IPv6 and Linux

Jing Jin

PhD student, 56654T, HUT

jinjing@cc.hut.fi

Abstract

Nowadays, Internet uses IPv4, which has proven to be robust, easily implemented and interoperable. However, the initial design of IPv4 did not take into consideration several issues, such as address space limitation, inefficient routing, lack of security support and autoconfiguratiion and QoS support, and poor mobility support. IETF started work on a new version of IP, which is called IPv6, or IP Next Generation(IPNG) to address the problems. This article reviews IPv6 major features, Linux IPv6 implementations and their open source IPv6 projects, the migration from IPv4 to IPv6. The main IPv6 enabled appications are introduced. IPv6 address autoconfiguration is addressed in the conclusion session.

1. Introduction

IPv6 is feature-rich, fixing many of the problems of IPv4 and adding much new functionality. Chinese government officials announced a national Ipv6 project, CNGI (China Next Gerneration Internet) in 2003. The major purpose of the CNGI project are to build national Ipv6 networks and its academic network called CERNET(China Academy of Science Network) for various eperiments and commercial trials to meet the specific network needs.

The IPv6 improvements come in fields such as network autoconfiguration, security and mobility. The addressing issue gets more attention, but it is only one of many important issues when IPv6 was designed. The major goals were to

1. Support billions of hosts.

2. Reduce the routing tables’ size.

3. Provide better security mechanism than current IP.

4. Pay more attention to type of service, particularly for real time data.

5. Make it possible for a host to roam without changing its address.

6. Permit the old and new protocols to coexist for years.

7. Simplify the protocol, to allow routers to process packets faster.

IETF issued a call for proposals and discussion in RFC 1550.

1.1 New Types of Addresses

Addressing under IPv6 is outlined in the main IPv6 RFC, RFC 2460 (Internet Protocol, Version 6 (IPv6) Specification). However, most of the details of IPv6 addressing are contained in two other standards: RFC 3513 (Internet Protocol Version 6 (IPv6) Addressing Architecture) and RFC 3587 (IPv6 Global Unicast Address Format). These replaced the 1998 standards RFC 2373 (IP Version 6 Addressing Architecture) and RFC 2374 (An IPv6 Aggregatable Global Unicast Address Format).

First and foremost, IPv6 has 16 bytes long address. The long address provides an effectively unlimited supply of Internet addresses. The IPv6 introduces the concept of scoped addresses and defines three types of addresses: unicast (global, link local, site local), multicast, and anycast.

An IPv6 unicast address identifies a single interface. A packet sent to a unicast address is delivered to the interface identified by that address. Three types of unicast addresses exist:

An IPv6 multicast addresses delivers copies of one source packet to recipients. In the IPv6 multicast address, you can specify multicast scope, which can be node-local, link-local, site-local, or global.

An IPv6 anycast address identifies a set of interfaces typically belonging to different nodes. A packet sent to an anycast address is delivered to one of the interfaces identified by that address. Anycast differs from multicast in that it delivers a message to any one of the nodes in a group. When the nearest node in the group receives the message, anycast is finished.

1.2 New Streamlined Header Format

IPv6 has a new 40-bytes header (as shown in Figure 1) with the following fields:

· Version, 4 bits that identify the version of the Internet Protocol.

· Traffic class, or sometimes called “Priority” field, is used to distinguish between packets whose source can be flow controlled and those that can not. The field is 8 bits long. Value 0 through 7 are used for transmissions that are able to slowing down in the case of congestion. Value 8 through 15 are used for real time traffic.

· Flow label, 20 bits used by a source node to identify packets that belong to the same flow by setting up a pseudoconnection with particular properties and requirements.

· Payload length, 16 bits containing the length of the IPv6 payload.

· Next header, tells which of the currently six extension headers follows this one. If this header is the last IP header, the Next Header field tells which transport protocol handler to pass the packet to.It is 8 bits that indicate to the router which extension header to expect next. If there are no more extension headers, the next header field indicates the upper layer header.

· Hop limit, indicating the maximum number of hops allowed. In practice, it is the same as Time to Live field in IPv4.

· Source address, 128 bits containing the address of the source node sending the packet.

· Destination address, 128 bits containing the final destination node address for the packet.

Extension headers encode optional Internet-layer information. There are six different extension headers: Hop-by-hop Options, Destination Options, Routing, Fragment, Authentication, and Encapsulated Security. IPv6 is much more flexible in its support of options through extension headers. They are placed between the IPv6 header and the upper layer header in a packet and are chained together using the next header field in the IPv6 header. These headers can be supplied to provide extra information, but encoded in an efficient way. The next header field indicates to the router which extension header to expect next. If there are no more extension headers, the next header field indicates the upper-layer header (TCP header, UDP header, ICMPv6 header, an encapsulated IP packet, or other items).

The Checksum field in IPv4 is gone because calculating it greatly reduces performance. The Protocol field was taken out because the Next Header field tells what follows the last IP header. All the field relating to fragmentation were removed.

1.3 Better Network Management

IPv6 provides enhancements that allow better network management such as network renumbering, which make it simpler to move a whole network to a new ISP by reconfiguring the router with the new routing prefix from the new ISP.

· Improved Mobility Support

· Mobility support in IPv6 allows transparent routing of IPv6 packets to mobile nodes, taking advantage of the design of a new version of IP.

· Support for IPSec
The IETF has mandated support for Internet Protocol Security (IPSec) with IPv6 so it will not be an optional extension, as was the case with IPv4.

1.4 QoS
The IETF specified two approaches, integrated services and differentiated services, to provide guaranteed and selectable Quality of Service (QoS) over the Internet. In addition, IPv6 provides flow labels is provided in IPv6. Flow labels can be used to provide QoS by identifying the packets as belonging to a flow to reduce the processing amount. When a router first receives a datagram, it can cache the flow label and next hop so as to save time when the next datagram arrives with the same flow label. This technique reduces router processing time considerably.

As a result, IPv6 will make it easier to build and deploy applications requiring particular or selectable QoS over the Internet

1.5 IPv6 address autoconfiguration

One of IPv6's useful features is the ability of a host to automatically configure itself, using router discovery, without the use of a stateful configuration protocol. It can determine the address of the router, and receive other configuration parameters it needs. There are two types of autoconfiguration: stateless and stateful.
The stateless configuration is based on the receipt of router advertisement messages. These messages include stateless address prefixes and require that hosts not use a stateful address configuration protocol. The stateful configuration is based on the use of a stateful address configuration protocol, such as DHCPv6, to obtain addresses and other configuration options. A host uses stateful address configuration when it receives router advertisement messages that do not include address prefixes and require that the host use a stateful address configuration protocol. A host will also use a stateful address configuration protocol when there are no routers present on the local link.

By default, an IPv6 host can configure a link-local address for each interface.

 Address autoconfiguration is described in RFC 2462, “IPv6 stateless address autoconfiguration”. The DHCPv6 specification was published as RFC 3315.
1.6 IPv6 Device Renumbering

Under IPv6, networks can be renumbered by having routers specify an expiration interval for network prefixes when autoconfiguration is done. It can be implemented using protocols like DHCP, through the use of IP address “leases” that expire after a certain period of time. A new prefix is sent later to tell devices to regenerate their IP addresses. Devices can actually maintain the old “deprecated” address for a while and then move over to the new address.

1.7 Smooth transition from IPv4

The IETF specifications for IPv6 contain a lot of information concerning the transition issues. Most of the documents are presented in form of RFCs, available as This area is under extensive evaluation and engineering work. However the information currently available pretty well reflects the most significant subjects of IPv4 to IPv6 transition. Also, there are large number of transition mechanisms available. Special methods are defined to handle interoperability, including:

· “Dual Stack” Devices: Routers and some other devices may be programmed with both IPv4 and IPv6 implementations to allow them to communicate with both types of hosts.

· IPv4/IPv6 Translation: “Dual stack” devices may be designed to accept requests from IPv6 hosts, convert them to IPv4 datagrams, send the datagrams to the IPv4 destination and then process the return datagrams similarly.

· IPv4 Tunneling of IPv6: IPv6 devices that don't have a path between them consisting entirely of IPv6-capable routers may be able to communicate by encapsulating IPv6 datagrams within IPv4. In essence, they would be using IPv6 on top of IPv4; two network layers. The encapsulated IPv4 datagrams would travel across conventional IPv4 routers. 6bone community is quite large and active, but it is still in the early stages of IPv6 deployment.

1.8 6bone (IPv6 Backbone)

The 6bone is an IPv6 testbed to assist in the evolution and deployment of IPv6, The 6bone is a virtual network layered on top of portions of the physical IPv4-based Internet to support routing of IPv6 packets.
2. IPv6 Open source projects

There are two main IPv6 implementation for Linux: the implementation comes from USAGI (UniverSAl playground for IPv6) and the implementation comes as part of the Linux kernel. In [3], the author explores the two projects working on IPv6.

2.1 Open source IPv6 projects

The WIDE IPv6 Working Group (IPv6 WG), part of the WIDE Project, was started in 1995 in Japan for the purpose of experimenting with and deploying IPv6. In late 1995, IPv6 WG had several independent implementations and held interoperability test events. As the specification was verified and interoperability became common, it appeared that it was ineffective for IPv6 WG to implement IPv6 stacks independently. The WIDE Project started the KAME Project as a subproject for combining the power of implementations.

The KAME Project is a joint effort of seven companies in Japan to create a free, solid software stack for BSD variants (FreeBSD, OpenBSD, NetBSD and BSD/OS), targeted especially at IPv6 and IPSec. The project was formed to avoid unnecessary duplicated development and to deliver a high-quality and advanced feature-full implementation.

The TAHI Project started in October 1998 in Japan as a project between the University of Tokyo, YDC Corp. and Yokogawa Electric Co, with the objective of developing and providing the verification technology for IPv6 through research and development of conformance and interoperability tests. The group works in collaboration with the KAME Project on the quality side by offering the verification technology developed in the TAHI Project and improving the development efficiency. TAHI Project receives great support from the WIDE Project.

The USAGI (UniverSAl playGround for IPv6) Project works to deliver the production quality IPv6 protocol stack for Linux in collaborating with the WIDE Project, KAME Project, TAHI Project and the Linux IPv6 User's group.

The IPv6-DRET Project is a public Linux implementation of IPv6, funded by the DGA/DRET (French Military Research Agency) and codeveloped by INRIA Sophia-Antipolis and LIP6 Paris. IPv6-DRET was based on the Linux kernel 2.1, and the goal of this implementation was to test certain algorithms relative to quality of service (QoS).

2.2 IPv6 support in Linux kernel

The Linux kernel has its own IPv6 implementation. However, based on the TAHI Project results, this implementation proved to be not as good as other implementations. The USAGI Project has produced some small fixes, but a complete integration with the kernel stack is still an open issue.

3. How do get IPv6 on Linux machines?

This session covers the installation of IPv6 software onto a Linux machine.

3.1 Absolutely critical software

The user has to have an IPv6-capable Linux kernel. 2.1.x kernels or later version to get Linux box running IPv6 over 6bone. Download the kernel from kernel.org, enable some specific options in the kernel configuration. Enable IPv6 protocol in Networking Options in the configuration. Finally, save the configuration and exit it.

Once the kernel supports IPv6, some tools are needed to test setup and to use IPv6 transport with other systems. Basic network utilities and some IP utilities such as ping6, telnet6, etc are needed to do basic IPv6 testing. There are three packages to provide these utilities: net-tools, iputils and NetKit utilities.

· Net-tools is the programs to control Linux networking. Some commands, such as arp, hostname, ifconfig, ipmaddr, iptunnel, netstat, rarp, route and plipconfig are included. Download the package directly into /usr/src, and answer some questions to configure net-tools. The binaries will be installed in /sbin and /bin, after reboot the system, it is ready to use.

· Iputils includes ping, ping6, traceroute6, rdisc, clockdiff, tftpd, tracepath, tracepath6 and arping.

· NetKit Utilities are basic tools to work with and test new IPv6 configuration. NetKit includes ping, finger, telnet, rwho tools and their respective daemons.

3.1.1 Development libraries

· GNU libc 2.1 or glibc 2.1, the current version is 2.3.4 (May 2005). The releases are available at http://ftp.gnu.org/gnu/glibc/ and its mirrors.

Glibc 2 is the latest version of GNU C library. On Linux, glibc 2 is used as the libc with major version 6, the successor of the Linux libc 5. Linux systems commonly use libc-5 as their main libc.
· Libinet6

· Glibc 2.0 patch

3.1.2 Other critical software

Net-tools contains ifconfig, hostname, route, arp, rarp, netstat, and ipfw. You may download from ftp://ftp.london.uk.eu.org/pub/ipv6/ ftp://ftp.cs-ipv6.lancs.ac.uk/pub/Code/Linux/Net_Tools/
3.2 Potential useful software(optional utilities)

The purpose of the optional utilities is that extend their support for IPv6.

· libpcap and tcpdump are capable of debugging potential IPv6 network problems that may arise. The steps are:

· Move into the source directory, create directory and move into it

· Unpack the new source

· Change to created directory and read the information files README, INSTALL,...

· Run configure utilities

· Compile by using “make clean”

· Install the library

· xinetd with IPv6 support

In order to be able to telenet6 to the system, one needs to compile xinetd with inet6 support. xinetd is a replacement for inetd, the internet services daemon. xinetd can be compiled with IPv6 support by adding the --with-inet6 option to the configure script. Access control is functional with IPv6. One can use IPv4 mapped addresses, or give normal dotted quad IPv4 addresses for access control, and xinetd will map them to IPv6 addresses.

· Netkit

· Several common BSD utilities, finger, ftp, telnet, etc are ported to Ipv6. Netkit picks up at least some of these packages. It is highly recommended.

· BIND

If one has no up-to-date glibc 2.1.x, it is needed to install BIND’s resolver libraries to build Ipv6 apps. Furthermore, the new BINDs support AAAA records, which are part of Ipv6 DNS spec.

· RADVD

RADVD is used for autoconfiguration by Ipv6 hosts. RADVD stands for Router ADVertisement Daemon.It listens to router solicitations (RS) and answers with router advertisement (RA). Furthermore, unsolicited Ras are send from time to time. Because the router itself can not autoconfigure, so the router information has to be provided by the system administrator. This is done by manually configuring the interfaces and routes and by configuring the router advertisement daemon.

4 IPv6 applications

IPv6 has a lot applications. One Chinese telecom company developed a remote controlling system in a hospital by applying IPv6 technology.

The session lists some IPv6 enabled applications. It includes:

· IPv6 access software, such as v6tun, Toolnet6, 6to4, etc.

· Mail, such as sendmail, Qmail, Exaim,

· DNS, BIND

· Multimedia

· Remote access, i.e. SSH,Libra FTP daemon

· WWW server, i.e. Apache

· WWW client , i.e. Mozilla, IE, lynx, w3m

· Proxy and cache, such as wwwoffle, squid.

· NetNews, such as INN server,mnews client

· Network sniffer/protocol analyzer COLD, Ethereal

5 Conclusion

In the overcoming of IPv4’s weakness, IPv6 has made great strides. The address space of 128 bits, versus 32 bits in IPv4, allows many more machines to be connected to a network.

IPv6 overcomes many of the limitations of IPv4 while addressing the future by providing addresses for new devices, new applications, and new users; restoring the Internet model optimized for performance, robustness, security, and manageability; and enabling rapid innovation for next-generation applications.

In addition to the IPv6 network infrastructure mentioned in the earlier session, China has launched a plan to offer leading edge IPv6 applications for the 2008 Olympic Games in Bei Jing.

IPv6 no long uses “private address [RFC 1918] but instead uses two types of network addresses: “site-local” and “link-local” addresses. The ARP and RDP have been replaced with the Neighbor Discovery Protocol. DHCP is not necessary as hosts can negotiate their address on startup.

IPv6 is a key technology and a long-term solution to building scalable, reliable, manageable, secure, and high-performance IP networks.
5. Future research

There are many cases where auto-configuration is not appropriate, particularly in administrated infra-structures, such as enterprise networks. Different to DHCPv6, auto-configuration does not allow a network administrator to define admission control policies. In contrast, DHCPv6 servers provide means for securing access control to network resources by first checking admission control policies before replying on requests from clients. Depending on it, shall we enhance IPv6 security mechanism further? On the other hand, how much extra latency does using DHCPv6 introduce?

For the secuity concern, it is recommended to apply all available patches and disable all unnecessary services. Bind services to the needed IPv4/IPv6 addresses only and install local firewalling. The security auditing, encryption and authentication in IPv6 are future research area although the encryption and authentication is mandatory features in IPv6.

The complete integration between Linux kernel and USAGI is an open issue. The USAGI implementation had better results than the Linux kernel implementation according to [3]’s research, it passed more tests, failed fewer tests and had less inconclusive cases than the Linux kernel implementation. A complete implementation document describing all the supporting RFCs and motivations behind different design decisions does not exist.

List of acronyms

ARP:
Address Resolution Protocol

DHCP:
Dynamic Host Configuration Protocol

DNS:
Domain Name System

ICMP:
Internet Control Message Protocol

IETF:
Internet Engineering Task Force

ISP:
Internet Service Provider

KAME:
Project - a joint effort of six companies in Japan to provide a free IPv6 and IPsec (for both IPv4 and IPv6) stack for BSD variants to the world www.kame.net

LIR:
Local Internet Registry

MTU:
Maximum Transmission Unit

NIC:
Network Interface Card

RDP:
Router Discovery Protocol

RFC:
Request For Comments - set of technical and organizational notes about the Internet

TTL:
Time To Live

USAGI:
UniverSAl playGround for Ipv6 Project - works to deliver the production quality IPv6 protocol stack for the Linux system.

Maintenance

· Monitoring activity - useful tools

· ifconfig(8) - configure and display network interface parameters

· route(8) - manipulate the routing tables

· ping6(8) - send ICMPv6 ECHO_REQUEST packets to network nodes

· traceroute6(8) - print the route that packets take to reach a network node

· tcpdump(1) - selectively view traffic on a network interface

· netstat(1) - show network status

· ndp(8) - arp(8) lookalike for IPv6

· ifmcstat(8) - check kernel multicast group configuration

· systat(8) 'systat netstat' - dynamically display network connections

· IPv6 autoconfiguration

· rtadvd(8) - transmit router advertisements from router

· rtsold(8) - periodically send router solicitation, for use on hosts

· rtsol(8) - send single router solicitation; for use on hosts

· Routing daemons

· route6d(8) - RIPng routing daemon, just like routed(8)

· pim6dd - PIMv6 dense mode multicast routing daemon

· pim6sd - PIMv6 sparse mode multicast routing daemon

· zebra - zebra routing daemon, supports RIPng, BGP4+, and OSPFv6

· IPv6-related pseudo interfaces

· faith(4) - IPv6-to-IPv4 TCP relay capturing interface, helps faithd(8)

· gif(4) - generic tunnel interface, which does IPv[46] over IPv[46]

· ifconfig(8) - configures gif(4) with "tunnel" subcommand

· stf(4) - 6to4 tunnel interface (RFC3056)

References

[1] Peter Bieringer: Linux IPv6 HOWTO(English), January 2005, http://www.bieringer.de/linux/IPv6/
[2] Ibrahim Haddad and Marc Blanchet: Supporting IPv6 on a Linux server node, http://portal.acm.org/citation.cfm?id=563955&coll=portal&dl=ACM&CFID=6837385&CFTOKEN=42236895

[3] Ibrahim Haddad: Linux IPv6: which one to deploy, 2002, http://portal.acm.org/citation.cfm?id=513185&coll=portal&dl=ACM&CFID=6837385&CFTOKEN=42236895
[4] David Gordon and Ibrahim Haddad : Building a Linux IPv6 DNS server, 2003, http://portal.acm.org/citation.cfm?id=941151&coll=portal&dl=ACM&CFID=6837385&CFTOKEN=42236895
[5] Chuck Liang: A course on TCP/IP networking with Linux, 2000, http://portal.acm.org/citation.cfm?id=364199&coll=portal&dl=ACM&CFID=6837385&CFTOKEN=42236895
[6] Andrew S. Tanenbam: Computer networks, third edition, January 1997, Prentice Hall

[7] www.linuxquestion.org (May 2005)

[8] http://news.xinhuanet.com (June 2004)

PAGE
7

