
structure and the behaviour of components and 
interactions so that observations and changes may be 
made with a single framework 

o specification of constraints 
o mechanisms for feedback and change 

� support for integrating external (those outwith the ADL 
domain) components into ADL systems 

� a structuring methodology designed for change which 
reconciles architectures and the above mentioned mechanisms 

ArchWare ADL [5] is the architecture description language used 
by the framework. It is a strongly-typed executable architecture 
description language based on higher-order polyadic π-calculus 
[6] and was developed as part of the ArchWare project [7]. It was 
specifically designed for modelling dynamic, evolving 
architectures and thus is particularly suited to capturing the 
structure and behaviour of autonomic systems. The language and 
its support for constraints [8], feedback [9], change [10] and 
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integration of COTS components [11] have been described 
elsewhere. This paper presen the structuring methodology for 
autonomic change based on the concepts of producers and 
evolvers [12]. A brief summary of the required mechanisms is 
provided in Section 3 for use in later examples. 

2. RELATED WORK 
Various frameworks and methodologies have been proposed for 
the development of autonomic systems. 
IBM’s autonomic vision [1,2] envisages systems consisting of 
collections of autonomic elements. Each such autonomic element 
consists of an autonomic manager and one or more managed 
elements. The managed elements are designed to enable the 
manager to monitor and control them. The manager observes 
feedback from the elements and their environment and uses this 
information, along with knowledge of system goals, to plan and 
execute changes to the managed elements. 
Accord [13] is a component-based framework in which autonomic 
applications are defined by dynamic composition and 
management of autonomic components. In addition to its 
functionality, an autonomic component encapsulates rules, 
constraints and mechanisms for self-management including a rule 
agent which manages the component’s execution. Rules may be 
defined dynamically. 
The Rainbow framework [14] uses external control mechanisms 
based on software architecture models to monitor and adapt 
executing systems. A primary goal of this framework is to enable 
adaptation strategies and infrastructure to be reusable across 
different systems. Abstract architecture models are maintained by 
the architecture layer of the framework while the application is 
executed in the system layer. Both layers interact through a 
translation layer. 
Sterritt and Bustard [15] describe an autonomic environment 
containing autonomic elements which communicate 
asynchronously. Each element consists of a managed component 
and an autonomic manager. The manager uses feedback on the 
state of the managed component and the state of the environment 
to make any necessary changes to the managed component. Each 
component also emits a ‘pulse’ on a global signal channel. These 
are used by monitors (either dedicated or distributed) to track the 
health of components.  
The vGrid [16] architecture for autonomic systems consists of 
three layers: the autonomic problem solving environment, the 
vGrid infrastructure services and the autonomic grid application 
execution environment. The first layer is a software development 
environment which allows high level autonomic policies to be 
specified during application development. The second layer 
provides enhanced grid middleware to support autonomic 
applications while the third layer is responsible for monitoring 
and controlling execution. 
Some of these frameworks support autonomic facilities by using 
structures based on external managers or global monitors. In 
addition, they do not address issues arising from the need to 
potentially evolve every part of the system including feedback 
and managers themselves. The advantage of our approach is that 
systems are structured by a methodology allowing localised 
change in every component thus providing them with integrated 
support for autonomics. 

3. SUMMARY OF ADL MECHANISMS 
We introduce the required mechanisms for the autonomic 
framework using the ArchWare approach in this section. The 
feedback mechanism uses software probes for generating 
feedback and connections for communicating probes and 
feedback between sources and sinks. The change mechanism 
utilises the concepts of change functions and change connections. 
The framework also supports a mechanism for integrating 
external components into ADL systems. 
Both feedback and change mechanisms make use of the hyper-
code technology. A hyper-code [17] program is an active 
executing graph linking source code and existing values. Hyper-
code provides a single representation (as a combination of text 
and hyperlinks) of software throughout its lifecycle. Sharing is 
represented by multiple links to the same value. 

3.1 Feedback 
Feedback acts as a trigger for change in autonomic systems. A 
component may receive feedback from any of the following 
sources:  
� another component written in the ADL 
� the execution engine on which the ADL is being evaluated 
� the environment external to the ADL 
The ArchWare ADL provides a uniform mechanism to deal with 
feedback from all these sources. The feedback mechanism is 
structured in terms of feedback sinks, feedback sources, software 
probes, probe connections and feedback connections. 
Each feedback source is designed to publish its feedback 
interface, accept functions from the probe connection, interpret 
them as probes, bind them internally and invoke them at the 
appropriate time.  
Feedback sinks are structured to define software probes, send 
them to feedback sources via the appropriate probe connections, 
receive the feedback via feedback connections and take 
appropriate action to correct any anomalies. 
Software probes are defined by functions using application 
constraints and hyperlinks to the observable features published by 
the target feedback source. The function body consists of an if-do 
clause with the if-part representing the negation of a constraint 
and the do-part the feedback to generate if the condition is true. 
Connections for communicating probes and feedback are defined 
differently for each type of feedback source but once created can 
be used identically. Feedback connections act as the event 
distribution network. 

3.2 Change 
3.2.1 Support for Change 
The following kinds of change for autonomic adaptation are 
supported by the ADL:  
� update and replacement 
� static and dynamic generation of new components 
� dynamic evolution (decomposition, reification, reflection, 

recomposition) 
All language mechanisms required to support the above changes 
maintain type safety in the ArchWare ADL. 
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Components are modelled by behaviours (analogous to processes 
in π-calculus) in the ArchWare ADL. They communicate via 
connections (channels in π-calculus) using send and receive 
actions. Behaviours can be collaboratively and hierarchically 
composed to form a system. A compose operator (akin to “|” in 
the π-calculus) creates a single handle to a number of executing 
behaviours. Abstractions abstract over behaviours just as 
functions abstract over expressions. Mutability is explicitly 
modelled by locations. 
Update is performed when a location is assigned a new value. 
Replacement of statically defined components is supported by 
assigning a new component to a location containing the old one. 
There are two ways of generating new instances of component 
types. If the number of components and time of creation are 
known statically then abstraction definition and application can be 
used. If component creation depends on some dynamic input then 
replication (“!” in π-calculus) may be used. 
A more challenging adaptation is where part of a system has to be 
(partially) disassembled, changed and put back together to create 
an evolved system while the unaffected part continues to execute. 
This change requires support for 
� decomposition, 
� reification,  
� reflection, and  
� recomposition. 
Decomposition [18] takes (part of) an executing system, breaks it 
up into its constituent components and returns them in a partially 
suspended state. The ADL supports a decompose operator which 
takes a composite component and returns a sequence of its 
constituent components (behaviours). 
Reification allows introspection of a component so that its 
specification can be used as the basis for any change. The 
specification of a component is always available including during 
execution and after decomposition via the ArchWare ADL hyper-
code system [19]. 
The specification of a component can be edited using the hyper-
code system to produce an evolved specification. Using 
hyperlinks to denote existing values allows us to preserve shared 
data through this evolution. 
Reflection allows new or evolved components to be bound back 
into an executing system. The evolved specification is brought 
into the execution domain by dynamic compilation. A callable 
compiler is provided by the ADL to implement reflection. 
Recomposition takes the evolved set of components and 
composes them together to form a new system. The compose 
operator provided by the ADL can be used to achieve this. 

3.2.2 Change Mechanism 
Since feedback triggers change, the change mechanism can be 
described as an extension of the feedback mechanism. In addition 
to feedback sinks, feedback sources, feedback connections, probe 
connections and probes, we introduce the notions of change 
connections and change functions. 
Feedback sources publish a change interface in addition to their 
feedback interface. This interface contains hyperlinks to locations 
of units of functionality within the source which may be modified 
by feedback sinks. These units are typically behaviours. 

When a feedback sink receives some feedback from a probe 
executed by a feedback source, it may decide that changes are 
necessary to some part of the feedback source. It then defines a 
change function to update the necessary part of the source. 
Change functions are constructed using the change interface of 
the feedback source and the ADL constructs for supporting 
change described in section 3.2.1. The former gives access to the 
required units of functionality within the source while the latter 
implement the required change. 
The feedback sink sends the change function along a change 
connection to the feedback source. The source is designed to 
interpret messages on the change connection as change functions 
and execute them accordingly. 
This mechanism supports changes within a feedback source. A 
complementary change mechanism, also supported by the 
ArchWare framework, allows a feedback sink to directly 
manipulate a feedback source, either by decomposing the source, 
evolving its constituents and recomposing them to form a changed 
source or by replacing one source component with another. The 
examples in this paper deal with changes to parts of feedback 
sources. 

3.3 Integration of External Components 
Commercial off-the-shelf (COTS) components are increasingly 
being used as building blocks for software systems. Thus any 
framework for realistic software development must provide 
facilities for incorporating COTS components into systems. 
The ArchWare architecture framework was designed to allow 
external components, including COTS and legacy systems, to be 
incorporated into ADL systems [11]. Furthermore these systems 
are designed to be capable of evolving and being evolved.  
Each external component in the framework has a corresponding 
Transformer/Connector (T/C) and an ADL proxy component. The 
former acts as a bridge between the external component and the 
ADL domain providing a view of the external component as seen 
from the ADL. It also translates messages into formats required 
by either side. The latter is used as an ADL interface to the T/C. 
The underlying network to support communication between 
external components and the ADL domain is independent of this 
architecture. A web services infrastructure is currently used for 
this purpose. 

4. STRUCTURING METHODOLOGY 
Structuring systems in a manner amenable to change will ease and 
localise the process of autonomics. Producer/Evolver (P/E) [12] is 
a methodology developed by the process modelling community 
for building evolvable systems. 

4.1 Producers and Evolvers 
Each component in the system is modelled as a pair of 
subcomponents: a producer and an evolver. The producer carries 
out the functionality of the component while the evolver deals 
with its autonomic aspects, changing the producer in response to 
environmental or internal feedback. There are two ways of 
developing a component using this methodology: 
� the developer may define both the producer and evolver 

subcomponents 
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� the developer may define an evolver which creates and
installs a producer at initialisation 

Capturing the functionality and evolution of a component in
different subcomponents serves to maintain the separation of 
concerns and reduce the overall complexity of an autonomic
system by localising change. 

4.2 Combining P/E, Constraints, Feedback 
and Change 
The producer/evolver model conforms to the autonomic vision 
described in [1]. It makes use of the mechanisms for feedback and
change described in Section 3 to satisfy the goals set for each 
component. In this case the evolver acts as feedback sink and the 
producer as feedback source.
The evolver contains policies and goals for the component 
encoded as constraints. Its functions include: 
� sending probes to the producer via the probe connection to 

monitor the execution of the producer 
� receiving feedback from the probes via feedback connections 
� receiving feedback from the environment (users and other

components) via the environment feedback connection 
� comparing the feedback to constraints specified for the

component
� defining a change function for any necessary corrections to 

the producer 
� sending the change function to be executed by the producer 

via the change connection 
The producer in turn is designed so that it supports the activities 
of the evolver in addition to carrying out its functionality. Its
duties include 
� receiving probes from the evolver via the probe connection, 

binding them into its execution and invoking them at the
appropriate time

� receiving change functions from the evolver via the change
connection and invoking them 

Probes are defined so that they communicate directly with the
evolver via feedback connections. Thus producers are not 
required to send feedback to their evolvers. 
The structure of a component developed using P/E is shown in 
Figure 1. 

Figure 1: Structure of a Component
In Figure 1, the functionality of Component00 is to receive Raw00
via its input connection, process it to produce Widgets00 and send 

the result via its output connection. This function is carried out by
the Producer00 subcomponent. Evolver00 monitors and maintains
Producer00. Probe and feedback connections between the two
subcomponents enable the communication of probes from
Evolver00 to Producer00 and feedback from probes executing in 
Producer00 to Evolver00. Evolver00 also receives feedback from
the environment via the environment feedback connection. 
Evolver00 sends any necessary change functions to be performed 
on Producer00 via the change connection.
In accordance with these requirements, the definitions of 
producers and evolvers are expected to conform to structures
similar to those shown in Figures 3 and 4 specified in the 
ArchWare ADL. For clarity, non-generic types and values are 
shown as hyperlinks. This code assumes that the evolver and the 
producer are both defined by the developer and that all probes 
share a single feedback connection. 
Figure 2 below defines the required connections for a component. 

! external connections
value input_conn = connection( input_type ) 
value output_conn = connection( output_type ) 
value env_feedback_conn = connection( feedback_type ) 

! connections between producer and evolver 
value probe_conn = connection( probe_type ) 
value feedback_conn = connection( feedback_type ) 
value change_conn = connection( function[] ) 

Figure 2: Definition of Connections 
input_conn, output_conn and env_feedback_conn are the input,
output and environment feedback connections for the component 
with message types input_type, output_type and feedback_type
respectively.
probe_conn, feedback_conn and change_conn are the connections
to be used between the producer and evolver subcomponents for
exchanging probes, feedback and change functions. They
communicate messages of types probe_type, feedback_type and 
function[] respectively.
Figure 3 shows the structure of the producer subcomponent
defined as the abstraction producer_abs. An instance of the
subcomponent can be obtained by applying this abstraction. 

! producer structure 
value producer_abs = abstraction()
{ value producer_state = location( initial_state ) 

Component00 publish_feedback_interface( producer_state ) 
value producer_unit = location( behaviour{(Environment00)

replicate { 
via input_conn receive raw 
value widgets = do_produce( raw ) 
execute_probes()

Probe, feedback and 
change connections 

Evolver00Environment feedback 
connection

via output_conn send widgets } 
} )

publish_change_interface( producer_unit ) 
compose{

b1 as { replicate { 
via probe_conn receive probe 
install_probe( probe ) } 

   } and

(Raw00) (Widgets00)

Input connection 

Producer00

Output connection 
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b2 as { replicate { b2 as { replicate { 
via change_conn receive delta 
execute_change( delta ) } 

   }
 } 

Evolver10

}
Figure 3: Structure of Producer

The producer defines its initial state as a location and publishes it 
as its feedback interface. It then defines its main functionality,
producer_unit, as a location of behaviour. This behaviour repeats 
the following actions: it receives its input on the input connection
input_conn and binds the input to the name raw in its execution; it 
then produces widgets using raw; it executes all the probes it has 
received; finally it sends widgets on the output connection 
output_conn. The repeated functionality is modelled by the 
replicate construct, guarded by input on input_conn. The 
producer then publishes its change interface containing 
producer_unit.
The interaction of the producer with the evolver is defined as a
composition of two behaviours. The compose operator takes a 
number of behaviours, each with a unique label, and returns a 
handle to the parallel execution of these behaviours. 
The behaviour corresponding to the label b1 repeatedly receives a 
probe on the probe connection probe_conn, binds it to the name 
probe and installs the probe as required. 
The behaviour labelled as b2 repeatedly receives a change 
function on the change connection change_conn, binds it to the 
name delta and executes delta.
The parallel execution of the behaviour contained in
producer_unit and the two behaviours mentioned above forms the
functionality of producer_abs.
Figure 4 shows the structure of the evolver subcomponent defined 
as the abstraction evolver_abs.

! evolver structure 
value evolver_abs = abstraction()
{ replicate { 

choose{
  { via feedback_conn receive feedback } 

or
  { via env_feedback_conn receive feedback } } 

value need_feedback_change = location( false ) 
value need_producer_change = location( false ) 
process_feedback( feedback, need_feedback_change, 

  need_producer_change )
if ’need_feedback_change do
{ value new_probe = define_new_probe()

via probe_conn send  new_probe } 
if ’need_producer_change do
{ value change_function = define_evolution()

via change_conn send change_function } 
 } 
}

Figure 4: Structure of Evolver 
The evolver repeatedly performs the following actions. It receives
feedback either on feedback_conn from the execution of the
producer or on env_feedback_conn from the environment. In 
either case, feedback is bound to the name feedback in the 

execution. The choose construct in the ArchWare ADL (“+” in -
calculus) is used for the non-deterministic selection of one 
behaviour from two or more. 
The evolver then defines two Boolean variables
need_feedback_change and need_producer_change. These are
used to track the changes required by feedback. The evolver 
processes the feedback and updates the Boolean variables as
necessary.
If a change to the feedback being received is required then the
evolver defines a new probe using the feedback interface of the 
producer and sends it to the producer on probe_conn. If a change 
to the producer subcomponent is necessary then the evolver 
defines a change function to carry out the required change using
the change interface of the producer and sends the function to the 
producer on change_conn. Both changes can be triggered by the 
same feedback. 
Given these definitions of a producer_abs abstraction and an
evolver_abs abstraction, a component can be defined as shown in 
Figure 5. 

! definition of component 
value component = compose{ P as producer_abs() and

E as evolver_abs() } 

Figure 5: Definition of A Component 
An application of producer_abs with the label P and an 
application of evolver_abs with label E are composed together to 
form component.

4.3 Composition of Components 
Components can be collaboratively and hierarchically composed 
to form composite components. One or more components may
form the producer part of another component at a higher level of
abstraction. Figure 6 shows a composite consisting of an evolver 
and a producer made up of two components. 

Figure 6: A Composite Component 
In Figure 6, the functionality of Producer10 is to convert Raw10
into Widgets10. This is achieved by the collaboration of C00 and 
C01. Each of these components itself conforms to the 
producer/evolver model. 

C00

Evolver10

C00C
Producer10Producer10

C01

(Environment10)

Component10

(Raw10) (Widgets10)
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The compose operator of the ArchWare ADL can be used for the
composition of components into composites as well as the 
composition of a producer and an evolver to form a component. 
Thus the example in Figure 6 can be specified in the ADL as
shown in Figure 7. 

The compose operator of the ArchWare ADL can be used for the
composition of components into composites as well as the 
composition of a producer and an evolver to form a component. 
Thus the example in Figure 6 can be specified in the ADL as
shown in Figure 7. 

Evolver10

value producer10 = compose{ c00 as c00_abs() andvalue producer10 = compose{ c00 as c00_abs() and
c01 as c01_abs() } 

value component10 = compose{ P as producer10 and
E as evolver10_abs() } 

Figure 7: Specification of a Composite Component 
Our thesis is that this methodology is well-suited to building 
autonomic systems. P/E requires an evolver component to be 
produced for every functional component of the application at 
construction time. This ensures that systems are built with 
evolution in mind in addition to achieving an elegant separation
of functionality and change. At the highest level of the 
compositional hierarchy we have a component (the final system)
without a corresponding evolver.  Evolution at this level requires 
external intervention. 

4.4 Grounding the Model 
All systems, at the finest level of granularity, are made up of
atomic components. The producer/evolver structuring is grounded
at the level where a component can no longer be divided into such 
a pair. The granularity for grounding in such a case is determined 
by the goals of the autonomic system. An external component 
may also be deemed atomic if it provides no suitable interface for
adaptation.
Figure 8 shows a composite component whose producer part 
consists of two atomic components C00 and C01.

Figure 8: Atomic Components 
Change at this level also requires a different mechanism. If, for
example, feedback from Producer10 indicates to Evolver10 that the 
functionality of C00 might need to be altered then a possible 
strategy for change would be for Evolver10 to decompose
Producer10 to gain access to its subcomponents, replace C00 with 
a new component C00’ and recompose C00’ and C01 to form the 
altered Producer10’.
The above evolution may be specified in the ArchWare ADL as 
shown in Figure 9. 

value decomposed_parts = decompose producer10 
value c00 = decomposed_parts::1.behaviour 
value c01 = decomposed_parts::2.behaviour 
value c00_dash_abs = alter_component( c00 ) 

value producer10_dash = compose{ c0 as c00_dash_abs()
and

 c1 as c01} 

Figure 9: Change to Atomic Components 
The decomposition of producer10 returns a sequence containing 
behaviours c00 and c01. Individual behaviours can be accessed by
indexing into this sequence. An evolved abstraction 
c00_dash_abs is defined based on the definition of c00. The 
producer10_dash is then defined by composing the application of 
c00_dash_abs and the original c01 together. 

5. CONCLUSIONS
This paper has presented a structuring methodology based on the 
concepts of producers and evolvers as part of a unified framework
for building autonomic systems. The novelty of our approach is 
the combination of feedback and change mechanisms within a -
calculus based strongly typed executable architecture description 
language and a development methodology designed for change. 
Our contention is that given all the above facilities, autonomic
systems can be constructed and maintained within a single 
framework and with a formal basis for checking. 
The ArchWare ADL hyper-code system has been used to develop 
substantial amount of code using the producer/evolver
methodology presented here. Our experience suggests that it is 
beneficial in developing evolvable systems.
One of the avenues for further research is the integration of 
constraints into the evolution framework. At present we are able
to evolve both architectures and behaviours as they execute. Our
contention is that the framework will be complete when 
constraints can be evolved in a similar manner. Further work also 
needs to be done regarding the implications of that ability for 
autonomic systems.

Evolver10

atomic components 00

Component10

(Environment10)
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